
Consistency for Microservices
A Legacy Insurance Core Application Migration Example

Arne Koschel
Andreas Hausotter

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: arne.koschel@hs-hannover.de
Email: andreas.hausotter@hs-hannover.de

Moritz Lange
Phillip Howeihe

Hochschule Hannover
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science
Hannover, Germany

Email: moritz.lange@stud.hs-hannover.de
Email: phillip.howeihe@stud.hs-hannover.de

Abstract—In microservice architectures, data is often hold re-
dundantly to create an overall resilient system. Although the
synchronization of this data proposes a significant challenge,
not much research has been done on this topic yet. This paper
shows four general approaches for assuring consistency among
services and demonstrates how to identify the best solution for
a given architecture. For this, a microservice architecture, which
implements the functionality of a mainframe-based legacy system
from the insurance industry, serves as an example.

Keywords–Microservices; Consistency; Insurance Industry.

I. INTRODUCTION

A current trend in software engineering is to divide soft-
ware into lightweight, independently deployable components.
Each component of the system can be implemented using
different technologies because they communicate over stan-
dardized network protocols. This approach to structure the
system is known as the microservice architectural style [1].

Typical goals of a microservice architecture are an overall
resilient system and independent scalable components. To
reach these goals, it is beneficial to decouple the services
as much as possible. Therefore, according to Martin Fowler,
each microservice should have its own data management [1].
Furthermore, services often hold redundant versions of data
records to be able to operate independently. The synchroniza-
tion of these data records however is a significant challenge. In
context of our research we identified four general approaches
for assuring consistency among services. This paper presents
these and demonstrates how to identify the best solution for a
given architecture. A migrated application from the insurance
industry serves as an example.

The Competence Center Information Technology and Man-
agement (CC ITM) is an institute at the University of Applied
Sciences and Arts Hanover. Main objective of the CC ITM is
the transfer of knowledge between university and industry. As
part of ongoing cooperation between the CC ITM and two
regional insurance companies, the research project Potential
and Challenges of Microservices in the Insurance Industry
was carried out. The goal was to examine the suitability of
microservice architectures for the insurance industry. One part
of this project was the migration of a monolithic mainframe-
based core application, namely the Partner Management

System. The resulting microservice architecture holds some
data records redundantly and is hereby a good object for
scientific research in context of consistency assurance.

The remainder of this article is organized as follows: After
discussing related work in Section II, we show the core appli-
cation system and address issues with the monolithic approach
in Section III. Section IV introduces the architecture of the
migrated system. In Section V we evaluate the outcomes with
a focus on consistency aspects. Section VI discusses general
approaches to ensure consistency in microservice architectures
and how these approaches can be applied to get a suitable con-
sistency solution for the Partner Management System.
Section VII summarizes the results and draws a conclusion.

II. RELATED WORK

The basis of our research is the literature of well-known
authors in the field of microservices. Worth mentioning are
the basic works of Martin Fowler and James Lewis [1] as
well as those of Eberhard Wolff [2]. For practical parts of
our research, mainly the elaborations of Sam Newman (see
[3]) were used. Especially for the migration of the legacy
application, the works of Knoche and Hasselbring (see [4])
were consulted. As a study from the year 2019 shows (see [5]),
microservice architectures are barely used in the insurance and
financial services industry in Germany. Therefore, results from
other industries had to be used for our research (for example
[6]).

Although the basic literature is extensive, not much scien-
tific research has been done about synchronizing services. Be-
cause microservices should use independent database schemes
and can even differ in persistence technology, the traditional
mechanisms of replicating databases (see, e.g., Tanenbaum and
Van Steen [7, chap. 7]) cannot be applied as well. Instead, ideas
and patterns from other areas of software engineering had to
be transferred to the context of microservices.

So, in addition to general microservices research, more
fundamental concepts of operating systems (e.g. [8]) and
object-oriented programming (e.g. [9]) were considered by our
research. Furthermore, concepts of general database research
like the SAGA-Pattern [10], which was already applied to
microservices by Chris Richardson [11], were considered as

1Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

well. Event-based approaches like Event Sourcing, described
by Fowler [12], were also applied to microservices within our
research.

