
Towards a Microservices-based Distribution for Situation-aware Adaptive Event

Stream Processing

Marc Schaaf

University of Applied Sciences Northwestern Switzerland,
Riggenbachstr. 16, 4600 Olten, Switzerland

Email: marc.schaaf@fhnw.ch

Abstract—This paper presents the central concepts for a
microservices-based distribution of event stream processing
pipelines as they are part of our situation-aware event stream
processing system. For this, we outline changes to our specifi-
cation language for a clear separation of the stream processing
specification from the actual stream processing engine. Based on
this separation, we then discuss our mapping approach for the
assignment of the pipelines to stream processing nodes.

Keywords–Event Stream Processing; Microservices; Service-
oriented Architecture

I. INTRODUCTION

Event Stream Processing (ESP) applications play an impor-
tant role in modern information systems due to their capability
to rapidly analyze huge amounts of information and to quickly
react based on the results. They follow the approach to produce
notifications based on state changes (e.g., stock value changes)
represented by events, which actively trigger further processing
tasks. They contrast to the typical store and process approaches
where data is gathered and processed later in a batch process-
ing fashion, which typically involves a higher latency. ESP
applications can achieve scalability even for huge amounts of
streaming event data by partitioning incoming data streams and
assigning them to multiple machines for parallel processing.
Due to those properties, ESP based analytical systems are
likely to have a further increasing relevance in future business
systems. Also, it is likely that future ESP applications will
have to handle even larger amounts of data while taking on
increasingly complex processing tasks to allow for near real-
time analytics to take place.

An example for such a scenario is the detection and tracing
of solar energy production drops caused by clouds shading
solar panels as they pass by [1]. The scenario requires a
processing system to handle large amounts of streaming data
to (1) detect a possible cloud (a possible situation), to (2)
verify the possible situation and (3) to track the changes of
the situation as the cloud moves or changes its size or shape.
For the initial detection of a potential situation, a processing
system needs to analyze the energy production of all monitored
solar panel installations. However, for the second part, the
verification of a potential cloud, only a situation specific subset
of the monitoring data is needed. In the same way, the later
tracking of the situation only requires a situation specific
subset, which may change over time.

In order to handle such large numbers of events, a pro-
cessing system needs to be capable of distributing the pro-
cessing across several machines. A common mechanism for

the distribution is to partition the overall data stream [2].
When a processing system partitions the incoming data streams
in order to achieve scalability, such a partitioning will be
suitable for the first part of the processing, the detection of a
potential situation as the partitioning is situation independent.
For the later processing part where a situation specific subset
of the incoming data streams is required, a general stream
partitioning scheme based on for example the processing
system load, is not suitable as it does not incorporate the needs
of currently analyzed situations. Here, a dynamic adaptation
mechanism is needed that takes the investigated situations state
into account.

While we presented the general high level architecture
of our processing system in [3], this paper discusses two
contributions, first the partial re-design of our specification
language to become independent of the Drools Rule Engine
and second the the assignment of the actual stream processing
as a set of microservices to allow for the scalable distributed
deployment of the stream processing pipelines.

The remainder of this paper is structured as follows: The
next section discusses the related work followed by a presen-
tation of the processing model. Section III and IV present the
basics of our specification language for situation-aware event
stream processing and outline the made changes. Section V
presents the architecture and the mapping of stream processing
pipelines to a microservice-based architecture.

II. RELATED WORK

Various systems for distributing a processing system in
order to provide the needed scalability exist like Aurora* and
Borealis [4][5]. Aurora*, for example, starts with a very crude
data stream partitioning in the beginning and tries to optimize
its processing system over time based on gathered resource
usage statistics [6]. Furthermore, various approaches have been
proposed, which employ adaptive optimizations to handle load
fluctuations by utilizing the dynamic resource availability of
cloud computing offerings like [7][8][9] in order to scale on
demand.

In general, the discussed systems are capable of setting up
distributed stream processing based on given queries and to op-
timize the system to provide the required processing capacity
and response times. However, the systems have no mechanisms
to adapt deployed stream queries based on detected situations
and situation changes as they have no knowledge of the overall
analytical task that deployed a given stream query.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

On the other hand, there are systems aimed specifically
at providing the surroundings for distributed processing but
without providing processing languages like for example,
Apache Storm [10] or Apache Spark Streaming [11]. Such
systems could act as a potential basis for implementing our
situation-aware adaptive processing model. However, they do
not follow the microservice model we aim to explore with
our architecture. For the realization of a reactive microservice
like architecture as we aim for with our approach, lower
level frameworks exist like for example Eclipse Vert.X [12]
or Akka [13]. For our processing system architecture, we
utilize Vert.X due to its integrated event bus functionality and
define a mapping of our processing model to the available
functionalities.

