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Abstract—The microservice architectural style has gained
widespread popularity among developers due to its ability
to provide numerous benefits, such as scalability, reusability
and easy maintainability. However, transforming a monolithic
application into a microservices-based architecture can be a
complex and an expensive process. To address this challenge,
we propose a novel method that leverages clustering to
identify potential microservices from a monolithic application.
Our approach uses a density-based clustering algorithm
that considers the static analysis, structural and semantic
relationships between the classes to establish a functionally
coherent class partitioning. To evaluate our approach, we
analyzed its hyperparameter sensitivity and compared it to two
other well known clustering algorithms using various metrics
on a Java applications. Our approach showed promising results,
demonstrating its effectiveness and stability.

Keywords-microservices architecture; static analysis; clustering;
decomposition.

I. Introduction
The monolithic architectures is one of the most widely

utilized architectures for software design. In the realm of
software architecture, the monolithic architecture stands as a
prominent approach where an application is built as a single,
indivisible unit. It encompasses all essential functionalities
and components within a unified codebase, thereby present-
ing a tightly coupled system. This architectural style often
involves a centralized database, user interface, and business
logic, rendering it self-contained and independent of external
services. An exemplar of monolithic architecture, that we will
use later in our evaluation process, can be observed in the
context of the DayTrader [1] application, a virtual stock trading
platform. In this monolithic setup, all trading functionalities,
user management, and financial calculations are contained
within a single application. While this approach simplifies
development and deployment and despite being used since
the early days of software systems, it can pose challenges
when it comes to scalability, maintaining code integrity, and
accommodating changes or updates in individual components
[2]–[4].

Many methods have arisen throughout time to solve these
issues, such as migrating to new technologies, managing
independent services, and deploying more powerful servers.
Despite the availability of these solutions, monolithic ar-
chitectures are still limited by inherent drawbacks such as

their large, complex, and often inefficient nature, which may
hinder their ability to support advanced and more sophisticated
technologies [5]–[10].

Microservices architecture, in the other side, is gaining in
popularity and is projected to play a large role in developing
scalable, easy to maintain software products by focusing on
tightly defined, separated services inside a distributed system.
The microservice architecture emerges as a contemporary
approach where an application is built as a collection of
small, independent services. These services are designed to
be modular, self-contained, and focused on specific business
functionalities. Unlike the monolithic architecture, microser-
vices operate as autonomous units that communicate with
each other through well-defined APIs. This architectural style
enables teams to develop, deploy, and scale individual ser-
vices independently, fostering flexibility and maintainability.
A noteworthy example of the microservice architecture can be
found in the Netflix streaming platform. In this setup, various
microservices handle distinct tasks such as user authentication,
content recommendation, billing, and media streaming. Each
microservice can be developed, tested, deployed, and scaled
independently, allowing Netflix to rapidly innovate, adapt to
changing demands, and deliver a seamless streaming experi-
ence to its vast user base [11]. The transition from a monolithic
design to a more durable and robust microservice architecture
is based on the idea of finding contextually and functionally
relevant modules and encapsulating them in a single service,
while ensuring strong cohesion and low coupling between
them. As Rosati pointed out in their research on the migration
cost [12], transforming a mature monolithic software into
microservices architecture may demand substantial investment
in terms of time and cost. These difficulties have prompted
academics to devise automatic decomposition methods that
might ease the migration process.

The task of transitioning a monolithic application into a
microservices architecture is treated as a clustering problem
in the context of our project. Our suggested method entails
a multi-step procedure that employs static examination of the
source code and density-based clustering algorithm to divide
the classes into multiple potential microservices that may be
evaluated further. We conducted an in-depth review utilizing
a variety of metrics to measure the efficacy and efficiency of
our method.
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The main contributions of our work are as follows:
1) The proposed approach combines density-based clus-

tering and static analysis techniques to leverage the
advantages of both methods. It considers the structural
and semantic dependencies among classes in a given
monolithic application.

2) A comparison between the resulting decomposition of
the proposed algorithm and those of commonly used
clustering algorithms in the field.