Previous work has already evaluated the outcomes of the
research project mentioned in the introduction (see [13]).
However, the project and the evaluation based on it did not
discuss the issue of consistency in detail. For this reason,
our research focused on this topic after the completion of the
project. In addition, a bachelor thesis written by one of the
project members further dealt with the issue of consistency
assurance in context of the project results (see [14]).

This paper gives an overview of existing research and
summarizes it in a single document. To the best knowledge
of the authors, this is the first summarizing scientific work on
this topic.

III. CORE APPLICATION: PARTNER MANAGEMENT
SYSTEM

As mentioned in the introduction, one part of the research
project was to design a system for managing partners of an
insurance company - the Partner Management System.
In this context, partners are defined as natural or legal persons
who are in a relation with the insurance company (e.g.,
clients, appraisers, lawyers or other insurance companies).
Additionally, to general information about the person, a partner
may also have information on communication, bank details,
business relations and relations with other partners. Figure
1 shows the domain model and additional information about
the service design, which is covered in the next section. This
section focuses on the domain model, which was developed
in cooperation with the insurance companies and is strongly
based on the reference architecture for German insurance
companies (VAA) [15].

Figure 1. Domain model of the system.

At its core, the system is a simple CRUD application
that manages the entity Partner and its properties. Usually,
this functionality is implemented in a single SOA service.

Modularization through SOA services provides significant ben-
efits to the overall system (e.g., scalability and resilience),
but the Partner Management System is still an atomic
deployment unit that scales as a whole and fails as a whole.
Since this system is a fundamental service of an insurance
company, different parts of it are subject to varying levels of
stress. Especially at night, the load profile differs. While only
minor changes are made to existing datasets during the day,
low occupancy during the night is used to slowly persist all
new datasets collected on the day so as not to overburden
the mainframe-based application. However, in practice this
approach makes crashes at night extremely critical as the
entire system does not work all night and only few people are
available to fix the problem. The major issue of the existing
implementation of the Partner Management System is
obviously the poor flexibility, scalability and fault tolerance.
This makes a microservices approach attractive for this use
case.

IV. MICROSERVICE ARCHITECTURE: PARTNER
MANAGEMENT SYSTEM

Figure 2 shows the architecture developed in close coop-
eration with the insurance companies, which subdivides the
application into four independent services. Such a separa-
tion allows parts of the system to be scaled independently.
Such a separation allows parts of the system to be scaled
independently. For example, when the insurance company
collects monthly premiums from its customers, this results in
an increased load on the system that can be responded to by
the scaling of the account-service.

To determine the separation into services, the original
domain was divided into subdomains (as shown in Figure
1) and then the specific requirements (e.g., resilience) of
each subdomain were analyzed. In order to make good use
of the microservice architecture, the subdomains must be as
independent as possible. That means there must be use cases
where a subdomain can be used without any other. To achieve
this independence, the architecture keeps certain parts of the
partner (PartnerCoreData) redundant in all domains. This
corresponds to the creation of bounded contexts, as described
by Evans [16].

Figure 2. Infrastructure of the system.

2Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

Based on the technical specifications of the companies
involved, the resulting subdomains were implemented as REST
web services (see Figure 2) in Java using the Spring frame-
work. As mentioned, each service should have its own data
management, here realized as dedicated PostgreSQL databases.
The PartnerCoreData is kept in sync across all services
using REST calls of the partner-service. Parts of the
Netflix OSS stack were used for the system infrastructure:
Netflix Eureka (eureka-service) as a service discovery
and Netflix Zuul (zuul-service) as an API gateway. Zuul
also provides the web frontend of the application, which was
realized as a single-page application using AngularJS. The
ELK stack (Elasticsearch, Logstash and Kibana) was set up
for monitoring and logging. All shown components of the
architecture are deployed in separate Docker containers and
connected by a virtual network using Docker Compose. In
combination with the stateless architecture of the services, it
is possible to run any number of instances of each service in
a separate Docker container.

