
Towards a Resiliency Decision Framework
for Microservices

Johannes Busch
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany

Andreas Hausotter
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany
Email: Andreas.Hausotter@hs-hannover.de

Arne Koschel
Faculty IV, Dept. of Computer Science
Univ. of Appl. Sciences&Arts Hannover

Hannover, Germany
Email: Arne.Koschel@hs-hannover.de

Abstract—Microservices build a deeply distributed system.
Although this offers significant flexibility for development teams
and helps to find solutions for scalability or security questions,
it also intensifies the drawbacks of a distributed system. This
article offers a decision framework, which helps to increase the
resiliency of microservices. A metamodel is used to represent
services, resiliency patterns, and quality attributes. Furthermore,
the general idea for a suggestion procedure is outlined.

Keywords—Microservice; Resiliency; Software Architecture.

I. INTRODUCTION

Microservices are a current trend in software development.
They divide complex systems into several independent and
lightweight services [1]. This approach has several bene-
fits over traditional architectures like monoliths or Service-
Oriented Architectures (SOA). One major point is the inde-
pendence of these services at runtime and in development.
Furthermore scalability, security or equivalent questions can
be answered on a per service basis, which offers a higher
degree of flexibility [2][3].

Besides these benefits, microservices also come with various
challenges, one important of them being their distributed
nature. To compute non-trivial business functions, several
microservices have to work together. Thus, they have to
communicate over networks, which cannot guarantee complete
availability. Modern cloud based systems further increase this
problem by their volatile nature.

Key contribution of this article is a decision framework,
which offers suggestions to increase the resiliency of specific
microservices. To achieve this goal services and resiliency
patterns need to be put in perspective. This is done through
the resiliency decision framework metamodel, a novel way
to describe services, patterns, quality attributes and their
interconnections. Furthermore, a suggestion procedure will be
presented. Its purpose is to analyze service requirements and
pattern effects to compute a list of suggestions to strengthen
these requirements.

In this article resiliency is defined as the ability of a software
to handle failures in a meaningful way or recover completely
from it without human intervention. The context for resiliency
in this article is based upon safety and not security. The
definition is based upon [4][5].

This work was developed under the Competence Center
Information Technology and Management (CC ITM), which is
part of the University of Applied Sciences and Arts Hannover.
Its main objective is the transfer of knowledge between
university and the insurance industry.

The remainder of this article is organized as follows: First
related work is presented in Section II. An application sce-
nario based on the german insurance sector is presented in
Section III. The core of the Resiliency Decision Framework
is described in Section IV. Section V summarizes this article
and gives an outlook on future work.

II. RELATED WORK

While resiliency is important in microservice based archi-
tectures, it is certainly not a new topic in general. In Service-
Oriented Architectures resiliency is often realized by means of
fault tolerant services. These can be designed either through
specific middleware [6][7] or alternative implementations [8].
Furthermore, fault tolerance can be evaluated over several
services [9], which can increase the resiliency of complex
business functions or processes.

Another field besides fault tolerance are self healing sys-
tems. Self healing can be achieved either through internal
techniques [10] or external components [11]. Furthermore, self
healing can be build into the architecture itself [12].

In [13], a catalogue of resiliency patterns is described.
Furthermore, a framework for resiliency in high performance
computing is defined. In contrast we provide a full resiliency
decision framework for microservices, which is a novelty to
the best of our knowledge.

III. APPLICATION SCENARIO

To stress the importance of resiliency in microservice-
based systems and to evaluate the suggestions given by the
Resiliency Decision Framework following application scenario
will be used. It is based on prior CC ITM [14] work. The
described Partner Management System is expanded
further by a business process from the reference architecture
for the German insurance companies (VAA) [15].

An overview of the application scenario is given in Figure 1.
It consists of several microservices grouped into different sys-
tems. Each system represents a bounded context as described

1Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

Figure 1. Overview of the application scenario

by Evans in [16]. The goal was to develop a realistic and
complex enough system, which could be found at partner
companies of the CC ITM.

The Partner Management System offers several
CRUD operations to manage insurance partners. It is used
throughout the scenario and represents the core of the sce-
nario. The Application System implements the busi-
ness process Manage Application (’Antrag verwalten’)
from the VAA. It processes applications for a new insurance
contract. Thus it retrieves information about partners and
adds a new insurance contract, if an application finishes
successful. The Employee-Interface System contains
a UI and API for internal use. It offers a comprehensive
access to all insurance systems and is the sole way to work
with the implemented business process. Customers and exter-
nal companies can access insurance information through the
Customer-Interface System. Both UIs are designed
as modern Single Page Applications.

