
A Technical Reference Architecture for Microservices-based Applications

in the Insurance Industry

Arne Koschel∗

Andreas Hausotter∗

Christin Schulze∗
∗Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hanover, Germany
Email: arne.koschel@hs-hannover.de

andreas.hausotter@hs-hannover.de

Henrik Meyer†

Alexander Link∗

Tim van Dorp∗
†Capgemini

Hanover, Germany
Email: henrik.meyer@capgemini.com

Abstract—To overcome the shortcomings of traditional mono-
lithic applications, the Microservices Architecture (MSA) style is
playing an increasingly vital role in the provision of business
services. This also applies to the insurance industry, which
is facing challenges like cut-throat competition and decreasing
customer loyalty. Providing scalable and resilient services of high
availability in a flexible and agile manner, which comes with the
MSA style, is undoubtedly a competitive advantage. However,
the insurance industry’s application landscape is characterized
by the coexistence of historically grown systems based on
different architectural paradigms. Therefore, the integration of
microservices with Service-Oriented Architecture (SOA) services
or even legacy systems induces additional complexity. A reference
architecture may lower the complexity of this integration task by
defining an architectural framework of MSA-based applications
in a heterogeneous environment. In this contribution, we present
a technical reference architecture for our partner insurance
companies. The reference architecture is shaped along a cloud-
native approach to provide good scalability, short release cycles,
and high resilience. As a key feature, a technical microservice
supports the integration of SOA services.

Keywords—Microservices Architecture; Reference Architecture;
Cloud Native; SOA; Insurance Industry

I. INTRODUCTION

A long-lasting trend in software engineering is to divide
software into lightweight, independently deployable compo-
nents. Each component can be implemented using different
technologies because they communicate over standardized
interfaces. This approach to structuring the system is known
as the MSA style [1]. A study from 2019 (see [2]) shows, the
MSA style is already established in many industries such as
e-commerce. However, this is rarely the case for the insurance
services industry.

Our current research is the most recent work of a long-
standing, ongoing applied research–industry cooperation on
service-based systems. This includes cooperative work on
traditional SOA, Business Rules and Business Process Man-
agement (BRM/BPM), SOA-Quality of Service (SOA-QoS),
and microservices ([3]–[6]), between the Competence Center

Information Technology and Management (CC ITM) from the
University of Applied Sciences and Arts Hanover and two
regional, medium-sized German insurance companies. The
ultimate goal of our current research is to develop a ’Mi-
croservice Reference Architecture for Insurance Companies’
(RaMicsV) jointly with our partner companies. This shall
allow building microservice conformant insurance application
systems or at least such system parts.

For this purpose, however, several cornerstones and re-
sulting challenges exist frequently in at least the German
industry domain. Especially, insurance companies rarely start
development ’in the green field’, but must integrate and
comply with existing application systems, like Knoche and
Hasselbring showed in [7]. This requirement stems from
building complex systems over multiple years, or decades
even, where a big bang replacement is too risky and cost
intensive. For example, our partners both operate a SOA and
additional 3rd party software, such as SAP systems, which
both have significantly different characteristics, for example,
for testing, release cycles, versioning, administration etc.

Nowadays, our partners would like to get the promised
benefits of microservices, such as improved scalability, both
technical and organizational through parallel execution and
also parallel development, significantly faster release cycles
(a few weeks or even days instead of quarters or several
months) etc. However, a microservices-based approach to help
them must still work well in ’cooperative existence’ with their
existing systems and SOA services. Thus, improvements or
partial replacements of their existing software landscape for
particular goals using microservices is fine, but a complete
migration to the Microservices Architecture style is not a
feasible option. The main goal being extension of a system,
and not replacing it.

In our previous work [8], we already developed RaMicsV,
a logical reference architecture, which takes those insurance
industry specifics into account. Moreover, we started to explore
parts of it, such as logging, monitoring, security, workflows,

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

and choreographies, in more depth [8]–[10].

As the major contribution of this article, we present for the
first time, a technical reference architecture for RaMicsV. Our
technical reference architecture (T-RaMicsV) is based on a
cloud-native approach for microservices including, for exam-
ple, containerization, message-driven communication and an
ESB-wrapper microservice. This also marks the first practical
implementation of this architecture and works as a proof of
concept.

