
Lightweight Offline Access Control for Smart Cars

Gian-Luca Frei

Zühlke Engineering AG
Bern, Switzerland

emails: hello@gianlucafrei.ch
gifr@zuehlke.com

Fedor Gamper

Swiss Federal Railways
Bern, Switzerland

email:
fedorgamper@outlook.com

Prof. Dr. Annett Laube

Bern University of Applied Sciences TI -ICTM
Biel/Bienne, Switzerland

email:
annett.laube@bfh.ch

Abstract—In this paper, a novel access control protocol that offers
appealing features for carsharing is presented. It describes how a
user can authenticate and authorize himself using a smartphone
on an immobilizer in a car. First, it requires no online connection
to open cars. Therefore, it is suitable for applications where the
cars and the users have no network connection. Second, the
protocol is designed for low-bandwidth channels like Bluetooth
Low Energy and transports around 210 bytes per car access.
Third, it enables users to delegate their access rights to other
users. These properties were achieved by using custom public key
certificates and authorization tokens with a public key recovery
mechanism.

Keywords– access control; authentication; authorization; blue-
tooth low energy; carsharing; cryptographic protocol; public-key
cryptography; public-key recovery.

I. INTRODUCTION

Smartphones have become omnipresent devices. At the
same time, the worldwide market for carsharing has grown
exponentially over the last decade [1] [2]. As a result, many
carsharing providers offer their customers the possibility to
open rental cars with smartphones. Often, the security of such
systems is unknown because the vendors keep the system
design secret.

Designing access control solutions is quite easy if the cars
have a stable network connection. The only parts needed are an
authentication mechanism and a server that the car can query to
check if a user is allowed to access it. However, maintaining
a constant network connection is often not possible or not
desirable because of the higher costs involved. Moreover,
developing a protocol whereby all steps can be done with no
network connection would not be meaningful in a world where
most smartphones almost always have an internet connection.
Therefore, we use the following networking model: The users
are most of the time online and need a network connection
for registration and to make bookings. Later, a user receives
a credential that enables him to make use of his access rights
in an offline fashion. This means that if he opens a car, he
needs no network connection, nor does the car need a network
connection. To illustrate this, imagine the car is located in an
underground car park, where no cellular reception is available.
In that case, the carsharing provider cannot communicate with
the car, whereas a user can cross into the offline zone by
entering the underground car park. Most carsharing providers
allow their users to make spontaneous bookings over their
smartphones. This means access control rules can change
quickly. Therefore, the user needs to receive the credentials
to authenticate and authorize himself outside before entering
the underground car park.

The most convenient way to establish communication be-
tween a car and a smartphone is through either Bluetooth

or Near-Field Communication (NFC) [3]–[5]. Bluetooth Low
Energy (BLE) is part of the Bluetooth 4 specification and is
designed to use little electric power [6]. Another advantage of
Bluetooth Low Energy is that no device-pairing is needed. This
makes Bluetooth Low Energy very convenient. NFC is also
very convenient but is not fully supported on Apple devices [7].
This makes BLE a popular choice for real-world applications.
A downside of BLE and NFC are that the transmission speed
is low and often the theoretical bandwidth cannot be reached
in practice. In our tests with Bluetooth LE, we measured a
transmission speed of under 1,000 bytes per second [8]. It
is, therefore, important to keep the sizes of the messages
exchanged between the smartphone and the object as small
as possible because large messages can have direct negative
impacts on usability.

This paper is organized as follows: Section II presents
the current state-of-the-art of access control protocols for
carsharing. Then, in Section III the new protocol is presented.
Section IV discusses possible ways to attack a system that
uses the presented protocol. Finally, Section V concludes the
paper.