V. CHALLENGES OF THE MICROSERVICE ARCHITECTURE

Looking at the architecture described in sections III and
IV, it looks like the microservice architecture can solve the
problems of the current implementation. In particular, the
scalability and fault tolerance of individual parts of the system
are a crucial advantage over the current solution. The system
can adapt to the changing load during the day, eliminating the
need for risky nightly batch jobs. With the benefits of finer
granularity however, there are also many new challenges that
need to be mastered. One major challenge, for example, is
the distributed monitoring and logging, which is handled by
the ELK stack. As already mentioned, another key challenge
of the developed microservice architecture is the consistency
assurance across the services. More specifically, the synchro-
nization of the PartnerCoreData, which serves as an example
for the application of our research results.

As mentioned briefly in Section IV, the synchroniza-
tion is realized by REST calls of the partner-service.
Whenever a PartnerCoreData record is created, deleted or
changed, the partner-service distributes this information
to the other services in a synchronous way. This means
that the partner-service is responsible for ensuring
the consistency of the overall system. Furthermore, the de-
velopment team of the partner-service is responsible
for the data model of the PartnerCoreData, because it is
part of their bounded context. This approach is known as
Customer/Supplier Development (described by Evans [16]) in
the context of domain-driven design.

This ensures that services are as independent of each other
as possible. Even if, e.g., the partner-service is unavail-
able, the other services can still resolve foreign key relation-
ships to partner data, because they keep a redundant copy of it.
Moreover, the system reduces service-to-service calls, because
other services don’t need to call the partner-service on
every operation. This ensures loose coupling of services, which
is a key aspect of microservice architectures [1].

Since the synchronization of the PartnerCoreData is a
critical part of the application, its implementation must be
closer discussed. Since the goal of the first phase of the
project was building the architecture in general, a synchronous
solution was chosen for simplicity. This has several drawbacks:

• Fault tolerance. If the partner-service crashes
during synchronization, some services might not
be notified about the changes. Conversely, if
another service can not be contacted by the
partner-service, it will also not be notified. This
is due to the transient communication.

• Synchronicity. After a change of PartnerCoreData, a
thread of the partner-service is in a blocked
state until all other services have been notified.
Because multiple network calls are necessary for
the synchronization, the general performance of the
partner-service is affected. Since microservices
should be lightweight, a large number of network calls
and busy threads are a serious problem.

• Extensibility. Since the extension of a microser-
vice architecture is a common occurrence, exten-
sibility is a major aspect. In the current imple-
mentation, the partner-service holds a static
list of services that need to be notified upon a
change of PartnerCoreData. If a new service is
added to the system, which is interested in Partner-
CoreData, the partner-service must be rede-
ployed. Additionally, the bigger the number of ser-
vices to notify gets, the more the performance of the
partner-service is impaired.

As part of our research, further alternative solutions were
explored, which will be discussed in the next sections.

VI. CONSISTENCY ASSURANCE IN THE PARTNER
MANAGEMENT SYSTEM

In order to find a suitable solution for the specific problem
of synchronizing PartnerCoreData, the general approaches
have to be examined.

A. General approaches
The central research question to identify general ap-

proaches for consistency assurance is how a change in master
data can be distributed to other interested services without
breaking general microservices patterns like loose coupling
and decentral data management. Especially the latter makes
this a major challenge: Because the data stores and schemes
should be separated, the standard mechanisms of synchronizing
databases cannot be used here.

Based on our research, there are four possible solutions for
synchronizing redundant data in microservices:

• Synchronous distribution. One approach is that the
owner of the data distributes every change to all
interested services. As discussed in Section V, the
developed microservices architecture already follows
this approach. To provide loose coupling however, the
addresses of services to notify should not be contained
in the master service’s code. A better solution is to
hold those addresses in configuration files, or even
better, establish a standard interface where services
can register themselves at runtime. For example, an
existing service registry (e.g. Netflix Eureka) can be
used to store this information. This approach roughly
corresponds to the Observer-Pattern of object orien-
tated software development.

3Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

As already discussed, notifying a large number of
interested services might cause significant load of the
service containing the master data. This can become
a disadvantage. The distribution takes place in a syn-
chronous fashion however, directly after the change
of data itself. This means that this solution provides a
high degree of consistency among services.

• Polling. One other solution might be to relocate the
responsibility of aligning the redundant data to the
interested services themselves. A straight forward ap-
proach here is to periodically ask for new data using an
interface provided by the service containing the master
data. Based on timestamps, multiple data updates can
be transferred in one go. The size of the inconsistency
window can be controlled by each interested service
independently via the length of the polling interval.
However, despite being consistent in the end, the time
frame in which the data sets might differ is a lot larger
than the one when using a synchronous solution. This
model of consistency is known as eventual consistency
(see [17]).

• Publish-Subscribe. To completely decouple the ser-
vice containing the master data from the other ser-
vices, message-oriented middleware can be used. On
every data change, an event is broadcasted on a mes-
saging topic following the publish-subscribe-pattern.
Interested services subscribe to this topic, receive
events and update their own data accordingly. Multiple
topics might be established for different entities. If
the messaging system is persistent, it even makes
the architecture robust against services failures. This
approach suits the resilient and lightweight nature of
microservices. It must be noted however that it also
falls in the category of eventual consistent solutions
- until the message is delivered and processed, the
system is in an inconsistent state.

• Event Sourcing. Instead of storing the current appli-
cation state, for some use cases it might be beneficial
to store all state transitions and accumulate those to
the current state when needed. This approach can
also be used to solve the problem of distributing
data changes. Upon changes in master data, events
are published. Unlike the publish-subscribe solution
however, the history of all events is persistent in a
central, append-only event storage. All services can
access it and even generate their own local databases
from it, each fitting their respective bounded context.
This solution provides a high degree of consistency:
Each data change can be seen immediately by all other
components of the system. It must be noted that a
central data store, which microservices try to avoid,
is introduced. This weakens the loose coupling and
might be a scalability issue - the append-only nature
of the data storage enables high performance though.

If none of the consistency trade-offs above is bearable, this
can be an indicator that the determined subdomains are not
optimal. In some cases, subdomains are coupled so tightly that
keeping data redundantly is not feasible. In this case, it should
be discussed if the services can be merged. Furthermore, if
this issue occurs in several parts of the architecture, it should

be evaluated if a microservices approach is the right choice
for this domain.

B. Approaches for synchronizing PartnerCoreData
The discussion in the previous section has shown that some

approaches tend to guarantee a stronger level of consistency
then others. This means that before all non-functional require-
ments can be considered as decision criteria, the required
consistency degree of the underlying business processes must
be examined. This can be done by first specifying the possible
inconsistent states and then combining them with typical use
cases of the system.

In case of the Partner Management System, only
the PartnerCoreData, containing the name and id of every
Partner, is saved in a redundant fashion. Combining these
with the CRUD-operations, the following inconsistent states
are possible:

• A new Partner might not yet be present in the whole
system.

• Name or Id might not be up-to-date.
• A deleted Partner might not yet be deleted every-

where.

As part of our research, we combined these inconsis-
tent states with typical use cases and business processes in
which the Partner Management System is involved,
like sending a letter via mail or a conclusion of an insurance
contract.

The result of this examination is that the partner man-
agement of insurance companies is surprisingly robust against
inconsistent states. This is mainly due to the reason that the
business processes itself are already subject to inconsistency:
If a customer changes its name for example, the inconsistency
window of the real world is much larger than the technical one
(the customer e. g. might not notify the insurance company
until several days have passed). The postal service or bank
already needs to cope with the fact that the name might
be inconsistent. The discussion of other potential situations
brought similar results. This makes sense because the business
processes of insurance companies originated in a time without
IT, which means that they are already designed resilient against
delays and errors caused by humans. Cases where the customer
notices the delay (e.g., a wrong name on a letter) are rare and
justifiable.