We organize the remainder of this article as follows: Af-
ter discussing related work in Section II, we briefly repeat
RaMicsV in Section III. Next, Section IV and Section V
contribute our cloud-native approach to the technical reference
architecture based on RaMicsV. Section VI concludes and
looks at future work.

II. RELATED WORK

The foundations of this work relate to the concepts of
Microservices Architecture, cloud computing, cloud-native
architecture and practical application within the insurance
industry.

Our research builds on authors in the field of microser-
vices, such as the work of Newman [11], Fowler and Lewis
[1], as well as Fachat [12]. When designing our reference
architecture, we benefit from various microservices patterns
as discussed by Richardson [13].

To design T-RaMicsV, we use a cloud-native approach that
is definitionally based on the descriptions of the Cloud Native
Computing Foundation [14]. Furthermore, we supplement our
understanding with the aspects of cloud computing, introduced
by the National Institute of Standards and Technology (NIST)
[15], as well as containerization, automation, and observability.

In this contribution, we lay out T-RaMicsV, which is
derived from RaMicsV [16] as our foundation. An implemen-
tation of RaMicsV that demonstrates its technical feasibility,
as envisaged in this paper, has not yet taken place.

Regarding its realization, a technical reference architec-
ture must be developed that makes fundamental statements
about the technologies used, such as programming languages
or infra-structure. In accordance to Angelov, Grefen, and
Greefhorst [17] T-RaMicsV can be categorized as a ’semi-
concrete type 4’ reference architecture, i.e., indicating tech-
nology choices to be implemented in one single organization
[17].

In this context, the technology-agnostic approach of mi-
croservices is broken with, to provide practical specifications
that harmonize with the existing system landscape of an
insurance company. The cloud-native approach used in this
contribution is a conceivable option that seems promising to
us, to realize RaMicsV technically.

Deriving a technical reference architecture from a logical
one, like RaMicsV, seems to us to be a common practice.
Furthermore, there are contributions to reference architecture

for microservices for broader enterprise context, e.g., by Yu,
Silveira, and Sundaram in [18]. To our knowledge, however,
this has not yet been done for insurance companies such as
our industry partners and their specific requirements.

These operate a historically grown heterogeneous system
landscape characterized by an existing SOA. The use of
microservices, that is embedded in the cloud-native approach,
must be integrated in a cooperative manner, which plays an
important role in our overall architectural considerations.

We are currently evaluating T-RaMicsV on a typical car in-
surance process [19]. In previous work, we have implemented
other typical insurance use cases, as can be seen in [20]–[22].

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This section presents our RaMicsV as initially started in [8].
RaMicsV defines the setting for the architecture and the design
of a microservices-based application for our industry partners.
The application’s architecture will only be shown briefly, as it
heavily depends on the specific functional requirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully
operated SOA landscape, which seems suitable for our
industry partners for several years to come. Thus, from
their perspective, the Microservices Architecture style
is only suitable as an additional enhancement and only
a piecewise replacement from their SOA or other self-
developed applications.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means,
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms,
looking at it from a high-level perspective, allowing an
’MSA style best-of-breed’ approach at the enterprise
architectural level as well.

• Business processes are critical elements in an insurance
company’s application landscape. To keep their compet-
itive edge, the enterprise must change their processes in
a flexible and agile manner. RaMicsV must therefore
provide suitable solutions to implement workflows while
ensuring the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV, which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications, such as SOA services.

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

• Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping
to microservices, using various workflow approaches to
achieve desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial
partners.

• Integration contains system components to integrate
microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to produce
unified monitoring, logging, and tracing, which encloses
all systems of the application landscape.

• Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) – using a
RESTful API, or message-based – using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next section, we will present our understanding of
cloud-native architecture, which represents our approach to
developing T-RaMicsV as this paper’s contribution.

IV. CLOUD-NATIVE ARCHITECTURE

The architectural approach of our contribution is based on
the following five aspects of a cloud-native architecture.

