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Abstract— Multiscale image representations, such as 

contourlets and wavelets are crucial to significant feature 

extraction for texture retrieval.   In this paper, the aim is to 

highlight the positive impact of added redundancy and 

Gaussian filtering in multiscale image decompositions for 

texture retrieval. Using energy-based retrieval framework on 

Vistex database, conducted experiments on five multiscale 

transforms (contourlets, wavelets and their redundant 

counterparts), show the competitive enhancement provided by 

the redundant contourlet decomposition in terms of 

discriminant features and improvement of retrieval rates.       
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I.  INTRODUCTION  

 
Retrieving image data from large scale databases lead to 

great challenging issues in the research field of content-based 
image retrieval (CBIR). A special attention is given to 
texture retrieval because of the omnipresence of this visual 
feature in most real-world images [1]. Textures are 
prominent in natural images (as in grasslands, brick walls, 
fabrics, biological tissues, etc.) and many important image 
properties are revealed through texture analysis such as 
granularity, smoothness, coarseness, periodicity, geometric 
structure, orientation and so on [2]. Therefore, texture 
retrieval is relevant to CBIR since texture characteristics are 
powerful in discriminating between images. Successful 
texture retrieval relies strongly on relevant texture feature 
extraction and effective similarity measurement steps 
yielding to high image retrieval accuracy while preserving 
low level of computational complexity.  

There are renowned methodologies for texture feature 
extraction operating in the spatial domain (e.g., gray level 
co-occurrence matrices), in the frequency domain (e.g., 
Fourier spectrum measurements), or in the spatial-frequency 
domain (e.g., energy of wavelet coefficients) [1].  

Spatial-frequency transforms, also known as multiscale 
representations, decompose the image spectrum into a set of 
localized frequency-partitions exhibiting image details at 
multiple scales and directions. Linear filter banks and down-
sampling operators are the main tools to perform such 
decompositions yielding various image representations with 
specific properties such as multiple scales, frequency 
selectivity, directionality, redundancy or compactness, 
perfect reconstruction and shift invariance. The redundancy 

property is directly related to the amount of oversampling at 
the decomposition stage. Non-subsampled decompositions 
are known to be completely redundant and shift invariant.  
Examples of multiscale transforms include discrete wavelets, 
Laplacian pyramids and contourlets.  

Recent studies have reported the achievement of 
remarkable outcomes due to the development of a variety of 
new texture feature extraction techniques operating on these 
multiscale representations [3][4][5]. This probably was 
motivated by two main facts: a) the human visual system 
adequacy to the spatial-frequency representation of image 
signals, and b) the inherent nature of texture patterns in terms 
of presence of edges, relation between primitive texture 
elements and variation in scales and orientations [1][ 2]. 

The major contribution of this paper is to study and 

reveal the benefits of incorporating redundancy and 

Gaussian filtering in multiscale image transforms for texture 

feature extraction and retrieval. The remainder of this paper 

is organized as follows. Section II recalls the main 

properties of discrete wavelet, discrete contourlet and their 

redundant variants that are subject to exploration in this 

work. A special focus is made on redundancy properties.  

Section III details the incorporated feature extraction 

methods and the texture retrieval framework. Section IV 

discusses experimental results and main achievements while 

Section V concludes the paper.  
 
 

II. MULTISCALE TEXTURE REPRESENTATION 

A. Discrete wavelets and stationary wavelet transforms  

The discrete wavelet transform (DWT) is efficiently 

implemented by means of iterative linear filtering and 

critical down-sampling of the original image yielding three 

high-frequency sub-bands at each scale level in addition to 

one low-frequency sub-band usually known as image 

approximation. The DWT provides a highly compact image 

representation, that is, the transform is orthogonal, and 

incorporated down-sampling rates result into a total number 

of wavelet coefficients equal to the image size. Since its 

development, the DWT gave rise to many renowned 

methods and techniques in various fields of image 

processing and particularly in image compression. However, 

its use for texture analysis has revealed some limitations in 
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capturing relevant information. In fact, major drawbacks 

were reported in many studies; lack of shift invariance, poor 

frequency selectivity and poor directionality (only 

horizontal, vertical and diagonal orientations).  

The stationary wavelet transform (SWT) has been 

introduced as an improved extension of the DWT. This non-

subsampled variant is implemented through the so-called 

"algorithme à trous" in French (word trous translates into 

holes in English). The SWT achieves shift invariance 

property at the cost of substantial redundancy of wavelet 

coefficients. Indeed, the L-level SWT representation of a 

K×M image results into one approximation sub-band and 3L 

detail sub-bands. Thus, total number of wavelet coefficients 

is equal to (3L+1)KM. 

B. Standard contourlet transform(SCT) 

The discrete contourlet transform as introduced in [6] is 

designated here as the standard contourlet transform (SCT). 

Multi-Directionality, non-separable 2-D filtering and small 

amount of redundancy are among the new ingredients in this 

geometric transform. The decomposition is performed with 

high computational efficiency by combining two distinct 

stages. First, a multiscale decomposition uses a Laplacian 

pyramid (LP) scheme to transform the image into one coarse 

version plus a set of Laplacian sub-images. Second, a 

directional stage (DFB) applies iteratively 2-D filtering 

(DFB) and critical subsampling to further partition each LP 

sub-band into different and flexible numbers of frequency 

wedge-shaped sub-bands, thus capturing geometric 

structures and directional information in natural images.  