This paper is structured as follows: Section II details the pro-
posed methodology, including the clustering algorithms used.
In Section III, we discuss the findings of this effort and respond
to different research questions. Section IV presents the related
work in the field of monolithic migration to microservices.
Section ?? outlines the threats to validity that were considered
during the study. Finally, Section V, concludes the work and
discuss future research directions.

II. Proposed Approach
The task of extracting microservices from a monolithic

software is approached as a clustering problem, with the
application’s source code as input. Figure 1 outlines the phases
involved in our research. Our primary goal in this effort is to
achieve granularity at the class level.

Our technique begins with the extraction of semantic and
structural information via static analysis of the source code.
Then, it evaluates all potential combinations while selecting
only one option from each semantic and structural prepro-
cessing component. We feed these representations to each
one of the clustering algorithms, resulting in three distinct
decompositions that will be analyzed and compared .

A. Representation of the Monolithic Application
The monolithic application is represented as a set of Object

Oriented Programming classes denoted as CM=(c1,...,cZ),
where Z represents the total number of classes. In this con-
text, our approach aims to partition the original monolithic
application into a set of K microservices M=(m1,..,mK). Each
microservice, mi=(ca,...,cp), represents a subset of the original
classes. We aim to optimize the migration process, where each
microservice is expected to be cohesive and loosely coupled,
resulting in a more maintainable and scalable architecture.
The initial step, presented in the diagram in Figure 1, focuses
on representing the monolithic application and extracting the
necessary information to build the microservices. To do this,
we begin by creating an encoding scheme for the monolith’s
classes to capture their structural and semantic links.

1) Structural encoding: Abstract Syntax Trees (ASTs) can
be created after the source code has been parsed using a static
analysis tool, such as ”Understand” [9]. These ASTs are used
to extract call relationships between classes in a form of an
interaction graph. As described in task 2.1 of the diagram
presented in Figure 1 the structural information can be encoded
using three different options:

• Callin, Callout: Each class is represented as the sum of
incoming and outgoing calls. Our strategy seeks to group

classes that interact frequently within the same cluster
in order to reduce coupling while promoting greater
cohesion within the resulting microservices.

• Call frequencies: This option tries to build more coherent
clusters by encoding classes in greater depth. We analyse
the call frequencies between each pair of classes to cap-
ture a more nuanced understanding of class connections.

• Codependent calls: We consider call frequencies of
classes that interacts with both classes to encode each pair
of classes. To aid in understanding this concept, we will
go through the example in Figure 2 . We have 4 classes:
A, B, C, and D. The objective is to encode the pair of
classes A and B. Class A is invoked five times by class
B, three times by C, and once by D. In addition, class B
is invoked twice by C and once by D. The encoding of
the pair of classes A and B is the sum of incoming calls
to A from the codependent classes C and D.
The idea behind this technique is that classes that are
frequently called together are usually used to handle the
same functionality.

2) Semantic encoding: Assume we are dealing with mono-
lithic software projects that were created in accordance with
industry norms, the names of classes, methods, and variables
are chosen based on functional principles in such projects, and
thorough annotations are included to indicate their intended
use. By including semantic information into the encoding
process, we can determine the essential links between classes
and the functionality they provide, facilitating the ability to
combine them into coherent microservices.

As a result, the semantic information of each class is com-
posed of a collection of terms that are used in different parts
such as comments, method names, and variable names. To
preprocess these words, we separate them using CamelCase,
filter out stop words and normalise them using stemming.

As seen in task 2.2 in Figure 1, the processed semantic
information will be represented in two options:

• Terms frequencies: It involves incorporating the frequen-
cies of terms found within the vocabulary of the appli-
cation. By doing so, we can ensure that the terms with
higher frequencies are more closely related to the domain
of the class.

• Term Frequency-Inverse Document Frequency: TF-IDF
can improve class clustering in a variety of ways, it
considers not only the frequency of a word in a class, but
also the inverse document frequency to assess how unique
a term is to a class in comparison to the vocabulary. Thus,
unique terms that are exclusive to a class will have a larger
weight and will be more informative.

B. Clustering algorithms

The objective is to extract microservices by encoding classes
structurally and semantically using different combinations of
options. To achieve this, we experimented with the Boosted
Mean Shift Clustering (BMSC) [13] algorithm, along with
other well-known clustering algorithms such as Density-Based

9Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing



Figure 1: Overview of the Microservices Extraction Process.