II. STATE-OF-THE-ART

This section gives an overview of the existing work on
carsharing systems. Dmitrienko et al. presented an offline
access control system for free-float car sharing. This protocol
is based on symmetric encryption, secure elements to store pri-
vate credentials and a single carsharing provider that manages
access rights [9]. Dmitrienko et al. also proposed a generic
access control system based on NFC enabled devices which
also supports offline validation and delegation of authorization.
However, this work makes use of some proprietary protocols
[10]. SePCAR is an access control protocol for smart cars.
However, the focus of this protocol is more on user privacy
than on bandwidth efficiency [11]. Mustafa et al. published a
comprehensive requirements analysis for carsharing systems
[12]. There exist also protocols that are not intended for
carsharing but could also be used in this context. Grey is a
research project which has been used to access physical space,
computer logins and web applications based on asymmetric
crypto on smartphones [13]. With Grey, users can pass their
authorizations to other users. Arnosti et al. proposed a general
physical access control system that uses NFC to communicate
with digital and physical resources. However, their protocol
requires a network connection between the resource and a
central server [14]. Groza et al. explored the use of trusted
platform modules along with identity-based signatures for
vehicle access-control [15]. Ouaddah et al. developed an access
control framework for internet of things applications based on
blockchain technology [16]. Similar to public key recovery

1Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

which is used in the presented protocol is another technique
called implicit certificates. Some IoT-Protocols make use of
this technique, example are developed by Sciancalepore et al.
and Ha et al. [17] [18]. Furthermore, there are many proprietary
solutions mostly from carsharing companies, but no details
are publicly available. Examples are from Zipcar, OTA-Keys,
Continental Cars, and Valeo. To the best of our knowledge no
prior work has focused on low bandwidth protocols for access
control in carsharing. To fill this research gap, we propose a
new lightweight access control protocol for offline cars.

III. PROTOCOL

In this section, the developed access control protocol is
presented.

A. Overview
The protocol is based on the principle of authorization

tokens and a strong authentication mechanism with public
key certificates. Each user has a device containing a unique
private key used for authentication and a public key certificate.
Further, each user has one or multiple authentication tokens,
which are digitally signed messages that link access rights to a
specific user. These tokens are independent of the private key
used for authentication and can be shared between multiple
devices of one user. For example, if a user changes his smart-
phone, then he needs to onboard his new phone to generate a
new private key and get a new public key certificate and then he
can copy his authorization tokens to his new device. The user
can then create an access request on his device. Each access
request is authenticated with the private key and linked to the
user with the public key certificate. Authentication with public
key certificates is a widely used and secure authentication
mechanism and removes many attack points because outsiders
can forge access requests of regular users only with negligible
probability. The most important advantage of an authorization
token is that the car only needs to store a few public keys
as a trust anchor. It uses these saved public keys to check
access requests. This is useful for applications where the car
is offline for a long time or the hardware of the car needs to
be inexpensive.

a) Components and Roles: A user can access a car from
different devices. A user device can be a smartphone, a smart
card, or a computer. To use a new device, the user needs
to introduce it to the system by performing the onboarding
process with it. During device onboarding, a new private key
is generated and an Identity Authority (IA) issues a public
key certificate for the new device. The car needs to have a
computing platform that communicates with the user device,
validates the access requests and controls the immobilizer of
the car. A car owner is a person who has administrative access
to a car and configures its computing platform. There are
two different authority roles. The IA checks the identity of
users and issues public key certificates for new user devices.
The Permission Authority (PA) issues authorization tokens.
The cars can trust multiple authorities. Figure 1 visualizes the
relationships between the different components. One party can
be an IA and PA at the same time; however, the two roles can
also be split between different parties. For instance, in peer-to-
peer sharing, each car owner could trust a car-sharing platform
to check identities and driving licenses but run a PA by himself.
The protocol does not specify a user registration method. We

assume that identity authorities have a way to manage users
and that users can authenticate to identity authorities. The
public key certificates are only used to authenticate a user to
a car.

