
Insight into Integrating Legacy Systems and Microservices Architectures within
the Insurance Industry via an Enterprise Service Bus

Arne Koschel
Andreas Hausotter
Christin Schulze
Tim van Dorp

Lennart Vermehr
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hanover, Germany
Email: {andreas.hausotter@, arne.koschel@,
christin.schulze@stud., tim.van-dorp@stud.,

lennart.vermehr@stud.}hs-hannover.de

Henrik Meyer
Capgemini

Hanover, Germany
Email: henrik.meyer@capgemini.com

Abstract—Microservices Architectures (MSA) have become
increasingly popular due to their ability to implement new
requirements, enhancing organizational competitiveness quickly.
However, their integration with legacy systems poses significant
challenges, especially in industries like insurance, where green-
field projects are rare. This research addresses the complexities
of integrating microservices with Service-Oriented Architectures
(SOA) and third-party systems, such as SAP, with specific
requirements (e.g., release cycles, versioning). While complete
migration to MSA is unrealistic in the Insurance Industry,
targeted improvements and partial replacements are achievable.
Integration must also account for existing Enterprise Service
Bus (ESB)-based infrastructures. Building on previous work,
we developed RaMicsV, a logical reference architecture, and
its technical implementation, T-RaMicsV. This paper expands
on earlier findings by providing a detailed exploration of inte-
grating microservices with ESB-based SOA environments. The
results offer practical insights into adapting microservices for
insurance companies, focusing on logging, monitoring, security,
workflows, and choreographies while maintaining legacy system
compatibility.

Keywords—Ingetration; ESB; SOA; Microservices.

I. INTRODUCTION

Software architectures are constantly changing and being
explored even further. In particular, Microservices Architec-
tures (MSA) have become increasingly popular in recent years.
MSA offers the advantage of being able to implement new
requirements quickly. Companies remain highly competitive.
However, one of the biggest challenges is connecting and
integrating these new systems with existing legacy systems.

Our current research is the most recent work of a long-
standing, ongoing applied research–industry cooperation on
service-based systems. This includes cooperative work on
traditional SOA, Business Rules and Business Process Man-
agement (BRM/BPM), SOA-Quality of Service (SOA-QoS),
and microservices ([1]–[4]), between the Competence Center
Information Technology and Management (CC ITM) from

the University of Applied Sciences and Arts Hanover and
two regional, medium-sized German Insurance Companies.
Our current research aims to jointly develop a ’Microservice
Reference Architecture for Insurance Companies’ (RaMicsV)
with our partner companies. This shall allow the building of
microservice-compliant insurance application systems or at
least such system parts.

The German industry sector often faces specific key chal-
lenges and foundational requirements in this context. Specif-
ically, insurance companies rarely introduce development
projects ”on a greenfield” but must integrate with and adapt to
their existing application systems. For instance, our partners
operate a Service-Oriented Architecture (SOA) in conjunction
with legacy systems and additional third-party software, such
as SAP systems, which have distinct characteristics, including
differences in testing, release cycles, versioning, and adminis-
tration.

Currently, our partners are eager to realize the promised
advantages of microservices, such as enhanced technical and
organizational scalability through parallel execution and devel-
opment and significantly accelerated release cycles (reducing
the timeline from quarters or months to weeks or even days).

However, any microservices-based approach must coexist
seamlessly with their established systems and SOA services.
While targeted improvements or partial replacements within
the software landscape using microservices are viable, a com-
plete migration to a microservices architecture is not practical.

Our partners’ existing SOA environments are traditionally
interconnected via an Enterprise Service Bus (ESB), meaning
any new systems must also be compatible with this infrastruc-
ture. We will discuss one possible way of realizing this via an
Enterprise Service Bus Wrapper in this paper.

In our previous work [5], we already developed RaMicsV,
a logical reference architecture considering those insurance
industry specifics. Moreover, we explored parts of it, such as

1Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

logging, monitoring, security, workflows, and choreographies,
in more depth [5]–[7].

