
Executable Architectures for Complex Software Systems

Sebastian Apel
Technische Hochschule Ingolstadt

Ingolstadt, Germany
Email: sebastian.apel@thi.de

Thomas M. Prinz
Course Evaluation Service

Friedrich Schiller University Jena
Jena, Germany

Email: thomas.prinz@uni-jena.de

Abstract—The design and implementation of complex software
systems can be achieved by modern software architecture
styles and well-chosen tool stacks. The resulting systems have
their benefits in technical cleanliness, reproducibility, and
automation (e. g., of processes). However, there is a gap between
the design of the system architecture and its implementation.
Well-advised architectures get lost in tool configurations and
implementations of simple service-to-service communications
that both do not belong to the scope of the architecture. How
could this gap be closed without losing the advantages of
tool stacks? This paper introduces the idea of focusing not
on toolstacks, but on data models, data streams, algorithms,
and business logic. Instead of designing architectures for
documentation and overview, the architecture itself represents
the executable system software. Our main idea is to describe
the data model used in architectures and provide a language
to describe the data’s transformations.

Keywords–Software Architectures; Distributed Systems; De-
velopment Tools; Model Transformation

I. INTRODUCTION
Architectures describe abstract components of complex

software systems and how they communicate. They follow
fundamental software engineering principles for independent
and isolated development: high cohesion and low coupling
[1].

Modern development approaches allow implementing
an architecture closer to the components’ descriptions to
generate rudimentary applications (stubs), e. g., by using
the Google Web Toolkit (GWT) [2] [3], swagger.io [4], or
jHipster [5] [6]. Another recent trend for architectures is mi-
croservices [7]. This trend forces to create service-oriented
components in isolation that are independent and resilient.
The resulting service components represent functionality
whose combination results in the complete and complex
software system [8].

The usage of such modern development approaches re-
quires different, individual tool stacks [9]. These tool stacks
include middlewares, construction tools, container formats,
process automation, and services deployment. This allows
services and processes to be deployed in different runtime
environments. The overall result should be a service-based
modern software architecture.

Microservice systems claim to have advantages in tech-
nical cleanliness, reproducibility, reliability, and automation
processes [9]. In reality, however, there is a gap between the
design of the system architecture and its implementation,
which usually leads to discrepancies between them. Archi-
tectures get lost in tool configurations and implementations

of simple service-to-service communications. As a result,
all application developers, from programmers to software
architects, have to operate at multiple abstraction levels to
implement the architecture, with much time not spent in
application logic. A real-world project by Apel et al. [10]
has shown that the implementation overhead ratio between
functional and additional code is sometimes less than or
equal to 1 : 3. In other words, for 100 lines of functional
code, 300 lines of organizational code are needed. It would
be a gain in time, cost, robustness, and correctness if the
developer can focus only on the application logic. But how
could this gap be closed without losing the benefits of
different tool stacks?

This paper describes an idea to close this gap in Sec-
tion II. Section III discusses this idea shortly compared
to existing ones. A short conclusion ends the paper in
Section IV.

II. IDEA
Our idea includes four main aspects: (1) a meta-language

that allows programming in different programming lan-
guages, (2) compilation into existing tool stacks, (3) automa-
tion of the appropriate tool stack selection, and (4) a suitable
development platform.

The language (1) that allows implementation in differ-
ent programming languages can be interpreted as a meta-
programming or domain-specific language. However, it does
not have to be a new one. One can assume an extension of
Java or another popular programming language, such as is
done in ArchJava [11].

The goal of the language is to reduce the effort of man-
aging and configuring services and using different program-
ming languages for them. 85% of software engineers within
one study use multiple languages to solve problems during
software development [9]. Instead of developing each service
on its own, the language provides a common execution
environment and abstracts from their communication and
deployment. One advantage is that common data models can
be implemented centrally and used in all components. It also
avoids tedious mapping of parameters. The disadvantage is
that it seems somewhat centralized, where the advantage
of an independent service implementation can increase its
generalization and minimize its coupling. When designing
such a language, this fact must be carefully considered.