• Cloud Computing means that an IT service is offered
by a cloud service provider and used by a cloud ser-
vice consumer. The NIST [15] defines Cloud Computing

via five characteristics: On-demand self-service, broad
network access, resource pooling, rapid elasticity, and
measured service. Different deployment models (Public,
Private, Community, and Hybrid) are used to describe
ownership and control of the cloud environment, while
service models describe the level of abstraction from
a consumer perspective (Software-, Function-, Platform-,
Container-, and Infrastructure as a Service. Abbreviated
to SaaS, FaaS, PaaS, CaaS, and IaaS respectively). CaaS
and FaaS are often used in the industry.

• Microservices are considered – clearly not the only –
but the ’most native’ architectural style in cloud-native
architectures. They grant loose coupling, as well as
independent scaling and deployment [13]. These services
are modeled around business functionality and gain high
cohesion in the process.

• Containerization is the process of deploying software for
a cloud-native architecture as isolated, virtualized units.
Containers offer efficient hardware usage and dynamic
resource allocation.

• Automation in a cloud-native architecture aims at au-
tomated deployments of microservices and new func-
tionality. To achieve this goal, concepts like Continuous
Integration and Continuous Deployment (CI/CD) [11] and
Infrastructure as Code (IaC) [23] play a vital role.

• Observability is the aggregation and analysis of data in a
system to gain transparency and understanding about the
internal components [24]. This supports troubleshooting
in a microservices-based system, where data and business
logic is distributed [11].

The following section will provide insight into our cloud-
native technical reference architecture, which was designed

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

Figure 2. Building Blocks of the Technical Reference Architecture T-RaMicsV.

with our business partners in mind.

V. CLOUD-NATIVE TECHNICAL REFERENCE
ARCHITECTURE FOR INSURANCE COMPANIES

This section provides an overview of T-RaMicsV (see
Figure 2). It has been designed according to a cloud-native
approach, which is expected to provide good scalability, short
release cycles and high resilience.

T-RaMicsV provides for private cloud and public cloud
as the underlying operating model. The host machines of all
elements of the architecture are physical or virtual machines,
whereby the former can also include mainframes typical for
insurance companies. In line with the cloud operating model,
the host machines are operated in the company’s own data
center or booked as IaaS solutions from public cloud service
providers. A hybrid cloud scenario is also made possible by
T-RaMicsV. In the insurance context, for example, it would
be conceivable to use only certain IT services in the public
cloud while continuing to process highly regulated, sensitive
customer data in the company’s own data center.

The chosen cloud-native approach implies the operation
of microservices as containerized workloads. Thus, a cen-
tral element of the reference architecture is the container
orchestration platform (COP). It is operated by the company
itself or purchased as a managed service from a public cloud
service provider. All microservices and their databases, the
Enterprise Service Wrapper (ESW), a MoM for message-
driven communication, and the Security Token Service (STS)

are operated in containers. These run in a container runtime
environment managed by the container orchestration platform,
which also distributes them across multiple host machines. A
microservice is horizontally scaled in an automated fashion
by the platform as a set of containers, where one container
corresponds to one service instance.

Furthermore, the platform performs the task of service
discovery, i.e., a mechanism, by which the microservices of the
architecture can find and address each other. In addition, the
COP provides routing capabilities and allows load balancing
between multiple instances of a microservice.

The MSA includes business-oriented microservices, named
A to C as examples in Figure 2. These mainly communicate in
an asynchronous, message-driven fashion via topics or queues
provided by the MoM. Depending on persistence needs, a
microservice may exclusively use its own database.

For authentication and authorization purposes, microser-
vices exchange JSON Web Tokens (JWT) with each other as
security tokens. These are issued by the STS of the architec-
ture, to which the microservices must authenticate themselves.
In addition to the use of JWT, T-RaMicsV stipulates that
microservices communicate with each other in an mTLS-
encrypted form. To gain transparency in the architecture,
metrics, logs, and traces of the services are collected. These
can be aggregated, processed and analyzed in corresponding
solutions.

As in correspondence with RaMicsV the SOA with ESB

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

is understood as an existing system landscape part in T-
RaMicsV, in which existing SOA services are operated. The
connection to the ESB is a classic use case in the insurance
context. The legacy systems characterized by SOA cannot be
replaced by microservices, but should rather be extended. The
insurance partners are aiming for the coexistence of SOA and
microservices.

