
A Generic Measurement Model for Service-based Systems

Andreas Hausotter, Arne Koschel
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Andreas.Hausotter@hs-hannover.de

email: Arne.Koschel@hs-hannover.de

Johannes Busch, Malte Zuch
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Johannes.Busch@stud.hs-hannover.de

email: Malte.Zuch@hs-hannover.de

Abstract—The transfer of historically grown monolithic software
architectures into modern service-oriented architectures creates
a lot of loose coupling points. This can lead to an unforeseen
system behavior and can significantly impede those continuous
modernization processes, since it is not clear where bottlenecks
in a system arise. It is therefore necessary to monitor such
modernization processes with an adaptive monitoring concept in
order to be able to correctly record and interpret unpredictable
system dynamics. For this purpose, a general measurement
methodology and a specific implementation concept are presented
in this work.

Keywords–Quality of Service; Indicator Measurement; XML-
Model; Service-orientation; SOA

I. INTRODUCTION

The background of this work is cooperation with a partner
of the German insurance industry and their IT-Architecture.
Many IT-driven and data-driven companies face the challenge
of continually modernizing their infrastructure, technologies,
systems and processes. The insurance industry in particular is
characterized by the fact that extensive digitization of proces-
ses took place very early. This was done well before resear-
ching modern service-based approaches, such as ’traditional’
service-oriented architectures (SOA) or even microservices
(MS) and without the use of distributed infrastructures such as
cloud computing. Historically grown software monoliths were
state of the art. The modernization of such monoliths in the
direction of service-based architectures is a major challenge.
This conversion process is the main motivation of this work
and will be explained in more detail below.

A. Motivation
Systems cannot be abruptly switched off and replaced

by new architectures, but must be continuously transformed
into modern architectural forms. In this continuous moder-
nization process, monolithic structures are broken down and
distributed into services. This gives companies more agility
and adaptability to changing business requirements. However,
a decentralized and service-oriented system architecture is
usually quite fine-granular and loosely coupled. Generally,
this provokes an unpredictable dynamic system behavior. This
also applies to our partner in the insurance industry. In order
to remain competitive, the insurance industry has to respond
quickly to customer information portals, such as check24.de,
where different insurance companies competetively can offer,
e.g., car insurances. This scenario motivates the need for a ho-
listic measurement concept and defines the general application
scenario of this work.

So there is a fundamental need for information about
the system behavior. Relevant information is collected in the
’Information Product’, which represents the output of the ’Core
Measurement Process’ (cf. Fig. 1). The ’Information Need’
provides the input for the subprocess ’Plan the Measurement
Process’, the subprocess ’Perform the Measurement Process’
generates the Information Product’. The process goal is to
satisfy the ’Information Need’.

Nowadays it is normal that customers are demanding
online services unpredictably and with high volatility. These
volatile demands may lead to bottlenecks in distributed service-
oriented architectures. Therefore, a reliable measurement of the
whole system behavior is necessary in order to eliminate any
bottlenecks. Such a measurement concept and its prototypical
implementation are the core contributions of our work.

B. Contribution
In order to monitor individual system components with

respect to time behavior, fixed time limits have so far been
used. These fixed time limits are often used in historically
grown software systems of the German insurance industry.
If a system component (service) could not respond within
these time limits, this was interpreted as a bad quality feature.
However, with these static limits, a dynamic system behavior
can be poorly monitored and interpreted. The challenge is
to determine, when dynamic systems are overloaded. In this

Figure 1. The Core Measurement Process

12Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

respect, a partner company of the insurance industry demands
to integrate a metric, which could replace their static time
limits in the future with a more dynamic metric. The general
requirements lead to the following questions:

• How could static rules and timeouts be supplemented
by a dynamic measurement metric?

• How could the measuring system be build on existing
XML-Standards?

In previous work [1] [2], we have already developed a
framework for dynamically measuring the service response
time as a Quality of Service (QoS) Parameter within service-
oriented architectures. As a significant enhancement to this
previous work, our core contributions here are implementation
details of the dynamic measuring system. Our measuring
system considers existing XML standards and can flexibly
record the load behavior of a software system. This measuring
system should measure the response time as a particular QoS
parameter as an example.

The measuring system should be able to consider both
dynamic limits as well as static limits (optional). Normally,
only the dynamic limits should be considered. But, if a service
exceeds a fixed limit of, e.g., 5 seconds, then this should
also be recognized. Another requirement is that the measuring
system should ’inject’ measurement agents into a software
system as flexible and automated as possible. Implementation
details hereof are also contributions of this article.