III. PROCESSING MODEL AND LANGUAGE

We approach the initially outlined problem by defining
a situation-aware adaptive stream processing model together
with a matching scenario definition language to allow the
definition of such processing scenarios for a scenario in-
dependent processing system [3][14][15][16]. The designed
model defines situation-aware adaptive processing in three
main phases (Figure 1):

• Phase 1: In the Possible Situation Indication phase,
possible situations are detected in a large set of stream-
ing data, were the focus lies on the rapid processing
of large amounts of data, explicitly accepting the
generation of false positives and duplicate notifications
over precise calculations.

• Phase 2: The Focused Situation Processing Initializa-
tion phase determines whether an indicated possible
situation needs to be investigated or if it can be
ignored, for example because the situation was already
under investigation. If a potential situation needs to be
investigated, a new situation specific focused process-
ing is started.

• Phase 3: In the Focused Situation Processing phase,
possible situations are first verified and then an in-
depth investigation of the situation including the adap-
tation of the processing setup based on interim results
is possible.

For these three phases, event stream processing takes place
during the Phases 1 and 3.

Based on our processing model, we defined the Scenario
Processing Template Language (SPTL), which allows the
specification of processing templates based on the concepts of
the processing model in an implementation independent way.

IV. SPECIFICATION LANGUAGE

A Scenario Processing Template contains all scenario-
specific information to parameterize a processing system for

Phase 1:
Situation Indication

Phase 2:
Situation Indication

Phase 3: Focused
Situation Processing

Event Stream Processing Event Stream Processing

SPTL Template

Figure 1. Three main phases of the Processing Model

name "ScenarioName"

PossibleSituationIndication {
// [...] Specifications for Processing Phase 1

}

FocusedSituationProcessingInitialization {
// [...] Specifications for Processing Phase 2

}

FocusedSituationProcessing {
// [...] Specifications for Processing Phase 3

}

Figure 2. Structure of a processing template in the SPTL

a scenario (e.g., How to detect a train delay and how to
determine its impact). The template is divided into a preamble
and three blocks which resemble the three major phases
defined in the processing model as outlined in the listing in
Figure 2.

Each block contains the specifications required for the
setup and execution of the corresponding phase. Within
the here discussed processing model, scenario specific event
stream processing takes place during the Phases 1 and 3. Thus,
the definitions of these two phases each contain the definition
on how the scenario specific event stream processing has to be
done. In the old version of the SPTL, the specification needed
to be given as a Stream Processing Builder statement. This
statement contained a mixture of several languages (Drools
[17], MVEL [18], SPARQL [19]) in order to build/generate the
actual event stream processing rules in the Drools Language.

A. Language Changes
One of the main limitations of this first version of the SPTL

lies in its tight link to the Drools Rule engine, as well as
in the complexity resulting from the combination of several
languages. The tight link originates in the definition of the the
actual stream processing statements which needed to be given
based on the Drools Rule Language as shown in the listing in
Figure 4.

In order to decouple the SPTL from the Drools Rule
language and to further ease the stream processing specifica-
tions, the SPTL was extended with its own stream processing
specification language. The new language is build around the
concept of a stream processing pipeline as shown in the listing
inf Figure 5.

The first statement $$focusArea.delay specifies the source
of the events together with the type of the event ”DelayEvent”,
the second statement ”filter(...)” defines a filtering condition
followed by the last statement, which specifies a small function
that shall be called for every event to allow a modification
of the stream processing context ”context(...)”. The functions
are separated from each other by ”=>” which indicates the
forwarding of the event stream to the next processing step.

As the new stream processing specifications are indepen-
dent of the actual stream processing engine used to execute
them, alternative mappings of the language to a processing
system implementation can now be defined aside from the
Drools based mapping. As such we are investigating a mapping
the processing pipelines to a microservice-based architecture
based on the Vert.x tool-kit.

