
Towards Patterns for Choreography of Microservices-based Insurance Processes

Alexander Link
Henrik Meyer

Christin Schulze
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hanover, Germany
Email: andreas.hausotter@hs-hannover.de

Andreas Hausotter
Arne Koschel

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hanover, Germany

Email: arne.koschel@hs-hannover.de

Abstract—To avoid the shortcomings of traditional monolithic
applications, the Microservices Architecture (MSA) style plays an
increasingly important role in providing business services. This
is especially true for the insurance industry with its sophisticated
cross-domain business processes. Here, the question arises of how
workflows can be implemented to grant the required flexibility
and agility and, on the other hand, exploit the MSA style’s
potential. There are two competing approaches to workflow
realization, orchestration, and choreography, each with pros and
cons. Though choreography seems to be the method of choice in
MSA, it comes with some challenges. As the workflow is implicit
– it evolves as a sequence of events being sent around – it gets
hard to understand, change, or operate the workflow. To manage
the challenges of the choreography approach, we use BPMN 2.0
choreography diagrams to model the exchange of domain events
between microservices, which represent ‘participants’ in terms of
BPMN. We aim to execute choreography diagrams automatically.
For this, we developed a set of choreography patterns that
represent frequently occurring sequences. We present the pattern
language and discuss two patterns, a One-Way Task pattern,
and a Event-based Gateway – Deadline pattern. This paper is
part of our ongoing research to design a microservices reference
architecture for insurance companies.

Keywords—Workflow; Choreography; BPMN; Patterns; Busi-
ness Processes; Microservice.

I. INTRODUCTION

Business workflows and multistep business processes are
typical for insurance companies; see, for example, the ref-
erence architecture for German insurance companies (VAA)
[1]. They are complemented by general regulations, such as
the European GDPR [2], as well as insurance-specific laws
and rules regarding, for example, financial regulations, data
protection, and security [3].

Recently, the Microservices Architecture (MSA) style
[4] [5] and cloud computing [6] became more and more in-
teresting for insurance companies. Traditionally, several tech-
nologies from monolithic mainframe applications, functional
decomposition-based software, traditional Service-Oriented
Architectures (SOAs), which often utilize some kind of En-
terprise Service Bus (ESB), Business Process and Workflow
Management Systems (BPMS, WfMS) for orchestration, and
3rd party software, such as SAP software, were and are used
together in insurance business applications, which implement
their business processes.

Taking all those typical cornerstones from (over time grown)
insurances into account, the goal of our currently ongoing
research [7] is to develop a ‘Microservice Reference Architec-
ture for Insurance Companies (RaMicsV)’ jointly with partner
companies from the insurance domain. Within our work, we
also look at the question: ‘how to implement (insurance) busi-
ness workflows with microservices, which potentially utilize
several logical parts from RaMicsV’?

Within the MSA style, the more decoupled choreography
is favored for this purpose [4] [5]. This is in some contrast,
however, for example, to SOAs, where such workflows are
mainly implemented using orchestration [8]. For example, one
of our partner companies utilizes Camunda [9], another one a
Java/Jakarta EE-based workflow tool.

However, since co-existence of all approaches is a ‘must
have’ for our insurance partner companies, RaMicsV aims to
address the combined usage of more traditional approaches
and the MSA style, the combination of choreography and
orchestration naturally comes to mind. As evolution is a key
demand for our business partners – they can and will not just
‘throw away’ their existing application landscape – concepts
such as orchestration and tools such as an ESB, whose use
within MSA style architectures are both clearly disputable,
have to be integrated reasonably well into our approach.

We thus started to look at the combination of choreogra-
phy and orchestration, including a look at insurance domain
specifics, in our work from [10]. In the present article, we
will now have a focus on choreography-based approaches for
(insurance) business processes. Particularly, we will examine
an initial set of emerged choreography patterns for this pur-
pose, which we will model using choreography diagrams from
the OMG BPMN 2.0 standard [11]. It should be noted that
our goal is not a general implementation of choreographies,
rather an implementation that orients itself toward real-world
scenarios. Thus, we inspected multiple use cases from the
insurance industry, one of which we will introduce later on.