Figure 2: Illustrative example of Codependent calls metric.

Spatial Clustering of Applications with Noise (DBSCAN) [14]
and Mean Shift [15].

1) DBSCAN algorithm: DBSCAN is a clustering technique
to detect clusters and noise. The user must specify two
hyperparameters, Eps and MinPts. The method uses these
parameters to arrange densely related points into a single
cluster. One major benefit of DBSCAN is that based on the
data and the provided hyperparameters, the number of clusters
can be arbitrary detected, leading in more accurate clusters
[16].
Hyperparameters :

• Eps (ϵ) : Refers to the radius of the neighbourhood
surrounding the cluster’s central point.

• MinPts : This is the bare minimum of points required to
build a cluster.

To build clusters, DBSCAN begins by picking an arbitrary
Core point, then it collects data points within a distance equal
to Eps. A cluster is produced if the total number of points
acquired is more than or equal to MinPts. To enlarge the
original cluster, this procedure is repeated for each cluster
point. During this step, the algorithm creates the first cluster.
The procedure is then repeated after removing all of the points
that composed it from the database. When no further clusters
can be produced with the provided hyparameters, the algorithm
stops. The rest of the points are labelled as Noise.

However, this algorithm is highly sensitive to its hyper-

parameters, leading to significant variation in microservices’
quality. Moreover, DBSCAN-based approaches may not work
well with datasets with varying densities or non-globular
shapes.

2) Mean Shift: The Mean Shift method does not need any
assumptions about the underlying distribution of the data.
It can automatically detect non-linearly formed clusters and
compute the number of clusters [15].

It begins by arbitrary identifying a region of interest and
calculate its center of density. The mean shift vector is then
generated and the center of the area is shifted along the vector
until it corresponds with the centre of mass.

Although the Mean Shift method has shown excellent re-
sults, the research in [13] demonstrates that BMSC outper-
formed Mean Shift in a similar clustering problem with more
stable clustering.
Given the difficulties involved with clustering algorithms spe-
cially when there is no obvious separation between clusters,
we decided to investigate alternatives to standard techniques.
We picked the BMSC technique since it has showed higher
performance in similar clustering tasks.

3) BMSC algorithm: BMSC algorithm is a hybrid cluster-
ing technique that combines Mean Shift and DBSCAN. It is a
density-based clustering method that overcomes some of the
limitations of both approaches and can find clusters of any
form and size with varied densities without the need for a
predetermined number of clusters [13].

The BMSC first applies the Mean Shift algorithm to gener-
ate a set of initial centers that will be the input to the DBSCAN
algorithm. BMSC selects a sample of the data that captures
the skeleton of the clusters in order to properly identify the
data’s underlying structure.

Algorithm 1 outlines the steps involved in applying the
BMSC algorithm. The first step is to divide the data uniformly
into cells of a grid. Then, the Mean Shift algorithm is applied
independently to the data in each cell. This produces a list
of intermediate mode points (iModes). Next, it disperse the
data of the cells using a specific mechanism that involves
each grid cell interacting with a limited number of cells in
its neighborhood. The BMSC paper [13] presents various
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Algorithm 1 Boosted Mean Shift Clustering
Require: X, width, height, Eps.
Ensure: the final clustering results cl final.
1: Initialize Grid( X,width,height)

▷ Distribute X over G = width × height cells.
2: iModes ← ∅
3: counter ← 1
4: while counter! = 3 do
5: for j ← 1 to G do
6: newiModes ← MeanShift(cellDatai)
7: iModes.Append(newiModes)

▷ collect the iModes of each cell of the Grid
8: end for
9: ConfidenceAssignement(Semantic similarity)

▷ Assign confidence values to classes in each cell
10:
11: for j ← 1 to G do
12: CollectedData ← CollectNeighborhoodData(j,

neighborhood structure) ∪ cellDataj
13: cellDataj ← WeightedSampling(CollectedData)

▷ update cellDataj
14: end for
15: cl iModes, numberOfClusters ← DBSCAN (iModes similarity,

Eps)
▷ cl iModes is the clustering results of the iModes

16: if numberOfClusters == lastnumberOfClusters then
17: counter++
18: else
19: counter ← 1
20: end if
21: end while
22: cl final ← DataAssignement(X,cl iModes)

neighborhood structures, which are depicted in Figure 3. In
our work, we adopt the linear (5) neighborhood structure.