Since there is a trend towards data streams and data
science, the language should enable data orientation. In addi-
tion to defining data structures and functional programming,
it should also allow processes that connect different data

10Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

+

+
Data model

Functionality

Processing

Meta Language

Service A Service CService B

Java

Sprint-Boot

Database

REST-API

R TypeScript

HTML / CSS

Angular

Compilation/Transformation

Infrastructure

C
on

ta
in

er

Se
rv

ic
e

A

C
on

ta
in

er

Se
rv

ic
e

B

C
on

ta
in

er

Se
rv

ic
e

C

Deployment

Figure 1. Linkage between meta language, compilation / transformation,
and deployment.

streams.
Architectures described in the meta-programming lan-

guage should be executable in an ad-hoc fashion as shown
in Fig. 1. We propose to focus on both interpretation and
compilation (2). Language interpretation has the advantage
of fast error detection, debugging, and bottlenecks identifi-
cation. Compilation should increase performance, especially
if it distributes the various services across different (virtual)
execution environments.

Traditional compilation translates a software system into
one set of (virtual) system instructions. However, our idea
is to compile the language into instructions in those pro-
gramming languages that best fit the functionality’s real-
ization — in case the developer does not want to choose
this and describes the functionality abstractly in the meta-
language. In other words, since programming languages
belong to different tool stacks, the compiler must translate
the language into an individual set of tool stacks. Data
structures, functions, and processing chains described at an
abstract level would then have to be translated into multiple
programming languages.

The compiled components and tool stacks must commu-
nicate with each other. A surrounding execution environment
should enable this communication. Furthermore, compilation
remains within the problem complexity of the architecture
description. As in the case of the Unified Modeling Lan-
guage (UML) [12], our goal is not to find a language
that covers every use case by default. The language should
provide bounds, and every part of it should be executable.
It is not the idea to cover all existing development ap-
proaches. On the contrary, the focus is on questioning some
daily development practices and searching for alternative
approaches.

One difficulty with our idea is identifying those parts/
functionality of the language that will be compiled into the
same components. Another difficulty is choosing an appro-
priate tool stack for these components (3). An automatic
decision must interpret essential information provided in the
language – such as functions and component-specific data.
Another difficulty is the inclusion of existing dependencies
(other systems, libraries, and services) and how their inte-
gration works within and between services.

Our idea follows well-established computer science prin-
ciples in the problem description, compilation, and execu-
tion. As with ordinary programming languages, a develop-
ment tool (4) should support development with the meta-
language and with all phases of software development (plan-

ning, analysis, design, implementation, and maintenance).
Since one of our primary goals is to reduce technical details,
the tool should focus on problem-solving, i. e., describing
and programming the software, rather than on the particular
technical configurations.

This development environment is our final goal. It allows
focusing only on architecture and business logic. Differ-
ent components should be described in separate projects
and supplemented by dependencies. However, since every
project knows and uses the same meta-language, the de-
velopment environment can provide support across pro-
gramming language and tool boundaries. The application
should be immediately interpretable in the environment.
When projects are deployed, the application is compiled and
made executable in the form of services with service-specific
tool stacks. For example, the results of the compilation could
be containers (such as Docker [13]) that are published. The
compilation realizes the communication described in the
architecture, and the service publication assures availability.

III. SHORT DISCUSSION
Of course, our idea is not completely new and there are

several, other approaches in the literature. For this reason,
we compare our idea in the following with two approaches
that have the same research direction but a different focus.
The first of them is ArchJava by Aldrich et al. [11]. ArchJava
is a Java extension that provides three new language con-
structs: Components, Ports, and Connectors. Components
describe architectural components with their ports, i. e., what
communication endpoints are needed and provided. Some
components can be connected via connectors, which then
results in a concrete software instance consisting of multiple
components. ArchJava is very promising, but Aldrich et
al. state as limitations that it is language-bound to Java
and only runs on a single Java Virtual Machine (JVM).
However, our goal is to be free of these limitations. In
addition, ArchJava operates on a high architectural level and
method calls are only allowed within components. Although
this is understandable for an architectural view, in some
cases developers would benefit from a low-level method call
where (technical) architecture details are hidden from the
developer. In particular, tool stack decisions are sometimes
unnecessary or disruptive when high performance is not a
concern. In summary, however, ArchJava offers good and
clear concepts and its focus on implementation and language
constructs should be strongly considered when implementing
our idea.

A second approach to architecture-level design and im-
plementation is Archface by Ubayashi et al. [14]. Archface
is very high level in architecture decisions and is oriented
towards UML. Like ArchJava, it provides the language con-
structs component and connector and a new one architecture.
Components and connectors are special, abstract interfaces.
Component interfaces describe the communication endpoints
of the component, while connectors describe their interac-
tion. Architectures finally define concrete implementations
of the components and connectors and, therefore, define a
concrete software instance. Archface is also promising, but
seems to have the same limitations as ArchJava. Although

11Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

it can be implemented for different programming languages
— like ArchJava —, it is unclear how different components
communicate across languages. However, in summary, the
ideas of Archface are valuable during implementation out-
lined by our idea.