In particular, we contribute in the present article our ongoing
work and intermediate results about:

• The integration of the choreography within our RaM-
icsV;

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

• BPMN 2.0 choreography diagrams and the utilization of
patterns;

• our pattern language for choreography patterns;
• two particular choreography patterns in depth, namely

the One-Way Pattern and the Event-based Gateway –
Deadline pattern;

• and finally insurance business use cases for those patterns.

The remainder of this article is structured as follows: After
discussing related work in Section II, we briefly look at our
current work within the RaMicsV context in Section III. Next,
Section IV looks at BPMN 2.0 choreography diagrams with
patterns. Section V then contributes our patterns usage and a
pattern language for them, as well as two identified patterns.
Moreover, Section VI looks at a usage of those patterns
within an insurance business use case. Finally, Section VII
summarizes our results and concludes with some outlook to
future work, with more patterns to follow.

II. RELATED WORK

The basis of our research builds on authors in the scope of
microservices, such as the work from Newman [5], as well
as Fowler and Lewis [12]. Within the design of our reference
architecture, we profit from different microservices patterns,
as they are discussed by Krause [13] and Richardson [4].

To model our business processes, we use OMG’s BPMN
2.0 specification. Also, we use as groundwork about business
processes and its development with BPMN the works from
Allweyer [14] [15], Rücker and Freund [16].

For the basics of service composition types, orchestration
and choreography, we chose to rely on Decker’s approach [17].
It is important that we define the choreography in terms of
workflows within a microservices architecture. Quite many
publications discuss the benefits of the choreography as a
composition between (micro-)services. In particular, in several
cases the theoretical benefit is presented or the combination
of different approaches with the choreography is shown, as
discussed by Rücker in his blog [18].

This paper ties in with our previous work on realizing a
choreography [10]. In our last paper, we experimented with
the implementation of a choreography using BPMN. The first
pattern ‘Any Problem becomes a Service’ appeared to be
difficult, since the monolithic BPMN does not support the
message exchange between different microservices.

In Mikalkinas’ [19] approach, a BPMN choreography dia-
gram is transformed into a BPMN collaboration diagram and
then executed. After this transformation, the BPMN collabora-
tion diagram is executed by an engine, in this case Camunda
[9]. We intend to bypass this conversion and provide direct
execution of the choreography diagram. Thereby, our goal is
to explore an implementation without an engine, since this
corresponds to an orchestration in the case of Camunda.

Milanović and Gasević also try to implement choreography
via BPMN and REWERSE II Rule Markup Language in their
work [20]. They developed a rule-based extension for BPMN

to realize choreography, called rBPMN. Ortiz et al. describe a
similar approach [21]: In their work, rules are also defined on
how to react based on which events in a choreography. This
work uses fragments of BPMN. In both approaches (only)
parts of the BPMN are considered, and in each case, only
collaboration diagrams.

Another related approach is Richardson’s SAGA pattern and
the Eventuate Framework [4] [22]. The pattern describes the
splitting of a transaction into several small local transactions.
The local transactions trigger each other by messages/events.
The error handling could become interesting for our further
work. The framework includes two manifestations: Tram and
Local. Eventuate Tram [23] so far only implements an or-
chestrated SAGA, so it does not yet include a choreography.
Eventuate Local [24] provides event sourcing to store events.
It also offers functions to perform transactions, through a
publish/subscribe realization. It maps the technical implemen-
tation of a transaction rather than the communication and
composition between services.

We try to implement a choreography in a more straight
way as a compositional approach between microservices. Our
vision is to use the choreography for the complete communi-
cation and workflow. We define the choreography as a global
approach to processing a workflow without the intervention of
a controlling part. This approach was described by us in our
previous paper [10] and is also defined by Decker [17].

To achieve this goal, we define patterns for BPMN chore-
ography diagrams, which are supposed to be implemented
automatically. To model our BPMN choreography diagrams
we used the framework chor-js developed from Ladleif et
al. [25]. We do not focus on the processes within the (micro-)
services themselves, rather only on the communication be-
tween them and the infrastructure. The use of patterns should
also mitigate to some degree the complexity that can arise
in (extensive) choreography-based workflows. The developed
patterns borrow in structure and approach from Barros et
al. [26].

III. SERVICE-BASED REFERENCE ARCHITECTURE FOR
INSURANCE COMPANIES

This Section presents our logical reference architecture for
microservices in the insurance industry (RaMicsV) as initially
started in [7].