We have technically conceptualized this logical reference
architecture and derived a corresponding technical reference
implementation, termed T-RaMicsV [8]. RaMicsV serves as
a guideline, incorporating best practices and modular building
blocks for microservice architectures in the insurance industry.
To validate RaMicsV and to demonstrate a feasible techni-
cal implementation, we developed T-RaMicsV. However, T-
RaMicsV does not aim to establish a standard; it merely
represents one possible technical realization of the logical ref-
erence architecture. A previous paper described this approach
as cloud-native [9]. Additionally, integration via an ESB was
a specific requirement of our insurance partners.

This article’s main contribution is that, for the first time,
we describe integration via the ESB in detail. This integration
describes only a part of T-RaMicsV.

We organize the remainder of this article as follows: After
some related work in Section II, we present the logical
reference architecture in Section III and the technical reference
architecture in Section IV. This is followed by a description of
the integration via the ESB in Section V. The paper concludes
with a summary and an outlook in Section VI.

II. RELATED WORK

The foundations of this work relate to the concepts of mi-
croservices architecture, cloud computing, cloud-native archi-
tecture, and practical application within the insurance industry.

Our research builds on authors in the field of microservices,
such as the work of Newman [10], as well as Fowler and
Lewis [11]. When designing our reference architecture, we
benefit from various microservices patterns as discussed by
Richardson [12].

We were in close contact with our partners from the
insurance industry to design the logical reference architecture.
[5] To implement the Technical Reference Architecture [13],
we use a cloud-native approach that is definitionally based
on the descriptions of the Cloud Native Computing Founda-
tion [14]. Furthermore, we supplement our understanding with
the aspects of cloud computing introduced by the National
Institute of Standards and Technology (NIST) [15], as well as
containerization, automation, and observability.

The ESB has been used by enterprises to manage and
communicate in a SOA since the early 2000s. Chappell
[16] and Hohpe and Woolf [17] already describe the ESB
and its use in their books. These books also describe how
SOA/ESB architectures can be connected to other systems.
The authors use the term adapter. Adapters enable the seamless
integration of different applications and technologies into an
ESB architecture by performing protocol and data format
conversions. They act as intermediaries between the ESB and
the systems to be integrated by transforming incoming and
outgoing messages accordingly.

For the ESB Wrapper we adopt approaches from earlier
work, such as Chappell [16] and Hohpe and Woolf [17]. Our
approach is to create an ESB Wrapper to integrate existing
SOA/ESB and MSA. The approach is application-specific and
was developed for the use case of our insurance partners.
This wrapper represents an implementation of our Technical
Reference Architecture.

In accordance to Angelov et al., our Technical Reference
Architecture can be categorized as a ’semi-concrete type 4’
reference architecture, i.e., indicating technology choices to be
implemented in one single organization [18]. In this context,
the technology-agnostic approach of microservices is broken
with, to provide practical specifications that harmonize with
the existing system landscape of an insurance company. The
cloud-native approach used in this contribution is a conceiv-
able option that seems promising to us, to realize RaMicsV
technically.

Deriving a technical reference architecture from a logical
one, like RaMicsV, is a common practice, as discussed
in [19]. Furthermore, there are contributions to the reference
architecture for microservices for broader enterprise context,
e.g., by Yu et al. in [20]. To our knowledge, however, this
has not yet been done for Insurance Companies such as
our industry partners and their specific requirements. These
operate a historically grown heterogeneous system landscape
characterized by an existing SOA. The use of microservices
embedded in the cloud-native approach must be integrated
cooperatively, which plays an essential role in our overall
architectural considerations.

We are using an exemplary insurance industry business pro-
cess to implement the approach in practice. For this purpose,
we have chosen car insurance, one of the core products of
German insurers. The authors Stadler and Gail [21] provide the
basis for the process. A car insurance is compulsory for every
car in Germany. For this reason, it is considered particularly
important for acquiring new customers. The elaboration refers
to the VAA [22] and describes in detail what car insurance
is all about and much more. We use the Business Process
Model and Notation (BPMN) to realize the processes [23],
as it is widely used in the insurance industry. We present this
process in a practical implementation of the technical reference
architecture [9].