IV. RESILIENCY DECISION FRAMEWORK

The goal of the Resiliency Decision Framework
(RDF) is to suggest resiliency design patterns based upon
the quality requirements of the analyzed microservices. To
achieve this goal the different patterns, services and quality
requirements need to be presented in a well defined way. This
is done through a metamodel. To evaluate these information
and provide a list of suggestions a suggestion procedure is
described.

A. Resiliency Decision Framework Metamodel

An overview of the Resiliency Decision
Framework Metamodel is given in Figure 2. Base
is the Framework element, which is the root for a given
RDF instance. The metamodel consists of three major parts:
Quality Tree: Services and patterns are described

through a quality attributes defined in a quality tree. The
QualityTree element offers, for example, to define a
resilient specific one. The metamodel structure is based on
well know quality trees like ISO 25010 [17].
Services: The Service element describes a specific

microservice. Each service has several characteristics, which

Figure 2. Overview of the developed metamodel

correspond to a specific requirement described by an quality
attribute. Each characteristic also contains a numeric value,
representing its importance. Currently these have to be defined
by the architect. ServiceType elements are used to orga-
nize these characteristics and enable reusability in complex
systems.
Concepts: This element defines resilient patterns in a

consistent way. Each pattern consists of a base concept and
one or more sub concepts. The base concept describes a
general problem and solution (for example, Monitoring). A
Sub concept narrows this to a specific pattern (for example,
Logging) with its effects on service quality and requirements.
The effect is described through a numeric value. Currently
these are given by the authors based upon research into
the corresponding patterns. Furthermore, influences amongst
patterns can be defined in order to describe how well certain
patterns work together.

B. Resiliency Decision Framework Suggestion Procedure

The Suggestion Procedure analyzes a defined model
and computes a list of resiliency pattern suggestions for each
defined service. It consists of several steps to determine and
enhance the list of suggestions for a given service. Especially
the filter steps are highly configurable. All steps are based
on the numeric values given to pattern effects and service
characteristics. Currently these represent qualitative values and
not quantitative ones based on concrete measurements. The
different steps are:

1) Collect requirements: Collect the requirements
for a service by collecting all service types.

2) Determine positive patterns: Determine all
resiliency patterns, which have a positive effect (for
example, a corresponding positive numeric value) on at
least one of the service requirements.

3) Domain filter: Filter these patterns by domain
rules, for example, that would cause a negative impact
onto the service requirements.

4) Threshold filter: Additionally filter these pat-
terns by thresholds, for example, the combined negative
effects of a pattern. A simple approach to combine these
effects is to add corresponding numeric values but more
complex approaches (for example, weighing) are also
possible.

5) Sorting: Evaluate each pattern against the service
requirements and sort the pattern list based on this eval-

2Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

Figure 3. Overview of the developed procedure

uation. A simple approach for evaluation is to combine
the positive and negative effect values in correspondence
to the service requirements.

6) Filter alternatives: Filter less fitting pattern
alternatives to diversify the list of suggestions, for ex-
ample, filter less fitting approaches to load balancing.

These steps will be repeated for each service defined in the
Resiliency Decision Framework model. An overview of the
procedure is given in Figure 3.

C. Applying the Resiliency Decision Framework

To apply the Resiliency Decision Framework to a microser-
vice based system, several activities have to be performed.
Besides configuring the procedure filters, a comprehensive
pattern catalogue has to be developed. This was done by
a comprehensive literature analysis into software patterns.
Furthermore, the different microservices have to be defined
in the framework model.

After applying the procedure (cf. Figure 3) to this model, the
last activities are implementing the suggestions and evaluating
the improved microservices. These activities especially have to
be repeated each time the catalogue of patterns or the service
requirements change. All these activities form the Resiliency
Decision Framework process.

How the microservices are evaluated, is out of scope of this
contribution. One approach could be the QoS Measurement
Model described in [18].

D. Resiliency Decision Framework Example

As described above, the basis for all suggestions is the
definition of a service. For example, the partner service needs
to be highly available because of its central role. Also it has to
offer minimal latencies for user interfaces and external partner

Figure 4. RDF applied onto the Partner service

companies. Resiliency patterns are analyzed by the framework
procedure based on these service Characteristics. A
possible list of patterns could include automatic scaling, es-
calation and monitoring. These are ordered by their positive
impact onto the service requirements. Besides this, all effects
of required patterns and pattern influences are also analyzed.
Automatic scaling increases the availability of the

service, but has a list of requirements. To distribute the
requests and support scaling, a load balancing pattern is
needed. Several load balancing patterns are known, thus the
suggestions procedure evaluates the different alternatives. An
external load balancer would, for example, add another hop,
thus load balancing based upon service discovery is suggested
by the framework.