When compared to the DWT, the SCT with its extra 

feature of directionality is almost critically sampled with a 

small redundancy factor up to 4/3 due to the Laplacian 

pyramid. SCT leads to efficient representation of smooth 

object boundaries with a small number of local coefficients 

in the right directional sub-bands.  

 

C. Nonsubsampled contourlet transform (NSCT) 

NSCT is a non-subsampled variant of the SCT [7]. All 

down-sampling operations are di carded from 

decomposition stages thus eliminating aliasing problems 

and allowing for full shift-invariance. However, major 

drawback lies in the rapid increase of computational cost as 

large number of directional sub-bands are generated.  For 

example, the NSCT of a K×M image with 3 scale levels and 

4 directions per level results into one approximation sub-

band and 3×4 directional sub-bands. Thus, total number of 

wavelet coefficients is equal to 13KM since each sub-band 

size is the same as original image size.  

D. Redundant contourlet transform (RCT) 

The redundant contourlet transform (RCT) has been 

introduced in [8][9]. The RCT variant aims at reducing 

aliasing problems in SCT by discarding sub-sampling 

operations and allowing for more redundancy in the 

multiscale decomposition scheme (see Fig. 1). 

 

Figure 1.  RCT block diagram (3 scale levels) and its frequency partition. 

Down-sampling is discarded from the Laplacian stage. 

As for the standard contourlet transform, the RCT 

decomposition scheme is divided into two parts: a 

multiscale decomposition and a directional filter bank 

(DFB) using two-dimensional filtering and critical down-

sampling. While DFB stage is kept unchanged, the 

multiscale stage is replaced by a redundant Laplacian 

pyramid (RLP) construct using a set of linear phase low-

pass filters with pseudo-Gaussian properties. Filter impulse 

responses hb(n) are given in (1) where increasing values of 

the factor b decreases the filter passband: 
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 L filters (with b=2l, l=1… L) may be used to build a 

pyramid having L+1 equal-size sub-images: L detail sub-

image and one coarse image approximation CL. Then, a 

DFB with D=4 orientations and 1:4 critical down-sampling 

is applied on each of the RLP sub-bands to obtain 4L equal-

size directional sub-bands {Cld; l = 1… L; d = 1… D}. 

Thus, the redundancy factor for the RCT is L+1 since each 

RLP sub-band size is the same as original image size.   

 

III. TEXTURE FEATURE EXTRACTION AND RETRIEVAL 

Multiscale energy-based approach for texture feature 

extraction consists in calculating energy (L1 norm, L2 norm 

or some combination of both) and characterizing its 

distribution through multiscale sub-band images. The 

energy-based approach assumes that different texture 

 

 
 

12Copyright (c) IARIA, 2016.     ISBN:  978-1-61208-487-9

SIGNAL 2016 : The First International Conference on Advances in Signal, Image and Video Processing



patterns have different energy distribution in the space-

frequency domain. This approach is very appealing due to 

its low computational complexity involving mainly the 

calculation of first and second order moments of sub-bands 

coefficients [3]. Given a multiscale decomposition yielding 

L scale levels and D directional sub-bands Cld at each level, 

two feature vectors E1 and E2 are formed as follow: 
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With × being the size of a given sub-band Cld. 

Similarity measurement is computed as the Euclidean 

distance between two compared feature vectors. 

 

Given a database with P images, a visual index is 

constructed by computing, for each image, its feature vector 

E1 (or E2) as described in (2)-(7). Retrieving similar images 

to the user query Q is done through the calculation of M 

Euclidean distances between the query feature vector and 

the visual index features. The N smallest distances in a 

ranked order are then selected as Top-N matches and 

corresponding images are retrieved.   
 

IV. EXPERIMENTAL RESULTS 

To evaluate the impact of added redundancy and pseudo-

Gaussian filtering on the performance of texture retrieval, 

we conducted experiments using VisTex database [10]. We 

selected 40 grayscale images from various texture categories 

(as shown in Fig. 2). Each image of size 512×512 is 

subdivided into 16 overlapping sub-images of size 256×256, 

and thus, a database with 640 sub-images is constructed. To 

avoid any trivial discrimination based on local mean and 

variance, we normalized grayscale values to zero mean and 

unit variance. Texture retrieval performance is measured in 

terms of the retrieval rate (%), which is calculated as the 

percentage of relevant images found among the Top-N 

retrieved images (with N=15). 

