
Towards a Microservice Reference Architecture for Insurance Companies

Arne Koschel
Andreas Hausotter

Robin Buchta
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hannover, Germany
Email: arne.koschel@hs-hannover.de

Alexander Grunewald
Moritz Lange

Pascal Niemann
Hochschule Hannover

University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science

Hannover, Germany
Email: andreas.hausotter@hs-hannover.de

Abstract—Microservices are meanwhile an established software
engineering vehicle, which more and more companies are examin-
ing and adopting for their development work. Naturally, reference
architectures based on microservices come into mind as a valuable
thing to utilize. Initial results for such architectures are published
in generic and in domain-specific form. Missing to the best of our
knowledge however, is a domain-specific reference architecture
based on microservices, which takes into account specifics of
the insurance industry domain. Jointly with partners from the
German insurance industry, we take initial steps to fill this gap in
the present article. Thus, we aim towards a microservices-based
reference software architecture for (at least German) insurance
companies. As the main results of this article we thus provide
an initial such reference architecture together with a deeper look
into two important parts of it.

Keywords–Microservices; Insurance Industry; Reference Archi-
tecture; SOA co-existence

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component can be implemented using different technolo-
gies because they communicate over standardized interfaces.
This approach to structure the system is known as the microser-
vice architectural style [1]. A study from 2019 (see [2]) shows,
the microservice architecture style is already established in
many industries such as e-commerce. However, this is rarely
the case for the insurance services industry.

Our current research is the most recent work of a long
standing, ongoing applied research–industry cooperation on
service-based systems. This includes cooperative work on tra-
ditional Service-Oriented Architecture (SOA), Business Rules
and Business Process Management (BRM/BPM), SOA-Quality
of Service (SOA-QoS), and microservices (cf, [3]–[6]), be-
tween the Competence Center Information Technology and
Management (CC ITM) from the University of Applied Sci-
ences and Arts Hanover and two regional, middle-sized Ger-
man insurance companies. The ultimate goal of our current
research is to develop a ’Microservice Reference Architecture
for Insurance Companies’ jointly with our partner companies.
This shall allow to build microservice conformant insurance
application systems or at least such system parts.

When developing a reference architecture for our partner
companies, several cornerstones and resulting challenges exist
frequently in at least the German industry domain. Especially,
insurance companies rarely start development ’in the green
field’, but must integrate and comply with existing application

systems. For example, our partners both operate a SOA and
additional 3rd party software, such as SAP systems, which
both have significantly different characteristics, for example,
for testing, release cycles, versioning, administration etc.

Nowadays, our partners would like to get the promised
benefits of microservices, such as improved scalability, both
technical and organizational through parallel execution and
also parallel development, significantly faster release cycles
(a few weeks or even days instead of quarters or several
months) etc. However, a microservices-based approach to help
them must still work well in ’cooperative existence’ with
their existing systems and SOA services. Thus, improvements
or partial replacements of their existing software landscape
for particular goals by means of microservices is fine, but a
complete migration to the microservices architectural style is
not a desired option.

On the one hand, there is a desire to raise the potential
of the microservices approach and, on the other hand, to
take into account requirements that result from the existing
application landscape. This leads to several guidelines, respec-
tively, questions to be answered by a reference architecture,
such as, for example, ’Which information from business and
technical services shall be provided for architects, developers,
operators, etc.?’, ’How to integrate with business processes
– is service orchestration or choreography (or both) more
suitable for microservices?’, ’How to co-exist with the given
SOA services and their Enterprise Service Bus (ESB)?’, ’What
about transactions and consistency?’, ’Compliance aspects’,
and more. While initial research on reference architectures with
microservices exists in general as well as in some domain-
specific variations, we are not aware of such research for the
insurance domain in particular.

In this article, we present our initial steps towards a
microservices reference architecture for the insurance domain
as mentioned above, that complies with the above-named
cornerstones and guidelines. In particular, we present our initial
logical reference architecture and more logical and technical
details about two selected important components from it,
namely logging and monitoring.

We organize the remainder of this article as follows:
After discussing related work in Section II, we present our
initial logical reference architecture in Section III. Afterwards,
Section IV shows how details about the logging and monitoring
parts of our reference architecture. Section V summarizes the
results and draws a conclusion.

5Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

II. RELATED WORK

The work related to our research falls into several cate-
gories. We will discuss these categories in sequence.

Publications of renowned authors in the area of microser-
vices form the solid base of our research work. Worth men-
tioning are the basic works of Newman [7] and Fowler and
Lewis [1]. The design of our reference architecture benefits
from diverse microservices patterns as they are discussed by
Krause [8] and Richardson [9].

The contribution of Angelov et al. [10] explains that a
reference architecture is successful only if context, objectives
and design can be brought into line. Our design refers to
’type 4’, which amongst other things means that findings of
the implementation of microservices-based application flow
into the design of the target reference architecture. Here our
previous work – a prototypic implementation of the Partner
Management System – comes into play [11].

The closest relationship to our research has an article
published by Yu et al. [12]. They present a microservices-based
reference architecture in the context of enterprise architecture.
However, this reference architecture aims to be applied to
many organizations and is therefore rather generic, while our
approach tries to meet the requirements of our industry partners
from the insurance sector.

III. REFERENCE ARCHITECTURE FOR MICROSERVICES

In this section, we will present our logical reference archi-
tecture for microservices in the insurance industry (RaMicsV).

RaMicsV defines the setting for the architecture and the
design of a microservices-based applications of our industry
partners. The application’s architecture itself is out of scope,
as it heavily depends on the specific functional requirements.

When designing RaMicsV a wide range of restrictions
and requirements given by the insurance company’s IT man-
agement have to be taken in account. With respect to this
contribution the most relevant are:

• Enterprise Service Bus (ESB): The ESB as part of the
SOA must not be questioned.

• Coexistence: Legacy applications, SOA and
microservices-based applications will be operated in
parallel for a longer transition period. This means
that RaMicsV has to provide approaches for the
integration of applications from different architecture
paradigms.

• Observability: To observe microservices-based as well
as SOA and legacy applications in a comprehensive
and consistent manner, a unified monitoring and log-
ging approach has to be designed.

Figure 1 depicts the building blocks of RaMicsV which
comprises layers, components, interfaces, and communication
relationships. Components of the reference architecture are
colored yellow, those that are out of scope are greyed out.

A component may be assigned to one of the following
responsibility areas:

• Presentation includes components for connecting
clients and external applications such as SOA services.

• Business Logic & Data contains the set of mi-
croservices to provide the desired application specific
behavior.

Figure 1. Building Blocks of the Logical Reference Architecture RaMicsV.

• Governance consists of components that contribute
to meeting the IT governance requirements of our
industrial partners.

• Integration contains system components to integrate
microservices-based applications into the industrial
partner’s application landscape.

• Operations consist of system components to realize
a unified monitoring and logging, which encloses all
systems of the application landscape.

Components communicate either via HTTP—using a
RESTful API, or message-based—using a Message-Oriented
Middleware (MOM) or the ESB. The ESB is part of the
integration responsibility area, which itself contains a message
broker (see Figure 1).

In the next section, we will have a detailed look at the
operations responsibility area in detail.

IV. LOGGING AND MONITORING

In this section we privide details about the logging and
monitoring parts of our reference architecture, starting with
fundamental concepts, followed by a logical and technical
reference architecture.

A. Introduction to Logging and Monitoring
In order to provide production-ready software, it is not

enough to fulfill only the functional requirements. Figure 2
shows a typical process that is followed when creating
production-ready microservices. Observability is assigned to
the final quality attributes along with configurability and
security. Only if these components have been considered,
is it possible to speak of production-ready software [9]. In
the following we would like to focus on the aforementioned
requirements for the reference architecture, specifically on ob-
servability. We are concerned with the objective of how we can
create a uniform, fully comprehensive, traceable environment
for monitoring and logging.

In his book Release IT, Michael T. Nygard does not call
this observability but transparency [13]. We do not distinguish
between the different terms used for this purpose, but fo-
cus on the activities behind the terms, i.e., logging of data
and subsequent monitoring. Logging includes the automatic

6Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

Figure 2. Typical building blocks for the development of a (micro)Service.