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This section presents our RaMicsV as initially started in [5].
In this paper, we briefly describe RaMicsV and then go into
the technical implementation, especially the ESB.

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture will only be shown
briefly, as it heavily depends on the specific functional re-
quirements.

2Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

Figure 1. Technical Reference Architecture for RaMicsV.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully
operated SOA landscape, which seems suitable for our
industry partners for several years. Thus, from their
perspective, the Microservices Architecture (MSA) style
is only appropriate as an additional enhancement and only
a partial replacement of parts from their SOA or other
self-developed applications. The connection to the ESB
and the related legacy systems is described in more detail
in Section V.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms –
looking at it from a high-level perspective, allowing an
’MSA style best-of-breed’ approach at the enterprise
architectural level as well.

• Business processes are critical elements in an insurance
company’s application landscape. To keep its competitive
edge, the enterprise must change its processes in a flexible
and agile manner. RaMicsV must, therefore, provide
suitable solutions to implement workflows while ensuring

the required flexibility and agility.

RaMicsV is divided into building blocks, such as presenta-
tion, business logic & data, governance, integration, operation,
and security.

The building blocks perform the following tasks:

• Presentation includes components for connecting clients
and external applications, such as SOA services.

• Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping
to microservices, using various workflow approaches to
achieve desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to produce
unified monitoring and logging, which encloses all sys-
tems of the application landscape.

• Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) – using a
RESTful API, or message-based – using a Message-Oriented

3Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

Figure 2. Exemplary integration of SOA and MSA in T-RaMicsV.

Middleware (MOM) or the ESB. The ESB is part of the
integration building block and contains a message broker.

In the next section, we present our technical reference
architecture, which concretizes the logical one by specifying
technical concepts. For further explanations of RaMicsV, we
refer to the paper [5].

IV. CLOUD-NATIVE TECHNICAL REFERENCE
ARCHITECTURE FOR INSURANCE COMPANIES

This section provides an overview of the Technical Refer-
ence Architecture (see Figure 1). It has been designed accord-
ing to a cloud-native approach, which is expected to provide
good scalability, short release cycles and high resilience.

The Technical Reference Architecture provides for private
cloud and public cloud as the underlying operating model. The
host machines of all elements of the architecture are physical
or virtual machines, whereby the former can also include
mainframes typical for Insurance Companies. In line with the
cloud operating model, the host machines are operated in the
company’s own data center or booked as IaaS solutions from
public cloud service providers. A hybrid cloud scenario is also
made possible by the Technical Reference Architecture. In the
insurance context, for example, it would be conceivable to use
only certain IT services in the public cloud while continuing
to process highly regulated, sensitive customer data in the
company’s own data center.

The chosen cloud-native approach implies the operation
of microservices as containerized workloads. Thus, a central
element of the reference architecture is the Container Or-
chestration Platform (COP). It is operated by the company
itself or purchased as a managed service from a public cloud
service provider. All microservices and their databases, the
Enterprise Service Wrapper (ESW), a MoM for message-
driven communication, and the Security Token Service (STS)
are operated in containers. These run in a container runtime
environment managed by the container orchestration platform,
which also distributes them across multiple host machines. A
microservice is horizontally scaled in an automated fashion

by the platform as a set of containers, where one container
corresponds to one service instance. Furthermore, the platform
performs the task of service discovery, i.e., a mechanism
by which the microservices of the architecture can find and
address each other. In addition, the COP provides routing
capabilities and allows load balancing between multiple mi-
croservice instances.

The MSA includes business-oriented microservices, named
A to C, as examples in Figure 1. These mainly communicate in
an asynchronous, message-driven fashion via topics or queues
provided by the MoM. Depending on persistence needs, a
microservice may exclusively use its database.