In Section II, related work concerning the topic of mea-
surement models of service-based systems is explained. The
measurement process with its core concepts and the infor-
mation model are described in Section III and more imple-
mentation details in Section IV. Some mathematical equation
explains the general measurement concept. After clarifying
the general measurement plan, Section V shows how the
planned measurement concept can be applied for detecting the
so called ’Spikes’, situations of high system-loads. The final
Section VI will summarize this work. The different advantages
and disadvantages of the described measurement model will
be discussed. Also, an outlook to future work will show how
the results of this work will be used in upcoming work in
Section VI.

II. PRIOR AND RELATED WORK

In prior work, we already discussed several aspects of the
combination of SOA, Business Process Management (BPM),
Workflow Management Systems (WfMS), Business Rules Ma-
nagement (BRM), and Business Activity Monitoring (BAM)
[3][4][5] as well as Distributed Event Monitoring and Distri-
buted Event-Condition-Action (ECA) rule processing [6][7].
Building on this experience, we now address the area of
QoS measurement for combined BRM, BPM, and SOA en-
vironments, mainly but not limited to, within the (German)
insurance domain.

Work related to our research falls into several categories.
We will discuss these categories in sequence.

General work on (event) monitoring has a long history (cf.
[8][9] or the ACM DEBS conference series for overviews).
Monitoring techniques in such (distributed) event based sys-
tems are well understood, thus such work can well contribute
general monitoring principles to the work presented here. This

also includes commercial solutions, such as the Dynatrace
[10] system or open source monitoring software like, for
example, the NAGIOS [11] solution. In these systems there
is, however, generally no focus on QoS measurement within
SOAs. Also, they usually do not take application domain
specific requirements into account (as we do with the insurance
domain).

Active Database Management Systems (ADBMS) offer
some elements for use in our work (see [12][13] for over-
views). Event monitoring techniques in ADBMSs are partially
useful, but concentrate mostly on monitoring ADBMS internal
events, and tend to neglect external and heterogeneous event
sources. A major contribution of ADBMSs is their very well
defined and proven semantics for definition and execution of
Event-Condition-Action (ECA) rules. This leads to general
classifications for parameters and options in ADBMS core
functionality [13]. We may capture options that are relevant
to event monitoring within parts of our general event model.
QoS aspects are handled within ADBMS, for example, within
the context of database transactions. However, since ADBMSs
mostly do not concentrate on heterogeneity (and distribution),
let alone SOAs, our research work extends into such directions.

The closest relationship to our research is the work, which
directly combines the aspects QoS and SOA. As many as 2002
several articles fall into this category. However, in almost all
known articles the SOA part focuses on WS-* technologies.
This is in contrast to our work, which takes the operational
environment of our insurance industry partners into account.

Examples of Webservice (WS-*) related QoS work in-
clude QoS-based dynamic service bind [14][15], related WS-
* standards such as WS-Policy [16], and general research
questions for QoS in SOA environments [17]. Design aspects
and models for QoS and SOA are, for example, addressed in
[14][18][19][20][21]. As for WS-* Web services, we also take
XML as foundational modelling language for our work. SOA
performance including QoS is discussed in articles [22], and
monitoring for SOA in articles such as [23][24][25][26].

Uniqueness of our research is, that it takes all the above
mentioned aspects into account. We provide a detailed XML
based measurement model, as well as a generator-supported,
generic SOA monitoring framework. All of it takes especially
the operational environment of our insurance industry partners
into account, which is a large scale SOA, but only partially
WS-* technology based. This makes our work highly relevant
in practice. Even more, since we base our modelling on
standards, which are highly relevant for German insurance
businesses (cf. VAA [27], ISO/IEC 9126 [28][29]), our work
is of a quite general nature and thus can be transferable (at
least within the insurance domain).

III. PLAN THE MEASUREMENT PROCESS

The Core Measurement Process can be divided into two
parts. First of all, the planning of the measurements takes
place, which determines how the Information Need can be
answered. In the second part, the planned methods of measu-
rement will be implemented.

A. Core Concepts of the Abstract Information Model
To measure the response time behavior of a dynamic

system, the definition of static response time limits is often

13Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

not sufficient. When a system component (service) is deployed
in a different hardware environment or in a different cloud
environment, this will affect the response time of this system
component. Static limits would have to be adapted manually to
the new execution environment of the services. Furthermore,
individual services share hardware resources with many other
services. This can lead to an unpredictable system behavior, es-
pecially in complex business processes. Therefore Static limits
are not sufficient, but a more flexible solution is required. The
approach of this work is the investigation of a measurement
concept, which is more flexible and based on the standard
deviation of system load of a specifiable measuring period.