User User Device Car Platform Car
Immobilizer

controls
1:n

access
request

n:m
controls

1:1

Identity
Authority

Permission
Authority

issues public
key certificate 1:n issues

authorization token
n:m

Figure 1. Components and Roles

b) Basic Description: Each user in the system owns
an asymmetric key pair used for authentication. During the
onboarding process, an Identity Authority signs a public key
certificate for the user. Next, the user receives an authorization
token which is signed by the Permission Authority. To access
a car, the user signs an access request which contains a
description of what he wants to do. This access request
message, together with a certificate and authorization token, is
then sent to the car. The car verifies the access request. If the
car trusts all the involved authorities and the request is valid,
it grants access. The car trusts a set of authorities by storing
their public keys in a local trust store. An authorized user
can delegate a subset of his access rights to another user. For
instance, when a user booked a car, he might not use the car
only by himself but wants that his travel companion is able to
open the car too. To realize token delegation, all authorization
tokens have a flag that indicates whether the authorized user
is allowed to delegate his access rights to another user. To
delegate an access right, an authorized user A signs a new
token for another user B. User B then uses the chain of tokens,
containing his token and the token of A, to claim or further
delegate his access rights.

c) Cryptographic Primitives: The cryptographic primi-
tives used are a cryptographic hash function H(m) and the
Elliptic Curve Digital Signature Algorithm (ECDSA) with
public key recovery. recoverPk(h, s) is a function which
computes a public key pk which is valid for the digest h
and signature s. ECDSA is one of the only digital signature
schemes where this operation is possible [19] [20] [8].

B. Protocol Phases
In this section, we describe the different phases of the

protocol. Generally, if any check fails, the process must be
aborted. Figures 2 to 7 illustrate the different processes.

1) Car Initialization: (Figure 2) During the initialization
process, a car owner CO adds a new car to the system
by setting up the car platform CP . First, the CO sends
the SystemParameters consisting of the digital signature
algorithm and the hash function to the CP . Next, he sends
the set of trusted public keys PKIA, PKPA on the CP .
These public keys are later used to check the authenticity of
public key certificates and authorization tokens. Further, the
CO should check if the clock to the CP is precise enough.
How precise the clock must be can vary between different
systems; however, the divergence should usually not exceed a
few seconds. A precise time source is necessary because the
car needs the current time to check if the access tokens are
valid at the moment of usage.

2Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

Car Owner CO Car Platform CP

SystemParameters

PKIA, PKPA

Set system parameters

Persist PKIA, PKPA

Figure 2. Car Initialization Sequence Diagram

2) Device Onboarding: (Figure 3) During onboarding, a
user U sets up a new personal device D to later access a car.
The device usually communicates with the authorities over an
internet connection; therefore, minimal message sizes are not
important during this process. The device needs to generate a
new private key. Then it requests a public key certificate from
an IA for the public key which belongs to the private key.
This process needs a mutually authenticated channel between
D and IA. D first generates a key pair (sk, pk) where sk is
the platforms new private key and pk is the corresponding
public key. D then generates a proof of knowledge of sk
by signing H(u, pk) with sk. Then it sends this signature s
together with is username u and public key pk to the IA.
This proof of knowledge is needed to prevent a user from
getting a certificate for a key pair without the knowledge
of the private key. The IA then checks this proof and then
signs sC = signskIA(H(u, pk, v)) where v is the validity
period of the public key certificate and sends the certificate
cert = (u, v, sC) to D. Note that the public key is hashed
into the signed part of the certificate but not contained in the
certificate itself. The public key can later be recovered and
then the authenticity of the certificate can be checked.

User Device D Identity Authority IA

skIA

u← username

sk, pk ← generateKeys()

h← H(u, pk)

s← signsk(h)

u, pk, s

verifypk(H(u, pk), s)

v ← validity period

r ← H(u, pk, v)

sC ← signskIA
(r)

cert = (u, v, sC)

cert

Persist cert

Figure 3. Device Onboarding Sequence Diagram

3) Root Token Issuance: (Figure 4) The result of the root
token issuance process is an authorization token t. This token
allows the user to claim access rights to a car or to delegate
his rights to another user. If a token tn is delegated, all tokens
used t1, ..., tn−2, tn−1 to delegate the last token tn are needed
to check the validity of the last delegated token. This sequence
of tokens t1− tn is called a chain of tokens T . The first token
t1 in such a chain needs to be issued by a PA and is called the
root token. To issue a root token, a PA signs an authorization
token t and sends this token to the device D of the user. How
the PA manages the access rules depends on the application
of the protocol and is not specified. The token t is a signed

message consisting of p, which is a description of the access
rights of the user. It also contains a bit-flag d, which indicates
if the user can delegate his access rights and a signature
sT1 = signskPA