RaMicsV defines the setting for the architecture and the
design of a microservices-based application for our industry
partners. The application’s architecture will only be shown
briefly, as it heavily depends on the specific functional re-
quirements.

When designing RaMicsV, a wide range of restrictions and
requirements given by the insurance company’s IT manage-
ment have to be considered. Regarding this contribution, the
most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned. It is part of a successfully

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

operated SOA landscape, which seems suitable for our
industry partners for several years to come. Thus, from
their perspective, the Microservices Architecture (MSA)
style is only suitable as an additional enhancement and
only a partial replacement of parts from their SOA or
other self-developed applications.

• Coexistence: Legacy applications, SOA, and
microservices-based applications will be operated
in parallel for an extended transition period. This means
that RaMicsV must provide approaches for integrating
applications from different architecture paradigms –
looking at it from a high-level perspective, allowing an
’MSA style best-of-breed’ approach at the enterprise
architectural level as well.

• Business processes are critical elements in an insurance
company’s application landscape. To keep their compet-
itive edge, the enterprise must change their processes in
a flexible and agile manner. RaMicsV must therefore
provide suitable solutions to implement workflows while
ensuring the required flexibility and agility.

Figure 1 depicts the building blocks of RaMicsV which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow; those out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting clients
and external applications such as SOA services.

• Business Logic & Data deals with the implementation
of an insurance company’s processes and their mapping
to microservices, using various workflow approaches to
achieve desired application-specific behavior.

• Governance consists of components that contribute to
meeting the IT governance requirements of our industrial

partners.
• Integration contains system components to integrate

microservices-based applications into the industrial part-
ner’s application landscape.

• Operations consist of system components to realize uni-
fied monitoring and logging, which encloses all systems
of the application landscape.

• Security consists of components to provide the goals of
information security, i.e., confidentiality, integrity, avail-
ability, privacy, authenticity & trustworthiness, nonrepu-
diation, accountability, and auditability.

Components communicate either via HTTP(S) – using a
RESTful API, or message-based – using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next Section, we will have a look at the choreography
in general and BPMN 2.0 choreography in particular as a lead-
in to this paper’s contribution, located in the responsibility area
Business Logic & Data.

IV. CHOREOGRAPHY

This Section will present the core definition of choreogra-
phy, as described in [10]. We briefly outline the use of BPMN,
specifically the choice of BPMN 2.0 choreography diagrams.

A. Choreography

In a choreographed system, there exists no central coordi-
nator, unlike in orchestration [27]. Decker [17] describes the
definition of a choreography as a global view of how services
cooperate and the interaction between participants. This proves
to be a challenge when modeling and monitoring a workflow,
as the workflow is mapped by the interaction between the
participants. It follows that the responsibility of executing and
processing the workflow is transferred to each participant [28].

While choreography may be combined with other patterns,
like the event-driven architecture [29], we decided not to focus
on technical implementations yet, but will eventually.

B. BPMN 2.0 choreography

BPMN 2.0 choreography is chosen as the modeling lan-
guage, since BPMN is also used by our partners. In the BPMN
specification exist at least three significantly different diagram
types to describe processes:

• Process known as classic BPMN. It visualizes the entire
process.

• Collaboration splits a classic process into multiple par-
ticipants (or microservices). Each sub-process in a partic-
ipant can be recognized, but also the message exchange
between the participants.

• Choreography which visualizes only the exchange of
messages between participants.

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

In contrast to our previous work [10], we now focus only on
the implementation of BPMN 2.0 choreography diagrams [11],
as they visualize the interaction between microservices. In
these diagrams, a participant represents a microservice. We
aim to execute business processes using a choreographed
MSA. Choreography serves as a global composition pat-
tern [17]. We start with a collaboration diagram to map the
whole process, which we then transform into a choreography
diagram to focus on the communication. The processes within
the participants are out of scope as we focus on the means of
communication.

To automatically implement the choreography with BPMN
2.0 choreography, we develop patterns that map frequently
occurring sequences. It should be a wide selection of things
that must, should or can occur. The pattern language and the
yet-to-be-developed grammar will be used to create a tool that
automatically accepts modeled choreography diagrams and
generates the necessary infrastructure and message exchange.

V. CHOREOGRAPHY PATTERNS

In this Section, we will present a pattern language, as well
as two patterns from our list. The language intends patterns to
be assembled to realize more extensive use cases. The patterns
originate from real-world use cases.