Figure 3: Potential neighbourhood structures.

The subsequent phase involves calculating the distances
between all data points in the parent cell and those in its
neighboring cells, relative to the iModes using a semantic
similarity metric that assesses the confidence level of each
relationship. The second stage of the BMSC algorithm utilizes
the list of iModes to run DBSCAN. The latter is applied
to identify clusters of densely packed iModes, which in turn
generates clusters of the original data points.

In our particular scenario, we utilize an aggregation function
to transform the iModes into a format similar to that of the
legacy application’s classes. We represent each group center by
summing the structural encodings of its classes, thus capturing
the structural aspect of the mode point. Additionally, we
compute the semantic part of the vector by summing the term
frequencies of words used in those specific classes.

For the purpose of extracting reliable microservices, we
adopt a novel approach inspired from the work of Sellami
and al [17] where instead of directly inputting the encoders
of iModes into the DBSCAN algorithm, we provide the

connections or links between each pair of iModes. To achieve
this, we employ the iModes similarity measure that capture the
structural and semantic relationships. This approach aims to
produce microservices that are consistent from implementation
and use cases perspectives. The similarity is calculated as
follows :

• iModes Similarity (MS) : The weighted sum of two
similarity metrics, as provided by equation 1.

MS(mi,mj) = αSimstr(mi,mj)+βSimsem(mi,mj) (1)

With : α, β ∈ [0,1], α + β = 1.
Each one of the similarities is computed as follow:
• Structural similarity (Simstr) : This allows us to eval-

uate their similarity from a functional perspective. It’s
computed using equation 2

simstr(mi,mj) =


1
2 (

call(mi,mj)
callin(mj)

+
call(mi,mj)
callin(mi)

) Ifcallin(mi) ̸= 0andcallin(mj) ̸= 0
call(mi,mj)
callin(mj)

Ifcallin(mi) = 0andcallin(mj) ̸= 0
call(mi,mj)
callin(mi)

Ifcallin(mi) ̸= 0andcallin(mj) = 0

(2)

With:
• call( mi , mj ): The number of calls of mj by mi,
• callin(mi): The number of incoming calls in mi.
• Semantic Similarity (Simsem) : Is represented by the

cosine similarity between their respective vectors. This
is useful for measuring the similarity between different
iModes and identifying possible relationships at the do-
main level [18].

Finally, we employ DBSCAN algorithm on the iModes
similarity metric. The process is iterated until production of
the same number of clusters for three consecutive iterations.

III. Evaluation
To help better understand the evaluation, Table I summa-

rizes the characteristics of the monolithic application used to
evaluate different aspects of our approach.

TABLE I: CHARACTERISTICS OF MONOLITHIC APPLICA-
TION

Project Version SLOC # of classes
DayTrader 1.4 18,224 118

A. Research Questions
The goal of our experimental investigation is to address

these research questions (RQs):
RQ1: What is the most effective and promising option among
the various choices in our approach?
RQ2: How does the stability and robustness of BMSC algo-
rithms compare to that of Mean Shift and DBSCAN?
B. Evaluation metrics

We used a set of metrics specified in [19] to analyse various
aspects of the extracted microservices without relying on the
ground truth microservices:

• Structural Modularity (SM): Determined by measuring
the structural cohesiveness of classes inside a partition
and the coupling between partitions.
The higher SM value, the better the decomposition.
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• ICP: Depicts the percentage of calls that occur between
two divisions.
The lower the ICP value, the better the recommendation.

• Interface Number (IFN): It counts the number of
interfaces present in a microservice. An interface is
defined as a class within a microservice that is invoked
by a class within another microservice.
The lower the IFN value, the better the recommendation.

• Non-Extreme Distribution (NED): It assesses the
distribution of classes within microservices and aims to
ensure that a microservice is non-extreme. According
to [19], a microservice is considered non-extreme if it
contains a number of classes within the range of [5, 20].
The lower the NED value, the better the recommendation.