In summary, the combination of the inconsistent states
and the use cases of the Partner Management System
revealed, that a solution which promotes a weaker consis-
tency model can be used - no approach has to be excluded
beforehand. So, the choice of a synchronization model is only
influenced by the non-functional requirements. The analysis
of the partner domain showed that the main non-functional
requirements are lose coupling, high scalability and easy
monitoring. Especially because of loose coupling, the publish-
subscribe pattern is the most viable solution.

VII. CONCLUSION AND FUTURE WORK

Synchronizing redundant data across services is a key
challenge of microservice architectures. However, our research
showed that the solutions can be reduced to four general
approaches. For choosing a suitable solution for a given

4Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

architecture, the underlying domain needs to be analyzed:
Possible inconsistent states need to be combined with typical
use cases. As the example of the Partner Management
System shows, this combination can reveal that domains
might be much more resilient against inconsistencies as one
would first assume.

The next steps will be to work out a specific design of the
publish-subscribe approach for the Partner Management
System. Furthermore, the complete implementation must
be done, and the system must be tested under real-world
conditions.

To demonstrate the procedure we have developed for
finding a suitable consistency assurance solution, the example
of the Partner Management System is sufficient. To
further underpin our findings however, they need to be applied
to more complex examples.

REFERENCES
[1] M. Fowler and J. Lewis, “Microservices a definition of this new ar-

chitectural term,” https://martinfowler.com/articles/microservices.html,
March 2014, [retrieved: 04, 2019].

[2] E. Wolff, Microservices: Flexible Software Architecture. Addison-
Wesley Professional, 2016.

[3] S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc., 2015.

[4] H. Knoche and W. Hasselbring, “Using microservices for legacy soft-
ware modernization,” IEEE Software, vol. 35, no. 3, 2018, pp. 44–49.

[5] ——, “Drivers and barriers for microservice adoption–a survey among
professionals in germany,” Enterprise Modelling and Information Sys-
tems Architectures (EMISAJ), vol. 14, 2019, p. 10.

[6] W. Hasselbring and G. Steinacker, “Microservice architectures for scala-
bility, agility and reliability in e-commerce,” in 2017 IEEE International
Conference on Software Architecture Workshops (ICSAW). IEEE,
2017, pp. 243–246.

[7] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Pearson New
International Edition - Principles and Paradigms. Harlow: Pearson
Education Limited, 2013.

[8] A. S. Tanenbaum, Modern Operating Systems. New Jersey: Pearson
Prentice Hall, 2009.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns -
Elements of Reusable Object-Oriented Software. Amsterdam: Pearson
Education, 1994.

[10] H. Garcia-Molina and K. Salem, “Sagas,” vol. 16, no. 3. ACM, 1987.
[11] C. Richardson, Microservices Patterns: With examples in Java. Man-

ning Publications, 2018.
[12] M. Fowler, “Event Sourcing,” https://martinfowler.com/eaaDev/Event

Sourcing.html, December 2005, [retrieved: 04, 2019].
[13] M. Lange, A. Hausotter, and A. Koschel, “Microservices in

Higher Education - Migrating a Legacy Insurance Core Appli-
cation,” in 2nd International Conference on Microservices (Mi-
croservices 2019), Dortmund, Germany, 2019, https://microservices.fh-
dortmund.de/papers/Microservices 2019 paper 8.pdf [retrieved: 04,
2019].

[14] P. Howeihe, “Transactions and consistency assurance in microservice
architectures using an example scenario from the insurance industry,”
bachelor thesis at Univ. of Applied Sciences and Arts Hanover, 2018.

[15] GDV, “The application architecture of the insurance industry - applica-
tions and principles,” 1999.

[16] E. J. Evans, Domain-driven Design - Tackling Complexity in the Heart
of Software. Boston: Addison-Wesley Professional, 2004.

[17] W. Vogels, “Eventually Consistent,” Commun. ACM, vol. 52,
no. 1, Jan. 2009, pp. 40–44. [Online]. Available:
http://doi.acm.org/10.1145/1435417.1435432

5Copyright (c) IARIA, 2019. ISBN: 978-1-61208-702-3

SERVICE COMPUTATION 2019 : The Eleventh International Conference on Advanced Service Computing