(H(u, p, d)). To keep the protocol flexible, the
content of p is not specified. It should contain a set of cars that
the user may access and a validity timespan. The root token
then is t1 = (p, d, sT1). The PA sends the sequence T1 to the
D of the user. D stores T1 together with C1 = (cert) which is
the sequence of the corresponding public key certificates. Note
that the username u itself is part of the signed hash. However,
it is not part of the token message like the public keys in
certificates. The reason for this is that an authorization token
must always be checked with the corresponding public key
certificate containing the same username. Instead of testing if
both usernames are the same, u can be taken from the public
key certificate and so u can be omitted from the authorization
token.

Device D from User n Permission Authority PA

cert skPA

u = name of permitted user

p = access rights description

d = delegable

h← H(u, p, d)

sT1 ← signskPA
(h)

t1 ← (p, d, sT1)

T1 ← (t1)

T1

C1 ← (cert)

Persist C1, T1

Figure 4. Root Token Issuance Sequence Diagram

4) Token Delegation: (Figure 5) To delegate a token, the
delegating user with username un−1 enters the name of the
receiver un, the description of the rights he wants to delegate
pn and the flag dn, which indicates if the new token can further
be delegated to his device D. D then sign the new token tn
with the private key skn−1 in the same way as in the root token
issuance process, except that in the new sequence of tokens Tn,
tn is appended to the prior sequence of tokens Tn−1. D sends
the new chain of tokens Tn and the prior chain of certificates
Cn−1 to the device of the receiver D′. D′ appends his public
key certificate to the chain of certificates Cn−1. The receiving
user can further delegate his token, if the received token is
delegable, by performing this process again.

Delegate Device D Receiver Device D’

(from user n− 1) (from user n)

skun−1
, Tn−1, Cn−1 certn

hn ← H(un, pn, dn)

sTn ← signskun−1
(hn)

tn ← (pn, dn, sTn)

Tn ← Tn−1‖(tn)

Cn−1, Tn

Cn ← Cn−1‖(certn)
persist Cn, Tn

Figure 5. Token Delegation Sequence Diagram

3Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

5) Access Request: (Figure 7) To create an access request,
the user needs a list of tokens T = t1, . . . , ti−1, ti and a list
of certificates C. Each ti in T except t1 must be signed by
the public key corresponding to the certificate ci−1. The root
token t1 must be signed by a Permission Authority. Also, the
user of ci and ti must be the same. Figure 6 illustrates a
chain of tokens and the corresponding certificates resulting
from two delegations. The fields in parentheses are hashed
into the signature but are not stored in the message. To
access a car, the user U enters a description of the access
request desc into his device D. This is needed in case a car
allows different accesses or needs additional information. For
instance, the description can specify that the car should open
the trunk only. For this description, together with, the current
time τ and the name of the car r, D creates a signature
s = signsk(H(desc, τ, r)). Finally, τ , the list of tokens T ,
the list of certificates C, the description desc and s are sent to
the car platform CP . CP validates the chain of permissions
according to the validateRequest procedure (Figures 8 and 9)
and if no check fails, it grants accesses to the car according to
the description desc. The authentication mechanism depends
on the hardness to forge the digital signature s. For an attacker,
without the knowledge of the private key sk that belongs to the
public key certificate, it is not realistic to forge a valid signature
s. An attacker could record and try to replay an access request.
To prevent this, the timestamp τ is also included in the signed
part of the request. The car must check if the timestamp
is close to the current time provided by the clock of the
car platform. How small the derivation can be is a trade-off
between susceptibility for timing errors and security.