A. Pattern Language

A pattern language is utilized to describe the patterns
uniformly. It consists of the following elements (cf. [6]):

• Identification number (ID) of the pattern.
• Name of the pattern.
• Figures that visualize the pattern. Consisting of BPMN

2.0 choreography diagrams, BPMN collaboration dia-
grams, and UML Sequence diagrams.

• A Description which describes the use, content, and flow
of the pattern.

• Rules and conditions under which the pattern may be
used.

• A list of used BPMN elements from the choreography-
and collaboration diagrams, as named in [11].

• Used Patterns, which this pattern builds upon.
• Synonyms and similar patterns from literature and indus-

try.
• Variations where the core concept of the pattern stays

the same.
• Typical combinations and patterns with high compati-

bility.
• Example Use-Cases from the industry.

B. One-Way Task

Now that the pattern language has been introduced, we start
with the most atomic pattern, the One-Way Task.

• ID: BPMNChor01
• Name: One-Way Task
• Figures: See Figure 2, Figure 3, and Figure 4.

Figure 2. One-Way Task Choreography.

Figure 3. One-Way Task Collaboration.

Figure 4. One-Way Task UML Sequence.

• Description: Participant A wants to deliver a message to
Participant B. The initiator (A) sends the message to the
receiver (B).

• Rules: None.
• Used BPMN Elements: startEvent (none), messageS-

tartEvent, participant (pool), Message originating from
the initiator, endEvent (none).

• Used Patterns: None, this pattern is atomic and depicts
the minimum amount of interaction.

• Synonyms: Fire-and-Forget, One-Way Notification
• Variations: None.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

• Typical combinations: Due to the atomic properties of
this pattern, it may be combined with every other pattern.

• Use-Case: Sending an E-Mail or push-notification. For a
longer scenario, see Section VI

This concludes the One-Way Task as the minimal way of
communication, next we will introduce Event-based Gateway
– Deadline pattern.

C. Event-based Gateway – Deadline

The Event-based Gateway – Deadline pattern describes a
more complex, yet often occurring, scenario where the flow
of a process is determined by a temporal aspect.

• ID: BPMNChor11
• Name: Event-based Gateway – Deadline
• Figures: See Figure 5, Figure 6, and Figure 7.
• Description: An answer only has a limited time frame

to be received. Participant B receives a message from
Participant A. Participant B has to answer within a given
timeframe (N-Time) or else another workflow will be
triggered. Participant A has the timing responsibility.

• Rules: Participant B has to initiate the answering mes-
sage. A Two-Way communication is required.

• Used BPMN Elements: startEvent (none), messageS-
tartEvent, participant (pool), Message, originating from
the initiator, messageStartEvent, timerStartEvent, endE-
vent (none).

• Used Patterns: This pattern is based upon the Sequence
Flow – Two Participants pattern (to be published) with
the restriction that the receiving participant has to answer
in the given timeframe.

• Synonyms: Asynchronous Request-Response
• Variations: None.
• Typical combinations: This pattern may be inserted

into any request-response workflow when a timing-based
component is needed.

• Use-Case: Setting a Deadline for paying an invoice. If
the time is over, a reminder may be sent. For a longer
scenario, see Section VI.

VI. PATTERN SCENARIOS IN INSURANCE COMPANIES

To realize the pattern language of the two introduced
patterns in Section V completely, this Section evaluates use
cases of the patterns from the insurance industry.

We consider a typical process where a new insurance ap-
plication is managed. The process New Insurance Application
adopted from Freund and Rücker [16], but can also be taken
directly from the insurance business model of our partners
in the insurance industry, thus mapping a real-world use case.
Due to the size of the process, it is only briefly described below
and the parts containing the patterns are further explained.

In the process, a customer submits a new insurance appli-
cation. If the request is rejected, this information is noted in
the backend and the customer is informed. If the request is
accepted, a policy is created. After creation, the policy is sent

Figure 5. Event-based Gateway – Deadline Choreography.

Figure 6. Event-based Gateway – Deadline Collaboration.

Figure 7. Event-based Gateway – Deadline UML Sequence.

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

Figure 8. New Insurance Application Process – Cutout.

and the customer is requested to submit the first payment. If
the payment is not made within 60 days, the request, and the
policy are invalid. If the customer pays in time, the insurance
is valid.