Figure 3. Exemplary implementation of all patterns in combination [9,
adopted with modifications].

generation of messages. The generation is based on different
triggers. The messages are sent to a location and collected
there [14]. Monitoring includes the tools and processes that
measure and manage the systems. Furthermore, it includes the
process of extracting business value from the underlying data.
This data is used to generate added value [15]. We will not
go into the basics of monitoring and logging as this would
exceed the scope. We will look at what is involved in a fully
comprehensive logging of a service.

In the next subsection IV-B, patterns are presented that take
account of the provision of data. The aim is to cover all areas
of the service. It is important to note that we are focusing on
the service and not on the environment in which it is located.

B. Patterns for Logging and Monitoring
In the following, the individual patterns that have been

considered in Figure 3 are going to be explained. Figure 3
shows an example implementation of all patterns. In the Figure,
the log aggregation is placed over all logs that are created so
that when the pattern is implemented, all logs are considered.

We first consider the health check API pattern. The service

receives an endpoint that provides information about its current
health status. For example, Spring Boot Actuator can be used
for this purpose, which automatically creates a health endpoint
that can be adjusted if required [9]. This can be a simple
ping for accessibility, but also a smoke test that ensures
functionality. Figure 3 shows a bidirectional connection from
the health check service to the corresponding API. This is
because the endpoint must be queried, and the results obtained.
The queries can take place periodically and/or before each
invocation of the service. It is important to note that the health
check service is a logical component and that requesting the
endpoint and collecting the results may very well be two
independent components [9].

Next, we are going to look at the log aggregation pattern.
This is for aggregating all the logs of the multiple instances
of a service, to be able to make themselves available together
afterwards. This is important because you are interested in all
the logs of the service and not just those of one instance. And
if a particular instance is of importance, it should be found in
the log entry [9].

In Figure 3, the log aggregation goes across all log entries,
as the aggregation will refer to all logs regardless of the type.
Here it becomes clear that the implementation of this pattern
depends strongly on how the service is implemented. If there is
only one instance, aggregation is not needed. The same applies
to the implementation of the other endpoints. For example, if
the audit logs are written directly to a database, no aggregation
layer is needed. Again, this is only from a logical point of view.

The distributed tracing pattern is particularly important if
control flows are of interest, and requests are being passed
through multiple services. For this purpose, each request is
given a unique ID and it is logged where and how long the
request was in the individual services concerned.

The application metrics pattern is designed to collect
metrics provided by the service. The developer is responsible
for ensuring that valuable metrics can be collected, and the
operator is responsible for managing them [9].

The exception tracking pattern considers the exceptions
thrown by a service separately. Exceptions are also special to
the service and require special attention. Here, the exceptions
are duplicated and handled in detail if necessary. An alert func-
tion is optional. An attempt is made to prepare the information
so that action can be taken as quickly as possible [9].

The last pattern we look at is the audit logging pattern.
Here, all user actions are recorded. An audit log contains the
identity of the user, the action taken, and the business objects
involved [9].

Not all patterns can always be implemented in a meaningful
way. In addition, the level of detail in which the individual
patterns are implemented varies from application to applica-
tion. Most of the time, a subset of the patterns presented is
the right and sufficient choice to fully observe the service
for the purpose it fulfills. If there are multiple instances of
a service, log aggregation should be performed across all
log types to evaluate the real behavior of the service. In
the implementation of the patterns, there are sometimes clear
responsibilities of the task areas, as can be seen in Figure 3.
However, coordination at the interfaces is also unavoidable.
The developers are responsible for creating decent log entries.
The operators are responsible for what the users get to see. In

7Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

the end, it can be said that monitoring and logging is essentially
very similar to that of distributed systems.

C. Logical reference architecture
A big building block of the logical reference architecture

for microservices (RA4MicsV) is monitoring and logging to
add an observability layer to the architecture. One of our main
goals was to identify the logical components to implement
logging and monitoring in a microservice environment, while
maintaining the requirement of coexistence mentioned in Sec-
tion III. To accomplish this it was important that the logging
and monitoring concept for the microservices could be in-
tegrated as well as possible into the existing environment,
which consists of a combination of monolithic systems and
SOA. Figure 4 shows the components of the system itself
and the identified, logical components needed to implement
an extensive logging and monitoring infrastructure. The key
components for the logging and monitoring in this figure will
be explained in detail down below.