Certificate 1
u1

(pk1)
v1
sC1

User 1
Certificate 2

u2
(pk2)
v2
sC2

User 2
Certificate 3

u3
(pk2)
v3
sC3

User 3

Token 1
(u1)
p1
d1
sT1

Token 2
(u2)
p2
d2
sT2

Token 3
(u3)
p3
d3
sT3

Request
(r)
τ

desc
sreq

C

T

signs signs

signs

PA

signs

Figure 6. Access Request Example

C. Analysis of the Access Request Size
In this section, the size of the access request message is

analyzed. This size is very important because the channel
between the user device and car platform often has a low
bandwidth.

a) Security Parameter: When implementing an applica-
tion of this protocol, a security parameter S has to be chosen.
This parameter is a way to define how difficult it should be
for an attacker to break the cryptographic primitives of the
application. More precisely: A polynomial bound attacker is
expected to break the primitives in O(2S) computing steps.
Nowadays a security parameter of about 112 is recommended
to protect secrets for about 10 years [21] [22]. However, this

User Device D from User n Car Platform CP

un, skn, T, C PKIA, PKPA

r ← car name

τ ← currentT ime()

desc← additional information

sreq ← signskn (H(r, τ, desc))

req = (τ, T, C, desc, sreq)

req

validateRequest(req)

carAccess(desc)

Figure 7. Access Request Sequence Diagram

validateRequest(τ, T, C, desc, sreq, PKIA, PKPA)

n← length(C)

// Authentication Check

check currentT ime() is near τ
r ← car name
h← H(r, τ, desc)

// cun means the username of the nth certificate

signatureCheck(h, sreq, cn, c
u
n, PKIA)

// Check if the access description is within the claimed access privileges

// tpn means the privileges of the nth token

Check desc is within tpn
Check context of tpn

// Check the root token

// tsi means the signature of the ith token

h← H(cu1 , t
p
1, t

d
1)

pkPA ← recoverPk(h, ts1)

Check pkPA ∈ PKPA

// Check the chain of tokens

for i← 2, 3, ..., n

h← H(cui , t
p
i , t

d
i)

signatureCheck(h, tsi , ci−1, c
u
i−1, PKIA)

// tpn means the privileges of the nth token

Check tpi are within tpi−1

Check tui = cui

Check tdi−1 = 1

Figure 8. Validate Request Procedure

protocol only provides authentication and authorization. It does
not provide confidentiality. The keys used to sign the messages
are only valid for a specific time and should then be renewed.
An attacker is not interested in breaking old keys. Therefore,
a smaller security parameter is also possible when all keys
(especially the authority keys) are regularly replaced by freshly
generated keys. To achieve a security level of S a 2S bit curve
must be used (for instance a 256 bit curve for 128 bit security).

4Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

signatureCheck(h, s, cert, u, PKIA)

pk ← recoverPk(h, s)

r ← H(u, pk, certv)

pkIA ← recoverPk(r, certs)

Check pkIA ∈ PKIA

Check currentT ime() within certv

Figure 9. Signature Check Procedure

An ECDSA signature then has a size of 4S plus two bits for the
recovery parameter, which are negligible for our calculations.

b) Size of an Access Request: An access request con-
sists of at least one certificate and one token, each containing
one digital signature. Additionally, we have one signature for
the access request message itself. For each delegation, we need
to add one certificate and one token. Let s = 4S be the size
of a digital signature. The total size of the access request is
therefore s + a + (d + 1)(2s + b) where d is the number
of delegations. a is the size of the fields in the request (τ ,
desc), and b is the size of the fields in the certificate and token
(username, validity, privileges). Because a and b are relatively
small, we assume them to be a ≈ 20 bytes and b ≈ 40 bytes.
Table I shows the calculated access request message sizes.