All retrieval results presented in this paper are obtained 

by averaging the retrieval rates corresponding to 640 

queries. We compared five distinct multiscale transforms 

combined to two distinct texture retrieval frameworks using 

energy E1 and energy E2 features, respectively. The 

implemented multiscale decompositions are as follow: 

 
1. DWT: Discrete Wavelet Transform using 4-tap 

Daubechies filters; 
2. SWT: Stationary Wavelet Transform using 4-tap 

Daubechies filters; 
3. SCT: Standard Contourlet Transform, with pkva 

filters,  yielding 4 directional sub-bands at each 

scale level; 

4. NSCT: Non Subsampled Contourlet Transform, 

with pkva filters,  yielding 4 directional sub-bands 

at each scale level; 

5. RCT: Redundant Contourlet Transform, with 

pseudo-Gaussian and pkva filters, yielding 4 

directional sub-bands at each scale level. 

 

Average retrieval rates (%) obtained by each of the 

compared methods are given in Table I. In most cases, 

feature extraction using energy E2 gives slightly better 

results than energy E1. Retrieval is performed with different 

combinations of scale levels. Each additional scale level 

increases the performance of the retrieval rate. Top results 

correspond to 3 scale levels as shown in Table I. The worst 

retrieval rates are obtained from wavelet-based retrieval 

(DWT and SWT). This is probably due to the poor 

directional selectivity of these transforms. We can clearly 

observe that retrieval rates improve as transform redundancy 

increases, i.e., SWT leads to better rates than DWT, and 

NSCT rates are better than SCT ones. However, despite the 

fact that RCT has a partial redundancy; it yields the best 

texture retrieval performance (about 3 points higher) thanks 

to pseudo-Gaussian filters in the Laplacian pyramid stage 

(see Table II).  

The benefit from pseudo-Gaussian filtering is also 

illustrated in Table III. Indeed, texture retrieval is performed 

on Laplacian sub-bands, namely, NSCTLap and RCTLap 

that correspond to the multiscale pyramid stage of NSCT 

and RCT respectively. Two observations may be drawn 

from this experiment: 1) retrieval rates are substantially 

lower than in Table I due to the lack of directional 

selectivity in the Laplacian decomposition, and 2) 

performance of RCTLap is better than NSCTLap thanks to 

pseudo-Gaussian filters, which allow for good texture 

discrimination.  

We believe that, despite the simplicity of the energy-

based model for feature extraction, all these successful 

results in texture retrieval rates have manifested the 

potential of added redundancy and Gaussian filtering, 

through RCT, in extracting discriminant texture features.     
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Figure 2.  Texture images from the VisTex collection that are used in the 

experiments; from left to right and top to bottom: Bark0, Bark6, Bark8, 
Bark9, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, 

Fabric9, Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, 

Flowers5,Food0, Food5, Food8, Grass1, Leaves8, Leaves10, Leaves11, 
Leaves12, Leaves16,  Metal0, Metal2, Misc2, Sand0, Stone1, Stone4, 

Terrain10, Tile1, Tile4, Tile7, Water5, Wood1, and Wood2. 

V. CONCLUSION 

 
The quality of texture retrieval is subject to effective 

image representation and relevant feature extraction that 
discriminate among different textures. In this paper, we 
successfully demonstrated the positive impact of image 
transform redundancy and Gaussian filtering on the 
efficiency of retrieval rates. Moreover, the conducted 
experiments using multiscale energy-based feature vectors 
have shown the superiority of the redundant contourlet 
transform (RCT) for texture discrimination and retrieval, in 
comparison to other multiscale transforms, namely DWT, 
SWT, SCT and NSCT. Subsequent ongoing research 
directions focus on rotation invariance of such multiscale 
retrieval schemes.  

TABLE I.  AVERAGE RETRIEVAL RATES (%) IN THE TOP-15 IMAGES 

VS. THE NUMBER OF DECOMPOSITION LEVELS. FIVE MULTISCALE 

TRANSFORMS ARE COMPARED. 

 

Transform 

type 

2 levels 3 levels 

Feature E1 Feature E2 Feature E1 Feature E2 

DWT 57.68 57.84 57.43 57.95 

SWT 58.13 58.35 62.96 63.54 

SCT 60.78 60.56 62.96 62.89 

NSCT 61.67 61.95 61.48 62.44 

RCT 63.39 63.54 64.94 65.16 

TABLE II.  RCT AVERAGE RETRIEVAL RATES (%) COMPARED TO 

OTHER TRANSFORMS. RATE DIFFERENCES ARE SHOWN. 

 

Transform 

type 

2 levels 3 levels 

Feature E1 Feature E2 Feature E1 Feature E2 

RCT -DWT +5.71 +5.70 +7.51 +7.21 

RCT-SWT +5.26 +5.19 +1.98 +1.62 

RCT-SCT +2.61 +2.98 +1.98 +2.27 

RCT-NSCT +1.72 +1.59 +3.46 +2.72 

RCT 63.39 63.54 64.94 65.16 

TABLE III.  AVERAGE RETRIEVAL RATES (%) IN THE TOP-15 IMAGES 

VS. THE NUMBER OF DECOMPOSITION LEVELS. TWO REDUNDANT 

LAPLACIAN TRANSFORMS ARE COMPARED. 

 

Transform 

type 

2 levels  3 levels  

Feature E1 Feature E2 Feature E1 Feature E2 

NSCTLap 41.29 42.25 44.13     45.48 

RCTLap 44.05 44.11 44.73 45.32 

Difference +2.76 +1.86 +0.60 -0.14 
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