Figure 4. Logical reference architecture of the monitoring and logging
environment

• Agent (A): Agents are some sort of external process
or processes to instrument processes at runtime. There
are two major methods agents use to instrument a
service directly. The first is some external process or
monitoring service that injects code into your service.
The second method is through some sort of in-process
agent that is imported to the runtime environment of
a process and uses a system of user defined rules to
trace specific actions [16].

• Library (L): Standardized libraries used in services
that handle the key components for instrumentation
and context propagation through a standardized API.
Libraries can support a polyglot heterogeneous appli-
cation by defining a relatively small API that supports
the least-common set of features shared by all of the
target languages [16].

• Collector: The functions of a collector varies from
implementation to implementation, but in common

cases the following functionalities are provided by
an collector: Translate incoming data into another
format for further processing, sampling and compute
aggregate statistics about incoming data [16].

• Centralized storage and analysis: Responsible for
gathering all of the telemetry data, storing it and
analyzing it. As mentioned before, the functionality
will vary widely based on the implementation [16].

Our model attempts a combination of white box and
black box monitoring and logging, since the systems does not
only consists of microservices. Apart from that, a whitebox
model should generally be considered first when it comes to
microservices [16].

D. Technical reference architecture
Since most monitoring and logging components vary in

their functionality depending on the specific implementation
chosen, this section deals with a sample implementation
shown in Figure 5. The model is using a combination
of the open source frameworks open telemetry for the
instrumentation, elasticsearch as endpoint for the data and
Kibana for visualization. The most important components
will be explained in detail after a brief introduction of the
technologies used.

1) Open Telemetry: Open Telemetry is a nascent project
of the Cloud Native Computing Foundation (CNCF) and the
result of a merger between the OpenTracing and OpenCensus
projects. Its goal is to simplify the telemetry ecosystem
by providing a unified set of instrumentation libraries and
specifications for observability telemetry [16], [17].

2) Elasticsearch and Kibana: Elasticsearch is a distributed
search and analytics engine, which provides near real-time
search and analytics for all types of data. Kibana is the in-
house dashboard for visualizing and analyzing data as well as
managing, monitoring and securing the elastic stack [18].

• Open Telemetry Libraries: In order to receive data,
the targets need to be instrumentalized. Open Teleme-
try provides this mechanism throughout libraries,
which support manual (code modified) instrumenta-
tion as well as automatic (byte-code) instrumenta-
tion [17].

• Open Telemetry Collector: The Collector is a
vendor-agnostic implementation to receive, process,
and export telemetry data. It is the default location
instrumentation libraries export telemetry data and it
can be deployed in two different ways. First is an agent
running with the application or on the same host as
the application and second is a gateway running as a
standalone service typically per cluster, datacenter or
region [17].

In addition, we added a Kafka-Queue and another collector
as optional components to the architecture. The queue provides
a kind of buffer for the data in case the endpoint is tem-
porarily unable to ingest data or the endpoint is unreachable.
The optional collector is deployed as a gateway to provide
advanced capabilities such as tail-based sampling. In addition,
the Gateway can limit the number of egress points required to
send data as well as consolidate API token management [17].

8Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

Figure 5. Technical reference architecture of the monitoring and logging
environment using open telemetry

V. CONCLUSION AND FUTURE WORK

In this article, we presented initial steps towards a reference
architecture for microservices, which we are creating jointly
with our partners from the insurance industry. The reference
architecture aims to build compliant microservices-based ap-
plications that meet the specified guidelines and best practices.

We first give an overview of the architecture with its
building blocks. We then focus on the operations responsibility
area, by presenting conceptual and technical details on logging
and monitoring.

The next steps in our research are the design of the business
process component and the integration responsibility area. The
latter is of particular interest as our partners operate a service-
oriented landscape, so it’s necessary to identify coexistence
pattern to run a SOA and microservices-based applications
concurrently.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-
chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 3, 2021].

[2] H. Knoche and W. Hasselbring, “Drivers and barriers for microservice
adoption–a survey among professionals in germany,” Enterprise Mod-
elling and Information Systems Architectures (EMISAJ), vol. 14, 2019,
p. 10.