TABLE I. CALCULATED SIZE OF THE ACCESS REQUEST

for S=100

No delegation: 3s+ a+ b ≈ 3s+ 60B ≈ 210 bytes

One delegation: 5s+ a+ 2b ≈ 5s+ 100B ≈ 350 bytes

Per additional delegation: 2s+ b ≈ 2s+ 50B ≈ 140 bytes

D. Proof of Concept

To test the efficiency of protocol, we created a prototype
which consists of a mobile application and a Raspberry Pi 3b+
running a Node.js application [23]. An iPhone X was used to
transmit an access request over Bluetooth Low Energy (BLE)
to the raspberry witch was simulating the car. It took in average
495 ms to transmit and compute an access request message
with no delegations. This was measured in an environment
with no other BLE devices nearby and 15 cm distance be-
tween the devices. With one delegation, the transmission and
computation time increased to in average 566 ms and with
two delegations to in average 732 ms. This value could be
minimized by improving the computational performance of the
prototype [8].

IV. ANALYSIS OF ATTACK VECTORS

This section discusses different vectors an adversary could
use to attack a system using this protocol and how the protocol
protects against such attacks.

a) Denial of Service: Communication channels over the
air are in general vulnerable to a denial of service attacks.
Therefore, an attacker could prevent an authorized user from
accessing a car. For applications where availability is impor-
tant, it is better to use a low range technology such as NFC
instead of Bluetooth.

b) Man-in-the-middle: An attacker can capture a mes-
sage in transit and forward it to the car, but since all part of the
access request are authenticated he cannot alter it. However,
if an attacker captures the request messages, it could have a
privacy impact. For applications where privacy is important,
it is recommended to encrypt the access requests in such a
way that only the targeted car can decrypt it. Another type of
attack would be when an attacker tries to extend the range of
the communication channel between the user and the car. He
could trick the user to unintentionally open a car. To prevent
this, the user device should only send access requests when
the user confirms that he is near the car.

c) Clock-Synchronization: If the time source of the car
is not correct, a user with a valid token could access the car
outside the validity timespan of the token. Also, the validity
of the authentication certificates could be circumvented. It is
therefore important that only the car owner can adjust the
time source of the car. Depending on the application a small
derivation of a few seconds can be unproblematic, but longer
differences should be prevented.

d) Replay Attacks: An attacker can copy a transmitted
access request and replay it later. However, the time stamp τ in
the access request prevents the car from accepting the replayed
access request because it compares τ to the current time.

e) Abuse of the Car: A malicious user who has access
to a car could use it in an unintended way. For example a
customer could try to manipulate the car’s computing platform.
To prevent this, the computing platform should be physically
protected against such and similar manipulations, or at least
able to detect it. Also, a user could rent a car and not return
it on time. Such and similar attacks should be regulated in the
general business terms of the carsharing provider.

f) Attacks on the Authentication Mechanism: An at-
tacker could try to circumvent the authentication mechanism
of the access request and impersonate another user. To do this,
the attacker would need to forge a valid public key certificate
of a trusted IA or forge a valid signature in the access request.
Both types of attack are prevented by the difficulty of forging
a digital signature.

g) Attacks on the Authorization Mechanism: An at-
tacker which is a registered user could also try to circumvent
the authorization mechanism by trying to forge a valid chain
of authorization tokens. To do this, the attacker would need to
forge either the signature of one authorization token or forge
a public key certificate.

h) Attacks on the Devices of Other Users: An attacker
could try to steal the private key of another user’s device or
make another user’s device to sign a token or access request by
installing malware on the victim’s device. To prevent this, the
users’ device must be secured against such attacks. To make
this attack more difficult, the private key should be stored on a
trusted platform module with a key activation function, which
most modern devices provide.

i) Attacks on the Identity Authorities: An attacker
could try to attack an IA directly. An attacker that intruded
into an authority could either steal the private key or make
the authority to sign a public key certificate. The attacker
then could impersonate any other user. Once the intrusion is
detected, all car owners would need to remove the public key of
the corrupted authority on all cars that trusted that authority.

5Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

To prevent such an attack, the IA must be secured against
different cyberattacks to make such an attack unprofitable for
an attacker.

j) Attacks on the Permission Authorities: Like the at-
tack on the identity authorities, an attacker could also steal the
private key of a PA. He then could issue arbitrary root tokens
and could access all cars that trust the corrupted authority.
However, to use the car, the attacker also needs to authenticate
himself and therefore needs a public key certificate. This means
that such an attack would only be interesting for an already
registered user or in combination with another attack. Similar
to the attack on the identity authorities, the PA must be secured
against different cyber attacks.