C. Evaluation and Results for RQ1

1) Evaluation protocol: The objective is to compare the
quality of the findings from different possible combinations
of structural and semantic information in order to identify the
most effective strategy for each algorithm using DayTrader
application. We assigne abbreviations as follows:

• Option 1 : Callin,Callout + Terms frequencies.
• Option 2 : Callin,Callout + TFIDF
• Option 3 : Call Frequencies + Terms frequencies.
• Option 4 : Call Frequencies + TFIDF.
• Option 5 : Codependant calls + Terms frequencies.
• Option 6 : Codependant calls + TFIDF.

Hyperparameters were fixed according to the literature:

• Bandwidth :Is set using the estimate bandwidth function
from scikit-learn, which estimates the value of the band-
width based on the provided data.

• MinPts : Is set to 5 because a cluster is considered not
extreme if its size ranges from 5 to 20 [19] for DBSCAN
alone and set to its default value ( MinPts = 1 ) for BMSC
algorithm [13].

• Eps : Is set using a k-distance graph technique.

2) Results: According to the results presented in Table II,
option 6 is deemed the most suitable for the Mean Shift
algorithm when considering the SM metric and shows a per-
formance that is comparable to the best results obtained when
evaluating other metrics. For DBSCAN, presented in Table III,
option 6 has shown better results in terms of IFN, ICP, and
NED, with a SM value that is close to the maximum. Both
DBSCAN and Mean Shift algorithms presented varied results,
while BMSC had very similar results for all options and all
metrics. Furthermore, BMSC was able to detect a more stable
number of microservices compared to the other algorithms,
which often formed one large cluster or unique classes that
did not meet the research goals. In contrast, the resultant
microservices from BMSC were balanced and stable across
different approaches, with the largest microservice containing
a maximum of 17 classes as presented in Table IV.

TABLE II: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING MEAN SHIFT ALGORITHM

Metrics Option 1 Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.8526 0.7853 0.7944 0.8614 0.8575 0.8742
IFN 1.235 1.8 1.277 1.0454 1.0 1.214
ICP 1.0 0.9 1.0 1.0 1.0 1.0
NED 1.0 0.9 1.0 1.0 1.0 1.0

# microservices 17 10 18 22 21 14
size of the largest micro 98 102 97 92 97 104

TABLE III: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING DBSCAN ALGORITHM

Metrics Option 1 Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.120 0.1085 0.2702 0.2718 0.2487 0.1116
IFN 0.120 0.1085 0.2702 0.2718 0.2487 0.1116
ICP 0.3244 0.1426 0.1591 0.2859 0.3482 0.0079
NED 0.5 0.666 1.0 0.5 0.5 0.333

# microservices 2 3 2 2 2 3
size of the largest micro 108 86 116 113 113 104

Option 6 is the optimal approach for all three clus-
tering algorithms. It uses co-dependent calls metric as
structural information and TF-IDF vector as semantic
information. Consequently, our work will continue to
focus on this strategy.

D. Evaluation and Results for RQ2
1) Evaluation protocol: The purpose is to examine the sen-

sitivity to the hyperparameters of BMSC algorithm compared
to that of DBSCAN and Mean Shift individually. For each
hyperparameter, we firstly specified the range of potential
values. The other hyperparameters were then fixed, and the
algorithm was performed for each possible value, recording
the extracted microservices. The outcomes were then reviewed
using multiple metrics, and the metric values were plotted at
each step. We focused on the DayTrader monolithic project
for our investigation since it is a well-established benchmark
for this topic.

• Bandwidth : using the estimate bandwidth function from
the scikit-learn we estimate the maximum value of the
kernel bandwidth, and then we varied the values of the
hyperparameter from 0 to this estimated value.

• Eps: We varied the Epsilon values from 0 to 1 with a
step equal to 0.05.

2) Results: Figure 4 showcases an evaluation of five differ-
ent techniques, represented as subfigures. The Y-axes in each
subfigure indicate the metric scale, while the X-axis displays
the boxplot results for each technique arranged in the following
order:

1) BMSC eps: BMSC results varying its epsilon hyperpa-
rameter.