[3] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken,
“Always stay flexible! wfms-independent business process controlling in
soa,” in 2011 15th IEEE Intl. Enterprise Distributed Object Computing
Conference Workshops. IEEE, 2011, pp. 184–193.

[4] A. Hausotter, A. Koschel, M. Zuch, J. Busch, and J. Seewald,
“Components for a SOA with ESB, BPM, and BRM – Deci-
sion framework and architectural details,” Intl. Journal On Ad-
vances in Intelligent Systems, vol. 9, no. 3,4, Dec. 2016, pp. 287–
297, [Online]. Available: https://www.thinkmind.org/index.php?view=
article&articleid=intsys v9 n34 2016 6. [retrieved: 3, 2021].

[5] A. Hausotter, A. Koschel, J. Busch, and M. Zuch, “A Flexible
QoS Measurement Platform for Service-based Systems,”
Intl. Journal On Advances in Systems and Measurements,
vol. 11, no. 3,4, Dec. 2018, pp. 269–281, [Online]. Available:
https://www.thinkmind.org/index.php?view=article\&articleid=
sysmea\ v11\ n34\ 2018\ 4. [retrieved: 3, 2021].

[6] A. Koschel, A. Hausotter, M. Lange, and P. Howeihe, “Consistency
for Microservices - A Legacy Insurance Core Application Migration
Example,” in SERVICE COMPUTATION 2019, The Eleventh
International Conference on Advanced Service Computing, Venice,
Italy, 2019, [Online]. Available: https://thinkmind.org/index.php?view=
article&articleid=service computation 2019 1 10 18001. [retrieved:
3, 2021].

[7] S. Newman, Building microservices: designing fine-grained systems.
Sebastopol, California: O’Reilly Media, Inc., 2015.

[8] L. Krause, Microservices: Patterns and Applications: Designing fine-
grained services by applying patterns. Lucas Krause, 2015.

[9] C. Richardson, Microservices Patterns: With examples in Java. Shelter
Island, New York: Manning Publications, 2018.

[10] S. Angelov, P. Grefen, and D. Greefhorst, “A classification of software
reference architectures: Analyzing their success and effectiveness,” in
2009 Joint Working IEEE/IFIP Conference on Software Architecture &
European Conference on Software Architecture, IEEE, Ed., 2009.

[11] A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in
Sync! Consistency Approaches for Microservices - An Insurance Case
Study,” in SERVICE COMPUTATION 2020, The Twelfth International
Conference on Advanced Service Computing, Nice, France, 2020,
[Online]. Available: http://www.thinkmind.org/index.php?view=
article&articleid=service computation 2020 1 20 10016. [retrieved:
3, 2021].

[12] Y. Yu, H. Silveira, and M. Sundaram, “A microservice based reference
architecture model in the context of enterprise architecture,” in 2016
IEEE Advanced Information Management, Communicates, Electronic
and Automation Control Conference (IMCEC). IEEE, 2016, pp. 1856–
1860.

[13] M. Nygard, Release It! Design and Deploy Production-Ready Software.
Pragmatic Bookshelf, 2007.

[14] A. Chuvakin, K. Schmidt, and C. Phillips, Logging and Log Man-
agement: The Authoritative Guide to Understanding the Concepts
Surrounding Logging and Log Management. Waltham, Massachusetts:
Syngress Publishing, 2012.

[15] J. Turnbull, The Art of Monitoring. Turnbull Press, 2014.
[16] A. Parker, D. Spoonhower, J. Mace, B. Sigelman, and R. Isaacs, Dis-

tributed Tracing in Practice - Instrumenting, Analyzing, and Debugging
Microservices. Sebastopol, California: ”O’Reilly Media, Inc.”, 2020.

[17] The OpenTelemetry Authors, “Documentation | OpenTelemetry,” https:
//opentelemetry.io/docs/ [retrieved: 3, 2021].

[18] Elastic, “What is Elasticsearch? | Elasticsearch Reference [7.11]
| Elastic,” https://www.elastic.co/guide/en/elasticsearch/reference/
current/elasticsearch-intro.html, [retrieved: 3, 2021].

9Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