To sum up, attacks on the authorities are the most promis-
ing attacks. As a result, these authorities must be well secured
to mitigate such threats. Splitting up the privileges of the
authorities also minimizes the impact of a successful attack.

V. CONCLUSION

The presented protocol enables carsharing providers to
use a secure access control mechanism over Bluetooth Low
Energy or Near-Field Communication. It is based on well-
known security mechanisms but uses the less-known technique
of public key recovery to reduce the size of the messages. The
security mechanism of the protocol is based on the principle
of public-key certificates and digitally-signed authorization
tokens. Both mechanisms are well known and used for a wide
variety of applications. The main novelty of our approach
is the use of public-key recovery, to drastically reduce the
message sizes of the custom certificates. The custom public
key certificates we developed, have a size of only about 100
Bytes for a 256-bit key. Compared to traditional X.509 [24] or
GPG [25] certificates for the same ECDSA key, this is about
5 to 10 times smaller. The networking model of this protocol
assumes that only the car and the smartphone can communicate
with each other during the access phase. A consequence of this
model is that the revocation of an access right is not possible. If
a carsharing service allows a user to open a car in places where
no network connection is possible, it gives up the possibility
to communicate with the car. Thus, the car cannot ask if the
user’s access rights have been revoked.

To the best of our knowledge, it is the first access control
protocol that makes use of this technique. As a result, it has
powerful and interesting properties, which makes it suitable
for carsharing-applications. Nevertheless, the protocol could
also be used in other domains such as building door systems.
The developed prototype proves that the protocol runs fast on
today’s smartphones and is very convenient for the users.

REFERENCES

[1] S. Le Vine, A. Zolfaghari, and J. Polak, “Carsharing: evolution, chal-
lenges and opportunities,” Scientific advisory group report, vol. 22,
2014, pp. 218–229.

[2] S. Shaheen, E. Martin, and B. Apaar, “Peer-to-peer (p2p) carsharing:
Understanding early markets, social dynamics, and behavioral impacts,”
2018.

[3] S. International Organization for Standardization, Geneva, “Iso/iec
18092:2013,” Tech. Rep., [retrieved: March, 2020]. [Online]. Available:
https://www.iso.org/standard/56692.html

[4] R. Want, “Near field communication,” IEEE Pervasive Computing,
no. 3, 2011, pp. 4–7.

[5] K. Finkenzeller, RFID handbook: fundamentals and applications in
contactless smart cards, radio frequency identification and near-field
communication. John Wiley & Sons, 2010.

[6] C. Gomez, J. Oller, and J. Paradells, “Overview and evaluation of
bluetooth low energy: An emerging low-power wireless technology,”
Sensors, vol. 12, no. 9, 2012, pp. 11 734–11 753.

[7] Apple. Core nfc documentation. [retrieved: March, 2020]. [Online].
Available: https://developer.apple.com/documentation/corenfc

[8] G.-L. Frei and F. Gamper, “Design and implementation of a digital ac-
cess control protocol,” B.S. thesis, Bern University of Applied Science,
2019.

[9] A. Dmitrienko and C. Plappert, “Secure free-floating car sharing for
offline cars,” in Proceedings of the Seventh ACM on Conference on
Data and Application Security and Privacy. ACM, 2017, pp. 349–360.

[10] A. Dmitrienko, A.-R. Sadeghi, S. Tamrakar, and C. Wachsmann,
“Smarttokens: Delegable access control with nfc-enabled smartphones,”
in Trust and Trustworthy Computing, S. Katzenbeisser, E. Weippl, L. J.
Camp, M. Volkamer, M. Reiter, and X. Zhang, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 219–238.