The enhanced Partner-Service is given in Figure 4.
The partner service is now deployed through an autoscaling
group. Requests to a partner service a distributed through a
service discovery, which could implement different algorithms
(for example, round robin). To minimize the impact on client
services, the service discovery should implement DNS as its
API. Thus, no changes to the API services are needed.

V. CONCLUSION AND FUTURE WORK

The basis for the Resiliency Decision
Framework was described in this article. By using a
well-defined metamodel, the RDF can be applied to different
sectors and areas. The Suggestion Algorithm uses
the metamodel to create a list of diverse suggestions with
maximum positive effect on the resiliency of a microservice.

Future work will revolve around the development of a
quality tree for software resiliency. Furthermore, an extensive
library of resiliency patterns will be developed. An evaluation
will be done by applying the framework to the complete
application scenario. The quality of the suggestions is directly
dependent on the quality of the service requirements and
pattern catalogue definitions. Thus, a way to evaluate the
quality of service requirements and pattern definitions need
to developed.

REFERENCES

[1] M. Fowler and J. Lewis, “Microservices a definition of this
new architectural term,” [retrieved 11, 2020]. [Online]. Available:
https://martinfowler.com/articles/microservices.html

3Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

[2] E. Wolf, Microservices: Grundlagen flexibler Softwarearchitekturen.
dpunkt.verlag, 2016.

[3] M. Richards, Microservices vs. Service-Oriented Architecture. O‘Reilly
Media Inc., 2016.

[4] U. Friedrichsen, “Unkaputtbar: Eine kurze Einführung in Resilient
Software Design,” Business Technology Magazin, vol. 19, 4 2014.

[5] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, V. Sekar,
“Gremlin: Systematic resilience testing of microservices,” in Proc.
36th IEEE International Conference on Distributed Computing Systems,
2016, pp. 57–66.

[6] Z. Zheng and M. R. Lyu, “A qos-aware middleware for fault tolerant web
services,” in 2008 19th International Symposium on Software Reliability
Engineering (ISSRE), 2008, pp. 97–106.

[7] I. Chen, G. Ni, and C. Lin, “A service-oriented fault-tolerant environ-
ment for telecom operation support systems,” in 2008 IEEE International
Symposium on Service-Oriented System Engineering, 2008, pp. 208–
214.

[8] A. S. Nascimento, C. MF. Rubira, R. Burrows, F. Castor, and P. HS
Brito, “Designing fault-tolerant soa based on design diversity,” Journal
of Software Engineering Research and Development, vol. 2, no. 1, p. 13,
2014.

[9] K. Peng and C. Huang, “Reliability evaluation of service-oriented
architecture systems considering fault-tolerance designs,” Journal of
Applied Mathematics, vol. 2014, pp. 1–11, 01 2014.

[10] A. Carzaniga, A. Gorla, A. Mattavelli, and N. Perino, “A self-healing
technique for java applications,” in Proc. ICSE ’12: International
Conference on Software Engineering, 2012, pp. 1445–1446.

[11] . K. Ravi and V. Sathyanarayana, “Container based framework for self-
healing software system,” in Proc. 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems, 2004. FTDCS 2004.,
2004, pp. 306–310.

[12] Y. Qun, Y. Xian-chun, and X. Man-wu, “A framework for dynamic soft-
ware architecture-based self-healing,” in Proc. 2005 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3, 2005, pp. 2968–
2972 Vol. 3.

[13] S. Hukerikar and C. Engelmann, “Resilience design patterns: A struc-
tured approach to resilience at extreme scale,” Supercomputing Frontiers
and Innovations, vol. 4, 08 2017.

[14] A. Koschel, A. Hausotter, M. Lange, and S. Gottwald, “Keep it in sync!
consistency approaches for microservices: An insurance case study,”
Service Computation, pp. 7–14, 10 2020.

[15] GDV, “Vaa-fachliches referenzmodell,” [retrieved 07, 2017]. [Online].
Available: http://www.gdv-online.de/vaa

[16] E. Evans, Domain Driven Design — Tackling Complexity in the Heart
of Software. Addison-Wesley, 2004.

[17] iso25000.com, “Iso/iec 25010,” [retrieved 3, 2021]. [Online].
Available: https://iso25000.com/index.php/en/iso-25000-standards/iso-
25010?start=0

[18] A. Hausotter, A. Koschel, , J. Busch, and M. Zuch, “A generic mea-
surement model for service-based systems,” Service Computation, pp.
12–18, 2 2018.

4Copyright (c) IARIA, 2021. ISBN: 978-1-61208-844-0

SERVICE COMPUTATION 2021 : The Thirteenth International Conference on Advanced Service Computing