2) DBSCAN eps: DBSCAN results varying its epsilon
hyperparameter.

3) BMSC band: BMSC results varying its bandwidth hy-
perparameter.

4) MeanShift band: Mean shift results varying its band-
width hyperparameter.

Each subfigure in Figure 4 is dedicated to a specific evalu-
ation metric, allowing for a thorough comparative analysis of
various aspects of the techniques to derive insights regarding
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TABLE IV: EVALUATION RESULTS OF DAYTRADER APPLI-
CATION USING BMSC ALGORITHM

Metrics Option 1 Option 2 Option 3 Option 4 Option 5 Option 6
SM 0.3696 0.3435 0.3887 0.4697 0.40545 0.4052
IFN 1.0344 1.250 1.0370 0.9677 1.0769 1.318
ICP 0.6500 0.591 0.618 0.6432 0.6257 0.639
NED 0.7241 0.6666 0.7037 0.7419 0.6538 0.636

# microservices 29 24 27 31 26 22
size of the largest micro 13 13 13 13 16 17

their stability. The subfigures are arranged in the following
order: SM, IFN, ICP, and NED, with each focusing on the
evaluation of the corresponding metric for each technique. The
last subfigure provides the results for the number of generated
microservices per technique, represented as ”# microservices”.
By carefully examining these evaluation metrics, we can gain a
comprehensive understanding of the performance and stability
of the techniques.

Upon analyzing Figure 4, it becomes clear that BMSC ex-
hibits greater sensitivity compared to DBSCAN in relation to
the epsilon hyperparameter (BMSC eps vs. DBSCAN eps),
as well as greater sensitivity compared to Mean Shift in
relation to the bandwidth hyperparameter (BMSC band vs.
Mean shift band) across all evaluated metrics.

In the analysis of Figure 4, several noteworthy observations
can be made. Firstly, despite DBSCAN outperforming BMSC
in terms of the structural modularity (SM) and interface
number (IFN) metrics, it results in a significantly high number
of microservices. With an average of 115 microservices for an
application containing only 118 classes, this outcome does not
align with our migration goals. This discrepancy suggests that
DBSCAN may be suffering from the ”boulders and grains”
problem, generating microservices that are either too small or
too large. Such an outcome fails to address the limitations
of the monolithic application and does not contribute to the
desired loosely coupled microservices architecture.

On the other hand, Mean Shift exhibits better performance
in terms of the number of generated microservices. Its mean
number of microservices is comparable to that of BMSC,
indicating a more balanced decomposition approach with fewer
than 20 microservices on average. This suggests that Mean
Shift provides a more suitable solution for achieving the
desired granularity in the migration process of monolithic
applications.

Furthermore, the analysis reveals that BMSC demonstrates
greater sensitivity when varying the epsilon hyperparameter
compared to the bandwidth hyperparameter (BMSC band
vs. BMSC eps), as evident from the boxplots in the final
subfigure. This sensitivity is also apparent in the boxplot
variation of the non-extreme distribution (NED) subfigure,
where the variation in epsilon results in up to a 60%
change. This discrepancy can be attributed to the fact
that varying the bandwidth can generate different modes
that are connected using DBSCAN, whereas varying the
epsilon hyperparameter directly affects the final number of
microservices, as indicated by the comparison of variations
in the number of microservices.

In contrast to the findings in [13], our analysis sug-
gests that for our case, BMSC is more susceptible to
the selection of its hyperparameters, specifically the
epsilon parameter, compared to DBSCAN and Mean
Shift when used independently. However, BMSC demon-
strates greater consistency in the resulting decomposi-
tions across hyperparameter variations.

IV. Related Work
The first component of a decomposition approach is con-

cerned with the type of input and how it is handled. The
methods suggested by MSExtractor [20], Bunch [21], and [22]
, for example, take as input the source code of a monolithic
system and apply various static analysis techniques to it. The
approach called HierDecomp [17], employes in addition the
semantic similarity generated from the code text analysis.
Other approaches, such as Mono2Micro [19], FoSCI [23], and
COGCN [24], are based on the study of monolithic system use
cases and execution traces. Sellami and al [25] combine both
static and dynamic analysis in order to cover the individual
disadvantages of each of the analysis approaches. There are,
on the otehr hand, systems that employ different inputs, such
as MEM [26], which analyses the git commit history of
monolithic programs.