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

Processing
Context

Deplyable Stream Procesing Pipelines

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

Filter
(delay > 120)

Modify Context
(add event)

inbound stream
receiver

lookup available serice nodes

One MS instance per
Executor node One MS instance per

Executor node One MS instance per
Executor node One MS instance per

Executor node

announce

<<service>>
Stream Processing

Executor Node

assign Pipelines

Processing Context
Managing Nodes announce

<<service>>
Processing Context
Management Node

assign Context Manager
 and link to Pipelines

Discovery
DB

SPTL template
interpretation

background knowledge

<<service>>
DataStream

SubscriptionManager

<<service>>
Background

Knowledge Manager

<<service>>
Task Scheduler

<<service>>
Possible Situation

Indication Processing
Manager

<<service>>
Focused Situation

Processing Manager

Vert.X Event Bus

1

2

3

4

Figure 3. Overview of the stream processing pipeline assignment

IterationStreamProcessingBuilder {
foreach $$focusArea as $$train {
rule [DROOLS_TEMPLATE]

when
$a : DelayEvent() from entry-point "$${{train?

delay}}"
then
CONTEXT.addToSet("$$trainEvents", $a);

end
[/DROOLS_TEMPLATE] publishes no stream manipulates

context;
}

};

Figure 4. Stream Processing Builder definition in the old SPTL version

IterationStreamProcessing {
$$focusArea.delay : DelayEvent
=> filter(e.delay > 120)
=> context([M] $$trainEvents.add(e) [/M]);

}

Figure 5. Stream Processing definition in the extended version of the SPTL

V. PROCESSING SYSTEM ARCHITECTURE

The overall processing system was subdivided into several
components each with distinct functionality as discussed in
[3]. For the communication between the components interfaces
were defined, which, depending on the needed communication,
are implemented as synchronous service-based interactions or
asynchronous message based interactions.

However, in our initial architecture the stream processing
itself was defined as one opaque component for the Phase 1

and as a second similar component for the Phase 3 processing
with no further subdivision into smaller services. This initial
design decision was caused by the use of one instance of the
Drools Rule Engine for each of those components and the
tight coupling of the SPTL to Drools. With the changes of the
language as discussed in Section IV-A, the stream processing
can now be subdivided into smaller sub-components based
on the notion of defining a potentially distributed processing
pipeline.

A. Mapping of Stream Processing Pipelines to a Microservice-
oriented Architecture

For the processing system, such a processing pipeline
consists of several separate stream processing statements where
each statement takes a stream as input and potentially generates
a stream as a result. Alternatively, a stream processing state-
ment can also modify a so called processing context which
is a shared data store in the context of the current situation’s
stream processing. Such pipeline definitions are the result of
the interpretation of an SPTL template (Figure 3 Part 1).

In our microservices-oriented architecture, we map such
pipelines to multiple small services where in the most fine
grained form any stream processing operation could be pro-
vided by a separate service (Figure 3 Part 2). The services
itself can then be distributed across several processing nodes
in order to implement a distributed stream processing.

For the communication between the different microservices
that form a processing pipeline the event bus mechanism
provided by Vert.x will be used as it can act as a distributed
peer-to-peer messaging system.

In order to deploy such a pipeline, we define a scheduler
service. This scheduler has an overview over all available
worker nodes which can execute stream processing tasks

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

(Figure 3 Part 3). This scheduler service is used by the two
processing managers to assign their processing pipelines which
they generated based on the given SPTL template. To allow
the scheduler to find the available worker nodes, each node
publishes itself as a service to a service registry, where the
scheduler can thus find all available processing nodes.

Further services are provided that offer supporting facilities
like an Event Stream Subscription Manager Service, allowing
the pipeline nodes to request the needed event streams (Figure
3 Part 4). Moreover for the Phase 3 Stream processing, every
situation specific processing requires a processing context that
is shared between all stream processing pipelines associated
with this situation. This processing context is again provided
by a separate service assigned by the scheduler service (Figure
3 Part 2).

VI. CONCLUSION AND OUTLOOK

The paper outlines an extension of our service-based ar-
chitecture towards the use of microservices for the distribution
of the actual stream processing. The distribution is based on
processing pipelines which we introduced by adapting the
scenario template specification language. In our approach, the
stream processing is realized by multiple microservices which
together form a concrete stream processing pipeline potentially
distributed across multiple machines. The actual distribution
decision will be made by a scheduler service which oversees
the available resources through their service registrations.

Currently, our model and architecture does not define
any mechanisms for handling component failures during pro-
cessing. We plan to add such a functionality in the form
of an overseer service which monitors deployed pipelines,
detects service failures and re-deploys the failed services. This
however also requires an extension of the processing model
itself so that a partial rollback of inconsistent processing state
becomes possible, thus allowing the processing to resume in
a defined state after a failure.

While the discussed language changes are already im-
plemented, future work is the realization of the proposed
microservice-based distribution as part of our prototype, thus,
allowing for a detailed evaluation of the approach. In particular
an evaluation of the performance of the Vert.x event bus in a
distributed setup needs to be conducted as the later processing
system will use this as its communication backbone and will
thus rely on its performance.

ACKNOWLEDGMENTS

Parts of the here presented work were done as part of the
Eurostars Project E!7377 as well as Project 18014 funded by
the Hasler Stiftung.