For authentication and authorization purposes, microser-
vices exchange JSON Web Tokens (JWT) with each other
as security tokens. These are issued by the STS of the
architecture, to which the microservices must authenticate
themselves. The Technical Reference Architecture stipulates
that microservices communicate with each other in an mTLS-
encrypted form in addition to using JWT.

To gain transparency in the architecture, metrics, logs, and
traces of the services are collected. These can be aggregated,
processed, and analyzed in corresponding solutions.

As in correspondence with RaMicsV the SOA with ESB is
understood as an existing system landscape part in the Techni-
cal Reference Architecture, in which existing SOA services are
operated. In the insurance industry, for example, SOAP—or
REST-based web services, Enterprise Java Beans (EJB), or
SAP systems offered as SOA services are conceivable. The
SOA with ESB is run on host machines in the company’s
data center but not on the container orchestration platform.
The Microservices Architecture on the COP is considered a
part of the landscape in which new services can be realized
as microservices. Existing SOA services could be migrated
successively to the Microservices Architecture as required (see
red parts in Figure 1). Further details on the ESW are covered
in Section V.

The Technical Reference Architecture provides a proposal
for the ESW, which is a component directly derived from

4Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

Figure 3. Exemplary call chain for a microservice consuming a SOAP service in T-RaMicsV.

RaMicsV. The ESW acts as a central transition from the
microservices architecture to the ESB of the SOA. It is
accessed by one or more microservices via REST when they
need to consume a SOA service.

The software delivery process is planned to be automated
as much as possible. For this purpose, CI/CD pipelines are
used in which the build, test, and delivery of artifacts is
carried out. Provisioning of virtual infrastructure, especially
the one provided by a public cloud service, should be based
on the IaC principle. The infrastructure and application code,
as well as the software artifacts, are captured and versioned in
appropriate repositories. Moreover, to increase the resilience of
the microservices architecture in production, it may be tested
using Chaos Engineering methods.

In the following, we describe the integration via the ESB
in the areas of connectivity, logging, and security.

V. ESB AND WRAPPER

The Enterprise Service Wrapper serves as a crucial central
component in the microservices architecture, acting as a gate-
way for all SOA service consumption and ESB communication
such as, for example, consuming a SOAP-based web service
(see Figure 2). The wrapper represents the sole point of in-
teraction between microservices and the enterprise’s SOA and
acts as a kind of ”gateway” to the SOA for the microservices,
as well as in terms of security.

As the only transition component to the ESB, there is a
risk that the wrapper represents a single point of failure.
To compensate for this, the ESW is provided as a technical
microservice in the technical reference architecture. This is
also operated and replicated in containers on the container

orchestration platform. The horizontal scaling and the use
of the platform’s advantages, such as readiness checks and
self-recovery mechanisms, can increase the availability of the
wrapper. This means that the reliability of the wrapper can be
increased to a practically appropriate level with a sufficiently
high number of replicas.

Figure 3 shows a concrete insurance-related example of
the call chain that a microservice triggers when it wants
to consume a SOAP service of the SOA. The Insurability
service is a microservice that delegates a solvency check to the
Solvency SOAP service to verify the insurability of a customer.
The connection is realized via the ESW and the ESB, whereas
Keycloak is used as the STS that provides security tokens.

A. Connectivity

The Enterprise Service Wrapper connects the MSA to the
ESB by translating requests from the microservices to the
ESB. The request from the wrapper is in a REST style, with a
uniform service request format in JSON and a single endpoint
for all microservices. The format should include at least the
name of the SOA service being used, the SOA operation of
the service being used, and the required service data. The
wrapper translates the service request of a microservice into a
REST call at the endpoint of the ESB. To do this, the wrapper
needs to know where and how to call the ESB to consume
the appropriate SOA service. For this, we assume that the
wrapper can query the Service Registry within the governance
area of RaMiscV to access the required information about the
used SOA Service. The actual call and the technical details of
the ESB remain hidden from the microservice that made the
original request to the wrapper. This means that the wrapper
acts as an SOA interface for the microservices. The response

5Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

from the ESB is translated into a uniform service response
format in JSON and sent back to the original requester.