The parallel flow represents the examples of the use cases
in the insurance industry. In this example, both use cases are
separated by a parallel gateway, as shown in the Figure 8. The
parallel gateway has not yet been introduced as a pattern; in
this implementation, it visualizes the (almost) parallel flow of
the two messages. In one path, the One-Way Task pattern is
represented, by sending the policy to the customer. In the other
path, the Event-based Gateway – Deadline pattern is utilized
by the sending and receiving of the payment request.

In the right path (see Figure 8), the One-Way Task pattern is
implemented. The application service sends the policy to the
client. After sending, the task is completed and the path ends.

The Event-based Gateway – Deadline pattern is shown in
the left path. The policy service sends the first payment request
to the client. Then a timer is started. If the customer pays
within 60 days, the policy, and the process are successful. If
the customer does not pay within 60 days, a timeout occurs
and the policy becomes invalid.

As shown with the payment request and the incoming
payment in Figure 8, the Event-based Gateway — Deadline
pattern contains the One-Way Task pattern. It shows that this
fundamental pattern is the basis of the minimal communication
for the choreography.

VII. CONCLUSION AND FUTURE WORK

The effective modeling and implementation of business
processes is of crucial importance for an insurance company.
Coming from BPMN notation, there needs to be a concise way
of realizing the modeled process in the MSA style using the
choreography. In this article, we presented the beginning of our
choreography pattern language as the first steps towards a clear
realization approach with precise implementation rules to map
from BPMN diagrams to the distribution of microservices. For
realizing a pattern language, a grammar will be developed and
evaluated in in future work.

Several more patterns are needed to cover a broader range
of different business use cases in the insurance industry. We
also plan to evaluate all theoretical patterns with our insurance
industry partners to ensure practical use. In future work, we
will thus present additional patterns and grammar, including
usage examples for them. We will also aim to refine our
choreography pattern language and evaluate its additional
benefit through a concrete implementation.

REFERENCES

[1] Gesamtverband der Deutschen Versicherungswirtschaft e.V. - General
Association o.t. German Insurance Industry, “VAA Final Edition. Das
Fachliche Komponentenmodell (VAA Final Edition. The Functional
Component Model),” 2001.

[2] European GDPR, “Complete guide to GDPR compliance,” Online.
Available: https://gdpr.eu/ [retrieved: 04, 2023].

[3] Bundesanstalt für Finanzdienstleistungsaufsicht (BaFin) - Federal
Financial Supervisory (BaFin), “Versicherungsaufsichtliche
Anforderungen an die IT (VAIT) (Insurance Supervisory Requirements
for IT (VAIT)) vom 03.03.2023,” 2023, Online. Available:
https://www.bafin.de/SharedDocs/Veroeffentlichungen/DE/Meldung/
2023/meldung 2023 03 03 Aktualisierung VAIT.html [retrieved: 04,
2023].

[4] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[5] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[6] C. Fehling, F. Leymann, R. Retter, W. Schupeck, and P. Arbitter, Cloud
Computing Patterns Fundamentals to Design, Build, and Manage Cloud
Applications. Springer Vienna, 2014.

[7] A. Koschel, A. Hausotter, R. Buchta, A. Grunewald, M. Lange, and
P. Niemann, “Towards a Microservice Reference Architecture for In-
surance Companies,” in SERVICE COMPUTATION 2021, 13th Intl.
Conf. on Advanced Service Computing. IARIA, ThinkMind, 2021,
pp. 5–9, Online. Available: https://www.thinkmind.org/articles/service
computation 2021 1 20 10002.pdf [retrieved: 04, 2023].

[8] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald, “Compo-
nents for a SOA with ESB, BPM, and BRM – Decision Framework and
architectural Details,” Intl. Journal od Advances in Intelligent Systems,
vol. 9, no. 3 & 4, pp. 287–297, 2016.

[9] “Workflow and decision automation platform,” Nov 2021, Online. Avail-
able: https://camunda.com/ [retrieved: 04, 2023].

[10] A. Koschel, A. Hausotter, R. Buchta, C. Schulze, P. Niemann,
and C. Rust, “Towards the Implementation of Workflows in a
Microservices Architecture for Insurance Companies – The Coex-
istence of Orchestration and Choreography,” in SERVICE COM-
PUTATION 2023, 14th Intl. Conf. on Advanced Service Com-
puting. IARIA, ThinkMind, 2023, pp. 1–5, Online. Avail-
able: https://www.thinkmind.org/index.php?view=article&articleid=
service computation 2023 1 10 10002 [retrieved: 04, 2023].