REFERENCES
[1] G. Wilke, M. Schaaf, E. Bunn, T. Mikkola, R. Ryter, H. Wache, and

S. G. Grivas, “Intelligent dynamic load management based on solar
panel monitoring,” in Proceedings of the 3rd Conference on Smart Grids
and Green IT Systems, 2014, pp. 76–81.

[2] M. Hirzel, R. Soulé, S. Schneider, B. Gedik, and R. Grimm,
“A Catalog of Stream Processing Optimizations,” ACM Comput.
Surv., vol. 46, no. 4, mar 2014, pp. 46–1. [Online]. Available:
{http://doi.acm.org/10.1145/2528412}

[3] M. Schaaf, “A service based architecture for situation-aware adaptive
eventstream processing,” in The Tenth International Conference on
Advanced Service Computing, Barcelona, Spain, February, 2018, pp.
40–44.

[4] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. hyon Hwang,
W. Lindner, A. S. Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing,
and S. Zdonik, “The Design of the Borealis Stream Processing Engine,”
in In CIDR, 2005, pp. 277–289.

[5] Y. Xing, S. Zdonik, and J.-H. Hwang, “Dynamic Load Distribution in
the Borealis Stream Processor,” in Proceedings of the 21st International
Conference on Data Engineering, ser. ICDE ’05. Washington, DC,
USA: IEEE Computer Society, 2005, pp. 791–802.

[6] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney,
U. Çetintemel, Y. Xing, and S. Zdonik, “Scalable distributed
stream processing,” in In CIDR, vol. 3, 2003, pp. 257–268.

[7] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, and P. Valduriez,
“StreamCloud: A Large Scale Data Streaming System,” in Distributed
Computing Systems (ICDCS), 2010 IEEE 30th International Confer-
ence on, june 2010, pp. 126–137.

[8] S. Schneider, H. Andrade, B. Gedik, A. Biem, and K.-L. Wu, “Elastic
scaling of data parallel operators in stream processing,” in Parallel Dis-
tributed Processing, 2009. IPDPS 2009. IEEE International Symposium
on, may 2009, pp. 1–12.

[9] W. Kleiminger, E. Kalyvianaki, and P. Pietzuch, “Balancing load
in stream processing with the cloud,” in Proceedings of the
2011 IEEE 27th International Conference on Data Engineering
Workshops, ser. ICDEW ’11. Washington, DC, USA: IEEE
Computer Society, 2011, pp. 16–21. [Online]. Available: {http:
//dx.doi.org/10.1109/ICDEW.2011.5767653}

[10] “Apache Storm,” Online: https://storm.apache.org/, retrieved:
March/04/19.

[11] “Apache Spark Streaming,” Online: https://spark.apache.org/streaming/,
retrieved: March/13/19.

[12] “Vert.X Homepage,” Online: https://vertx.io/, retrieved: March/13/19.
[13] “Akka Homepage,” Online: https://akka.io/, retrieved: March/13/19.
[14] M. Schaaf, “Event processing with dynamically changing focus: Doc-

toral consortium paper,” in RCIS, ser. IEEE 7th International Confer-
ence on Research Challenges in Information Science, RCIS 2013, Paris,
France, May 29-31, 2013, R. Wieringa, S. Nurcan, C. Rolland, and J.-L.
Cavarero, Eds. IEEE, 2013, pp. 1–6.

[15] M. Schaaf, G. Wilke, T. Mikkola, E. Bunn, I. Hela, H. Wache, and S. G.
Grivas, “Towards a timely root cause analysis for complex situations in
large scale telecommunications networks,” Procedia Computer Science,
vol. 60, 2015, pp. 160–169, knowledge-Based and Intelligent Infor-
mation & Engineering Systems 19th Annual Conference, KES-2015,
Singapore, September 2015 Proceedings.

[16] M. Schaaf, “Situation aware adaptive event stream processing. a pro-
cessing model and scenario definition language,” Ph.D. dissertation,
Technical University Clausthal, 2017, verlag Dr. Hut, ISBN: 978-3-
8439-3376-6.

[17] “Drools Business Rules Management System,” Online:
http://www.drools.org/, retrieved: March/13/19.

[18] “MVEL Language Guide for 2.0,” Online:
http://mvel.documentnode.com/, retrieved: March/13/19.

[19] T. W. S. W. Group, “SPARQL 1.1 Overview,” Tech. Rep., March
2013, retrieved: 13.01.18. [Online]. Available: https://www.w3.org/TR/
2013/REC-sparql11-overview-20130321/

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