In the insurance industry, for example, SOAP- or REST-
based web services, Enterprise Java Beans (EJB), or SAP
systems that are offered as SOA services are conceivable. The
SOA with ESB is run on host machines in the company’s own
data center, but not on the container orchestration platform.
The Microservices Architecture on the COP is considered a
part of the landscape, in which new services can be realized
as microservices. Existing SOA services could be migrated
successively to the Microservices Architecture as required.

T-RaMicsV provides a proposal for the ESW, which is a
component directly derived from RaMicsV. The ESW acts as
a central transition from the Microservices Architecture to the
ESB of the SOA. It is accessed by one or more microservices
via REST when they need to consume a SOA service.

The software delivery process is planned to be automated as
much as possible. For this purpose, CI/CD pipelines are used
in which the build, test, and delivery of artifacts is carried
out. Provisioning of virtual infrastructure, especially the one
provided by a public cloud service, should be based on the IaC
principle. The infrastructure and application code as well as
the software artifacts are captured and versioned in appropriate
repositories. With the aim of increasing the resilience of the
Microservices Architecture in production, it may additionally
be tested using Chaos Engineering methods.

VI. CONCLUSION AND FUTURE WORK

In this contribution, we present a cloud-native based tech-
nical reference architecture that aims to build compliant
microservices-based applications for insurance companies.
The architecture adopts our partner’s special requirements,
such as integrating SOA services.

To evaluate T-RaMicsV, it needs to be applied to a business
process, typical for the insurance industry. We are currently
evaluating the technical realization by means of the car insur-
ance process in order to evaluate the feasibility in the insurance
industry [19]. In this context, we aim to shape an application-
specific architecture that uses a concrete selection of technolo-
gies in accordance to T-RaMicsV. For example, the open-
source system Kubernetes [25], which is well-known in the
cloud-native sector, could be considered for implementing the
COP (see block ’Container Orchestration Platform’, Figure 2).

Furthermore, our future investigations may also, for ex-
ample, include the integration of a prominent public cloud
solution like Microsoft Azure (see block ’Cloud deployment
model’, Figure 2). The findings may cause the need to enhance
or even redesign our technical reference architecture.

Another topic is the refinement of the building block Busi-
ness Processes within the responsibility area Business Logic
& Data (see Figure 1). Choreography is the preferred approach
to implementing workflows. Based on BPMN Choreography
diagrams [26], we identified and classified frequently occur-
ring patterns in the context of the insurance industry. Our goal
is to implement the patterns to make choreography diagrams
executable.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html [retrieved: 04, 2024].

[2] H. Knoche and W. Hasselbring, “Drivers and Barriers for Microservice
Adoption–A Survey among Professionals in Germany,” Enterprise Mod-
elling and Information Systems Architectures, vol. 14, p. 10, 2019.

[3] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken, “Al-
ways Stay Flexible! WfMS-independent Business Process Controlling
in SOA,” in 15th IEEE Intl. Enterprise Distributed Object Computing
Conference Workshops. IEEE, 2011, pp. 184–193.

[4] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald,
“Components for a SOA with ESB, BPM, and BRM – Deci-
sion framework and architectural details,” Intl. Journal On Ad-
vances in Intelligent Systems, vol. 9, no. 3,4, pp. 287–297, Dec.
2016, [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=intsys v9 n34 2016 6. [retrieved: 04, 2024].

[5] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, “A Flexible QoS
Measurement Platform for Service-based Systems,” Intl. Journal On Ad-
vances in Systems and Measurements, vol. 11, no. 3,4, pp. 269–281, Dec.
2018, [Online]. Available: https://www.thinkmind.org/index.php?view=
article\&articleid=sysmea\ v11\ n34\ 2018\ 4. [retrieved: 04, 2024].

[6] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency
for Microservices - A Legacy Insurance Core Application Migration
Example,” in SERVICE COMPUTATION 2019, 11th Intl. Conf.
on Advanced Service Computing, Venice, Italy, 2019, [Online].
Available: https://thinkmind.org/index.php?view=article&articleid=
service computation 2019 1 10 18001. [retrieved: 04, 2024].

[7] H. Knoche and W. Hasselbring, “Using Microservices for Legacy
Software Modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49.
[Online]. Available: https://ieeexplore.ieee.org/document/8354422/

[8] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 04, 2024].