B. Observability

It is reasonable to implement observability of the requests
that are sent from the MSA to the ESB in order to support
the transparency of the communication. This can be used as
a basis for analysis, which in turn enables effective tuning
for optimization and troubleshooting. Because the Enterprise
Service Wrapper is deployed as a container, the same type
of monitoring used for the microservices can be used here.
Metrics, logs, and traces can be collected and aggregated to
describe when which microservice sends a request to a SOA
service. This can be used, for example, to understand the
frequency and content of service requests and responses from
a microservice to a selected SOA service.

C. Security

The communication between the specialized microservices
and the enterprise service wrapper is encrypted using mTLS.
The respective microservices and the Enterprise Service Wrap-
per authenticate each other by presenting TLS certificates. This
procedure ensures confidentiality and authenticity between
the microservices and the Enterprise Service Wrapper. The
TLS certificates are issued by a certificate authority, which
serves as a trust anchor between the communication partners.
After successful authentication, the STS creates a security
token for the microservice. The microservice must present
this security token to the wrapper when making requests,
and the wrapper must verify the token. It is also ensured
that the token originates from a legitimate sender so that the
wrapper only accepts requests from authentic microservices in
the architecture. As the ESW forms the only interface between
the MSA and the ESB, it ensures that no unauthorized calls
are made from the MSA to the SOA. In addition to mTLS
and JWT, other mechanisms are not used in the remaining
microservices architecture due to the trade-off between secu-
rity and additional effort.

VI. CONCLUSION AND FUTURE WORK

In addition to the three mentioned responsibilities, such
as connectivity, logging, and security, further responsibilities
of the Enterprise Service Wrapper are conceivable. Still,
they are not considered mandatory by the technical reference
architecture. The Enterprise Service Wrapper could cache
the responses returned by SOA services. Depending on the
specific SOA service data, it could be reused for subsequent
microservice requests. In this way, expensive requests via the
network, which the wrapper would otherwise have to trigger
via the ESB, could be avoided.

When storing the responses, the wrapper would have to
implement an expiry protocol, e.g., Least Recently Used
(LRU), which it can use to determine the stored responses that
should be evicted first. The Enterprise Service Wrapper could
also offer connection pooling to enable reusing connections

to the ESB. In such a way, the wrapper could reduce the
effort required to set up connections. It could also implement
patterns such as timeout, retry, or circuit breaker. These could
be used to make the connection to the ESB more resilient.

In this paper, only a part of the implementation of T-
RaMicsV has been presented. Other components, such as
security, scalability, and monitoring, will be covered in future
publications. In addition to approaches such as chaos engineer-
ing to test T-RaMicsV, methods for homomorphic encryption
were also evaluated in context.

REFERENCES

[1] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken, “Al-
ways Stay Flexible! WfMS-independent Business Process Controlling
in SOA,” in 15th IEEE Intl. Enterprise Distributed Object Computing
Conference Workshops. IEEE, 2011, pp. 184–193.

[2] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald,
“Components for a SOA with ESB, BPM, and BRM – Deci-
sion framework and architectural details,” Intl. Journal On Ad-
vances in Intelligent Systems, vol. 9, no. 3,4, pp. 287–297, Dec.
2016, [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=intsys v9 n34 2016 6. [retrieved: 02, 2025].

[3] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, “A Flexible QoS
Measurement Platform for Service-based Systems,” Intl. Journal On Ad-
vances in Systems and Measurements, vol. 11, no. 3,4, pp. 269–281, Dec.
2018, [Online]. Available: https://www.thinkmind.org/index.php?view=
article\&articleid=sysmea\ v11\ n34\ 2018\ 4. [retrieved: 02, 2025].