[11] OMG, Business Process Model and Notation (BPMN), Version 2.0, Ob-
ject Management Group Std., Rev. 2.0, January 2011, Online. Available:
http://www.omg.org/spec/BPMN/2.0 [retrieved: 04, 2023].

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

[12] M. Fowler and J. Lewis, “Microservices a definition of this new
architectural term,” 2014, Online. Available: https://martinfowler.com/
articles/microservices.html [retrieved: 04, 2023].

[13] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[14] T. Allweyer, Kollaborationen,Choreographien und Konversationen in
BPMN 2.0 - Erweiterte Konzepte zur Modellierung übergreifender
Geschäftsprozesse - Collaborations,Choreographies and Conversations
in BPMN 2.0 - Advanced Concepts for Modeling Comprehensive Busi-
ness Processes. Fachhochschule Kaiserslautern, 2009.

[15] T. Allweyer, Geschäftsprozessmanagement: Strategie, Entwurf, Im-
plementierung, Controlling. - Business process management: strategy,
design, implementation, controlling. W3l GmbH, 2005.

[16] B. Rücker and J. Freund, Praxishandbuch BPMN 2.0 - Practice Hand-
book BPMN 2.0. Carl Hanser Verlag München Wien, 2014.

[17] G. Decker, O. Kopp, and A. Barros, An Introduction to Service Chore-
ographies, vol. 50, no 2 ed. Information Technology, 2008.

[18] B. Rücker, “The Microservices Workflow Automation
Cheat Sheet,” 2018, Online. Available: https://blog.bernd-
ruecker.com/the-microservice-workflow-automation-cheat-sheet-
fc0a80dc25aa[retrieved: 04, 2023].

[19] D. Mikalkinas, Situation-aware Modelling and Execution of Choreog-
raphy. Stuttgart University, 2015.

[20] M. Milanović and D. Gasević, “Modeling service choreographies with
rule-enhanced business processes,” in 2010 14th IEEE International
Enterprise Distributed Object Computing Conference, 2010, pp. 194–
203.

[21] J. Ortiz, V. Torres, and P. Valderas, “A catalogue of adap-
tation rules to support local changes in microservice composi-
tions implemented as choreographies of bpmn fragments,” 2023,
Online. Available:https://riunet.upv.es/bitstream/handle/10251/181551/
CatalogueOfAdaptationRules.pdf?sequence=1 [retrieved: 05, 2023].

[22] C. Richardson, “Eventuate Framework,” 2021, Online. Available: https:
//eventuate.io/[retrieved: 04, 2023].

[23] ——, “Eventuate Tram,” 2021, Online. Available: https://eventuate.io/
abouteventuatetram.html[retrieved: 04, 2023].

[24] ——, “Eventuate Local,” 2023, Online. Available: https://github.com/
eventuate-local/eventuate-local[retrieved: 04, 2023].

[25] J. Ladleif, A. von Weltzien, and M. Weske, “chor-js: A modeling
framework for bpmn 2.0 choreography diagrams,” 2019.

[26] A. Barros, M. Dumas, and H. A.H.M, “Service interaction
patterns,” 2005, pp. 302–318, Online. Available:http:
//www.workflowpatterns.com/documentation/documents/
serviceinteraction BPM05.pdf [retrieved: 05, 2023].

[27] C. Chen, “Choreography vs orchestration,” Online. Available:
https://medium.com/ingeniouslysimple/choreography-vs-orchestration-
a6f21cfaccae [retrieved: 04, 2023].

[28] B. Rücker, “The Microservices Workflow Automation Cheat Sheet,”
Online. Available: https://blog.bernd-ruecker.com/the-microservice-
workflow-automation-cheat-sheet-fc0a80dc25aa [retrieved: 04, 2023].

[29] ——, Practical Process Automation - Orchestration and Integration in
Microservices and Cloud Native Architectures. O’Reilly, 2021.

7Copyright (c) IARIA, 2023. ISBN: 978-1-68558-043-8

SERVICE COMPUTATION 2023 : The Fifteenth International Conference on Advanced Service Computing