Most methods utilize clustering algorithms, such as [22]
which feeds vectors derived from code embedding into an
Affinity propagation clustering process [27]. The similarity
metrics computed by an agglomerative single-linkage cluster-
ing method [28] are used by Mono2Micro [19]. Based on the
graph it developed, MEM [26] provides its own clustering
mechanism. Based on the similarity metrics, HierDecomp
[17] and HyDecomp [25] employ a DBSCAN [16] density
based clustering algorithm which ends by having a hierarchical
microservices decomposition recommendation. Some methods
suggest search algorithms to accomplish their goal. MSEx-
tractor [29] uses the non-dominated sorting genetic algorithm
(NSGA-II) [30] whereas FoSCI [23] employs both NSGA-II
and hierarchical clustering. A community discovery method is
used by Service Cutter to provide a decomposition.

However, many existing approaches encounter the chal-
lenge known as the ”boulders and grains” problem, which
arises when microservice decompositions lean towards being
excessively large or overly small. Both situations introduce
drawbacks in terms of system architecture and management.
When a microservice decomposition becomes too large, it
can lead to heightened complexity and diminished modular-
ity. Large microservices that encompass numerous classes or
functionalities become cumbersome to maintain, understand,
and update. Furthermore, even minor changes to a component
within a large microservice may necessitate redeploying the
entire service, impeding agility and scalability.
Conversely, when a microservice decomposition is excessively
small, it can result in an abundance of services and un-
necessary network communication overhead. Microservices
consisting of only a few classes can lead to an excessively
fragmented architecture, resulting in increased latencies and
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Figure 4: Evaluation metrics for different hyperparameters values when extracting microservices from the project DayTrader.

added complexity in managing the interactions among numer-
ous small services.
Assessing whether a microservice decomposition is too large
or too small requires careful evaluation. Qualitative factors
such as complexity, cohesion, and adherence to the Single
Responsibility Principle offer valuable insights into the size
of a microservice. Additionally, quantitative metrics can be
employed to measure microservice size, such as counting
the number of classes or lines of code it encompasses. For
example, ”Mono2micro” paper [19] suggests a guideline for
microservice size, recommending that an optimal microservice
consists of 5 to 20 classes. This quantitative threshold aims to
strike a balance, ensuring that microservices remain manage-
able and cohesive without succumbing to excessive granularity
or complexity.

V. Conclusion and Future Work
In conclusion, this paper has presented a comparative study

of different strategies for decomposing monolithic applica-
tions into microservices. Our proposed approach, utilizing the
BMSC algorithm, effectively groups semantically and struc-
turally similar classes to extract potential microservices. No-
tably, our approach demonstrates promising results by solely
utilizing select characteristics of the monolithic application’s
source code as input, distinguishing it from approaches that
require additional data sources.

Through extensive evaluation using various performance
metrics, we have compared our approach with two well-
established algorithms in the field. The experimental results
highlight the superior cohesion within microservices, reduced
interactions between microservices, and overall improved sta-
bility achieved by our method. However, it should be noted
that the sensitivity to the epsilon hyperparameter remains a
limitation, posing challenges in its selection.

Looking ahead, our future work will focus on developing
more refined metrics to evaluate the extracted microservices
and conducting comparative analyses against existing decom-
position techniques. We also aim to explore different similarity
metrics and investigate alternative types of interactions be-
tween classes beyond direct method calls. To further enhance
the granularity of our approach, we intend to extend it to
consider methods or functions of the monolithic application
as a basis for decomposition, going beyond class-level gran-

ularity. Additionally, we recognize that static analysis alone
may not provide a comprehensive understanding of application
functionalities and interactions during runtime. Therefore, we
propose exploring hybrid solutions that incorporate dynamic
analysis of the source code to enrich the decomposition
process.

By addressing these avenues for future research, we aim
to advance the field of microservice decomposition and con-
tribute to the development of effective and scalable approaches
for migrating monolithic applications to microservices archi-
tectures.
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