[9] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Mi-
croservices Authentication and Authorization from a German Insurances
Perspective,” Intl. Journal od Advances in Security, vol. 15, no. 3 &
4, pp. 65–74, 2022, Online. Available: https://www.iariajournals.org/
security/tocv15n34.html [retrieved: 04, 2024].

[10] A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann,
and C. Rust, “Towards the Implementation of Workflows in a
Microservices Architecture for Insurance Companies – The Coex-
istence of Orchestration and Choreography,” in SERVICE COM-
PUTATION 2023, 14th Intl. Conf. on Advanced Service Com-
puting. IARIA, ThinkMind, 2023, pp. 1–5, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2023 1 10 10002 [retrieved: 04, 2024].

[11] S. Newman, Building Microservices: Designing Fine-Grained Systems,
2nd ed. Sebastopol, Kalifornien, USA: O’Reilly Media, Inc., 2021.

[12] André Fachat. Challenges and benefits of the microservice architectural
style, part 1. [Online]. Available: https://developer.ibm.com/articles/
challenges-and-benefits-of-the-microservice-architectural-style-part-1/

[13] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[14] Linux Foundation, “Cloud Native Computing Foundation Charter,” 2023,
Online. Available:https://github.com/cncf/ [retrieved: 04, 2024].

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

[15] P. Mell and T. Grance, NIST Special Publication 800-145: The NIST
Definition of Cloud Computing, National Institute of Standards and
Technology, U.S. Department of Commerce, Gaithersburg, Maryland,
USA, 2011, Online. Available: https://nvlpubs.nist.gov/nistpubs/legacy/
sp/nistspecialpublication800-145.pdf [retrieved: 12, 2024].

[16] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021: 13th Intl.
Conf. on Advanced Service Computing, 2021, pp. 5–9, Online. Avail-
able: https://www.thinkmind.org/articles/service computation 2021 1
20 10002.pdf [retrieved: 04, 2024].

[17] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture and
European Conference on Software Architecture, 2009, pp. 141–150.

[18] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture,” in 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC), 2016, pp. 1856–1860.

[19] A. Koschel, A. Hausotter, C. Schulze, A. Link, T. van Dorp,
and H. Meyer, “Towards a Technical Reference Architecture for
Microservice-based Applications in the Insurance Industry,” 2024,
[Manuscript submitted for publication].

[20] M. Lange, S. Gottwald, A. Koschel, and A. Hausotter, “Keep it in
Sync! Consistency Approaches for Microservices An Insurance Case
Study,” SERVICE COMPUTATION 2020, The 12h Intl. Conference
on Advanced Service Computing, pp. 7–10, 2019, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2020 1 20 10016 [retrieved: 04, 2024].

[21] M. Lange, , A. Koschel, and A. Hausotter, “Applied SOA with
ESB, BPM, and BRM - Architecture Enhancement by Using a
Decision Framework,” SERVICE COMPUTATION 2016: The 8th
Intl. Conferences on Advanced Service Computing, pp. 20–27, 2016,
Online. Available: https://personales.upv.es/thinkmind/dl/conferences/
servicecomputation/service computation 2016/service computation
2016 2 10 10013.pdf [retrieved: 04, 2024].

[22] ——, “Microservices in Higher Education - Migrating a Legacy Insur-
ance Core Application,” 2nd International Conference on Microservices,
pp. 1–8, 2019, Online. Available: https://www.conf-micro.services/
2019/papers/Microservices 2019 paper 8.pdf [retrieved: 04, 2024].

[23] K. Morris, Infrastructure as Code: Dynamic Systems for the Cloud Age,
2nd ed. Sebastopol, Kalifornien, USA: O’Reilly Media, Inc., 2021.

[24] C. Majors, L. Fong-Jones, and G. Miranda, Observability Engineering:
Achieving Production Excellence. Sebastopol, Kalifornien, USA:
O’Reilly Media, Inc., 2022.

[25] The Kubernetes Authors, “Kubernetes,” 2023, Online. Available: https:
//kubernetes.io/ [retrieved: 04, 2024].

[26] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 04, 2024].

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-162-6

SERVICE COMPUTATION 2024 : The Sixteenth International Conference on Advanced Service Computing