[4] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency for
Microservices - A Legacy Insurance Core Application Migration
Example,” in SERVICE COMPUTATION 2019, The Eleventh
International Conference on Advanced Service Computing, Venice,
Italy, 2019, [Online]. Available: https://thinkmind.org/index.php?view=
article&articleid=service computation 2019 1 10 18001. [retrieved:
02, 2025].

[5] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 02, 2025].

[6] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Mi-
croservices Authentication and Authorization from a German Insurances
Perspective,” Intl. Journal od Advances in Security, vol. 15, no. 3 &
4, pp. 65–74, 2022, Online. Available: https://www.iariajournals.org/
security/tocv15n34.html [retrieved: 02, 2025.

[7] A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann,
and C. Rust, “Towards the Implementation of Workflows in a
Microservices Architecture for Insurance Companies – The Coex-
istence of Orchestration and Choreography,” in SERVICE COM-
PUTATION 2023, 14th Intl. Conf. on Advanced Service Com-
puting. IARIA, ThinkMind, 2023, pp. 1–5, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2023 1 10 10002 [retrieved: 02, 2025].

[8] C. Schulze, H. Meyer, A. Koschel, A. Hausotter, A. Link, and T. van
Dorp, “A Technical Reference Architecture for Microservices-
based Applications in the Insurance Industry,” in SERVICE
COMPUTATION 2024, 15th Intl. Conf. on Advanced Service Computing.
IARIA, ThinkMind, 2024, pp. 1–6, Online. Available: https:
//www.thinkmind.org/library/SERVICE COMPUTATION/SERVICE
COMPUTATION 2024/service computation 2024 1 10 10009.html
[retrieved: 02, 2025].

[9] A. Hausotter, Koschel, H. Meyer, and C. Schulze, “Applying a
Technical Reference Architecture to Implement
a Microservices-based Insurance Application,” Intl. Journal on Advances
in Intelligent Systems, vol. 17, no. 3 & 4 (in progess), 2024. [Online].
Available: https://www.iariajournals.org/software/

[10] S. Newman, Building Microservices: Designing Fine-Grained Systems,
2nd ed. Sebastopol, Kalifornien, USA: O’Reilly Media, Inc., 2021.

6Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

[11] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html [retrieved: 02, 2025].

[12] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[13] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021: The Thir-
teenth International Conference on Advanced Service Computing, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 02, 2025].

[14] The Linux Foundation - The Cloud Native Computing Foundation,
“Cloud Native Computing Foundation (“CNCF”) Charter,” 2024, On-
line. Available:https://github.com/cncf/foundation/blob/main/charter.md
[retrieved: 02, 2025].

[15] P. Mell and T. Grance, NIST Special Publication 800-145: The NIST
Definition of Cloud Computing, National Institute of Standards and
Technology, U.S. Department of Commerce, Gaithersburg, Maryland,
USA, 2011, Online. Available: https://nvlpubs.nist.gov/nistpubs/legacy/
sp/nistspecialpublication800-145.pdf [retrieved: 02, 2025].

[16] D. A. Chappell, Enterprise Service Bus. O’Reilly, 2004.
[17] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,

Building, and Deploying Messaging Solutions. Addison-Wesley Pro-
fessional., 2003.

[18] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2009, pp. 141–150.

[19] M. Gharbi, A. Koschel, A. Rausch, and G. Starke, Basiswissen
für Softwarearchitekten (Basic knowledge for software architects).
dpunkt.verlag, 2023.

[20] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture,” in 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), 2016, pp. 1856–1860.

[21] M. Stadler and U. Gail, Die Kfz-Versicherung - Grundlagen und Praxis
(The car insurance - basics and practice). Karlsruhe: VVW GmbH,
2015.

[22] Gesamtverband der Deutschen Versicherungswirtschaft e.V. - General
Association o.t. German Insurance Industry, “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[23] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 02, 2025].

7Copyright (c) IARIA, 2025. ISBN: 978-1-68558-257-9

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

SERVICE COMPUTATION 2025 : The Seventeenth International Conference on Advanced Service Computing