IV. CONCLUSION
Our idea is a new executable meta-language that should

support the complete application development lifecycle. This
language covers data structures, functionality, and descrip-
tions of processes. It enables that each part of the described
application is compiled into a best fitting tool stack. The
selection of service boundaries and tool stacks is done
automatically. In addition, it automatically implements how
the components (services) of the architecture communicate.
The result is a correctly configured distributed application
based on existing technologies. The developer benefits by
always acting on the level of the architecture description to
realize the application. To support the developer in using the
language, one goal is to provide a development platform.
This platform covers the development along the complete
software development process. Starting with planning and
analysis, the support is possible up to implementation and
maintenance.

REFERENCES
[1] L. Bass, P. Clements, and R. Kazman, Software Architecture in

Practice, Third, Ed. Addison-Wesley, 2013.
[2] A. Tacy, R. Hanson, J. Essington, and A. Tokke, GWT in Action,

2nd ed. Greenwich, CT, USA: Manning Publications Co., Feb.
2013.

[3] Google, “[GWT],” [retrieved: March, 2021]. [Online]. Available:
http://gwtproject.org/

[4] Swagger, “The best apis are built with swagger tools,” [retrieved:
March, 2021]. [Online]. Available: https://www.swagger.io/

[5] M. Raible, The JHipster mini-book, 5th ed. USA: C4Media, 2018.
[6] JHipster, “JHipster - Generate your Spring Boot + Angular/React

applications!” [retrieved: March, 2021]. [Online]. Available: https:
//jhipster.tech/

[7] M. Viggiato, R. Terra, H. Rocha, M. T. Valente, and E. Figueiredo,
“Microservices in practice: A survey study,” arXiv preprint
arXiv:1808.04836, 2018.

[8] F. De Paoli, “Challanges in services research: A software architecture
perspective,” in Advances in Service-Oriented and Cloud Computing,
A. Lazovik and S. Schulte, Eds. Cham: Springer International
Publishing, 2018, pp. 219–227.

[9] H. Zhang, S. Li, Z. Jia, C. Zhong, and C. Zhang, “Microservice
architecture in reality: An industrial inquiry,” in IEEE International
Conference on Software Architecture, ICSA 2019, Hamburg,
Germany, March 25-29, 2019. IEEE, 2019, pp. 51–60. [Online].
Available: https://doi.org/10.1109/ICSA.2019.00014

[10] S. Apel, F. Hertrampf, and S. Späthe, “Towards a Metrics-
Based Software Quality Rating for a Microservice Architecture
- Case Study for a Measurement and Processing Infrastructure,”
in Innovations for Community Services - 19th International
Conference, I4CS 2019, Wolfsburg, Germany, June 24-26, 2019,
Proceedings, ser. Communications in Computer and Information
Science, K. Lüke, G. Eichler, C. Erfurth, and G. Fahrnberger,
Eds., vol. 1041. Springer, 2019, pp. 205–220. [Online]. Available:
https://doi.org/10.1007/978-3-030-22482-0 15

[11] J. Aldrich, C. Chambers, and D. Notkin, “Archjava: connecting
software architecture to implementation,” in Proceedings of the
24th International Conference on Software Engineering, ICSE 2002,
19-25 May 2002, Orlando, Florida, USA, W. Tracz, M. Young,

and J. Magee, Eds. ACM, 2002, pp. 187–197. [Online]. Available:
https://doi.org/10.1145/581339.581365

[12] Object Management Group, OMG Unified Modeling Language
— Version 2.5.1, Object Management Group Std., Dec. 2017,
[retrieved: March, 2021]. [Online]. Available: https://www.omg.org/
spec/UML/2.5.1

[13] Docker Inc., “Empowering App Development for Developers
— Docker,” [retrieved: March, 2021]. [Online]. Available: https:
//www.docker.com/

[14] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: a contract
place where architectural design and code meet together,” in
Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, J. Kramer, J. Bishop, P. T. Devanbu, and
S. Uchitel, Eds. ACM, 2010, pp. 75–84. [Online]. Available:
https://doi.org/10.1145/1806799.1806815

12Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