[11] I. Symeonidis, A. Aly, M. A. Mustafa, B. Mennink, S. Dhooghe, and
B. Preneel, “Sepcar: A secure and privacy-enhancing protocol for car
access provision,” in Computer Security – ESORICS 2017, S. N. Foley,
D. Gollmann, and E. Snekkenes, Eds. Cham: Springer International
Publishing, 2017, pp. 475–493.

[12] I. Symeonidis, M. A. Mustafa, and B. Preneel, “Keyless car sharing
system: A security and privacy analysis,” in 2016 IEEE International
Smart Cities Conference (ISC2). IEEE, 2016, pp. 1–7.

[13] L. Bauer, S. Garriss, J. M. McCune, M. K. Reiter, J. Rouse, and
P. Rutenbar, “Device-enabled authorization in the grey system,” in
Information Security, J. Zhou, J. Lopez, R. H. Deng, and F. Bao, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 431–445.

[14] C. Arnosti, D. Gruntz, and M. Hauri, “Secure physical access with
nfc-enabled smartphones,” in Proceedings of the 13th International
Conference on Advances in Mobile Computing and Multimedia, ser.
MoMM 2015. New York, NY, USA: ACM, 2015, pp. 140–148.

[15] B. Groza, L. Popa, and P.-S. Murvay, “Carina-car sharing with identity
based access control re-enforced by tpm,” in International Conference
on Computer Safety, Reliability, and Security. Springer, 2019, pp.
210–222.

[16] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, 2016, pp. 5943–
5964.

[17] S. Sciancalepore, A. Capossele, G. Piro, G. Boggia, and G. Bianchi,
“Key management protocol with implicit certificates for iot systems,”
in Proceedings of the 2015 Workshop on IoT challenges in Mobile and
Industrial Systems. ACM, 2015, pp. 37–42.

[18] D. A. Ha, K. T. Nguyen, and J. K. Zao, “Efficient authentication
of resource-constrained iot devices based on ecqv implicit certificates
and datagram transport layer security protocol,” in Proceedings of the
Seventh Symposium on Information and Communication Technology.
ACM, 2016, pp. 173–179.

[19] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital
signature algorithm (ecdsa),” International journal of information secu-
rity, vol. 1, no. 1, 2001, pp. 36–63.

[20] C. Research, “Standards for efficient cryptography, SEC 1: Elliptic
curve cryptography,” September 2000, version 1.0.

[21] E. Barker and Q. Dang, “Nist special publication 800-57 part 1, revision
4,” NIST, Tech. Rep, 2016.

[22] N. Smart et al., “Algorithms, key size and protocols report (2018),”
ECRYPT—CSA, H2020-ICT-2014—Project, vol. 645421, 2018.

[23] G.-L. Frei and F. Gamper. Loac-protocol prototype. [retrieved:
March, 2020]. [Online]. Available: https://github.com/gianlucafrei/
LOACProtocol (2019)

[24] Microsoft. X.509 public key certificates. [retrieved: March, 2020].
[Online]. Available: https://docs.microsoft.com/en-us/windows/desktop/
seccertenroll/about-x-509-public-key-certificates

[25] GnuPG. The gnu privacy guard. [retrieved: March, 2020]. [Online].
Available: https://www.gnupg.org/index.html

6Copyright (c) IARIA, 2020. ISBN: 978-1-61208-777-1

SERVICE COMPUTATION 2020 : The Twelfth International Conference on Advanced Service Computing

https://www.iso.org/standard/56692.html
https://developer.apple.com/documentation/corenfc
https://github.com/gianlucafrei/LOACProtocol
https://github.com/gianlucafrei/LOACProtocol
https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/about-x-509-public-key-certificates
https://docs.microsoft.com/en-us/windows/desktop/seccertenroll/about-x-509-public-key-certificates
https://www.gnupg.org/index.html

	Introduction
	State-of-the-Art
	Protocol
	Overview
	Protocol Phases
	Car Initialization
	Device Onboarding
	Root Token Issuance
	Token Delegation
	Access Request

	Analysis of the Access Request Size
	Proof of Concept

	Analysis of Attack Vectors
	Conclusion
	References