The insurance industry in particular is characterized by
strong seasonal fluctuations. Towards the end of the year, many
customers switch their insurance contracts and are provoking
high system loads. In times of such high system loads, the
mentioned static limits would be continuously exceeding. The
information would be lost at the time when high loads are
peaking in such a strongly demanded period. It is important to
know when the current system is heavily loaded. Knowledge
about this information represents the so-called Information
Need (Fig. 1) of our partner from the insurance industry.

To answer this Information Need, the average response time
behavior µ of a system component is firstly computed for a
freely definable time period. For example, on the basis of the
last n = 500 measured response times of the services. On the
basis of this, the standard deviation is calculated within this
period, shown in (1):

s =

√√√√√ n∑
i=1

(xi − µ)2

n− 1
(1)

After this calculation, the current response time r of a
service is set in relation to this standard deviation s. If the
response time r of a currently requested service exceeds this
standard deviation by the factor of 2x, this is considered as an
overload situation:

Spike detected: r > µ+ 2 ∗ s (2)

This calculation takes place continuously. As soon as a
service is requested again, its response time is recorded and set
in relation to the last one (e.g., the last 500 measured values). It
is therefore a continuous, rolling measurement. This measuring
system can be applied both for very slow system components
on a daily base and also to very fine-granular services that
interact in the range of milliseconds.

The important fact is that the standard deviation is calcu-
lated continuously over a defined time period, and the current
response time of a service is set in relation to this. Therefore
the measuring system adapts to seasonal fluctuations, and it
is possible to identify, which user requests (service calls) are
currently very critical with respect to the general response time
behavior, independently of the prevailing current load situation.
This allows fast and more precise analysis of systems and less
misinterpretation due to incorrectly set static time limits. This
dynamic measurement concept can give a more reliable answer
to the Information Need of our project partners.

B. Mapping of the Concepts of the Information Model
In this subsection, a QoS Information Model (QoS IM)

is presented in a more detailed manner. The QoS IM is a
XML document that includes values of the concepts for a given
application scenario. The concepts and their relationshipts with
each other are introduced in [2]). Here we focus on the
implementation of the concepts.

The QoS IM is created during the planning stage when
executing the subprocess ’Plan the Measurement Process’, cf.
Fig. 1). The XML document is used to automatically generate
the QoS Platform’s artefacts. The measurements results (i.e. the
output of ’Perform the Measurement Process’) are produced by
the QoS Platform. They are persistently stored for subsequent
analysis, typically in a database system.

We opted for XML as universally accepted standard that
is highly flexible, platform and vendor independent and sup-
ported by a wide variety of tools. Furthermore, XML comes
with a standardized schema definition language, namely XML
Schema. This is a big advantage against other languages such
as JSON for example.

In the QoS IM, we specify the measurement concepts for
the check24.com scenario, or the Proposal Service respectively.
Due to space limitation, the discussion is restricted to the
following concepts (cf. [2]):

• Measurable Concept – outlines in an abstract way, how
the Quality Attributes are determined to satisfy the
Information Need,

• Base Measure – specifies by its Measurement Method
how the value of Quality Attribute is to be determined,

• Derived Measure – uses one or more Base Measures
or other Derived Measures, whilst the Measurement
Function specifies the calculation method and thus the
combination of the Measures used,

• Indicator – is a qualitative evaluation of Quality Attri-
butes, which directly addresses the issue raised in the
Information Needs.

1 <MeasurableConcept Name="Processing_Time">
2 <SubCharacteristic Name="Performance"/>
3 <BaseMeasure Name="t_inst"/>
4 <BaseMeasure Name="t_term"/>
5 <DerivedMeasure Name="t_proc"/>
6 <DerivedMeasure Name="Count_StdDev_Calls"

y

/>
7 <DerivedMeasure Name="Count_Calls"/>
8 <DerivedMeasure Name="

y

StdDev_Calls_Percentage"/>
9 <DerivedMeasure Name="Failed_Calls"/>

10 </MeasurableConcept>

Listing 1. Calculation of the Proposal Service’s Processing Time

The Measurable Concept Processing_Time references by
name all necessary Base and Derived Measures (cf. listing 1).

The definition of the Base Measure t_inst is shown in
listing 2. Its task is to capture the start time of a Proposal
Service call (by a user request). The element Attribute
specifies the attribute of the Proposal Service to be observed.
The element hierarchy of Implementation defines all
platform specific information to automatically generate all
artefacts needed for the measurement, i.e., the agent class with
attributes and the measurement method (cf. subsection IV).

14Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

1 <BaseMeasure Name="t_inst">
2 <Scale TypeOfScale="Rational" Type="R"/>
3 <Attribute ServiceID="BAS_001"

y

AttributeName="ServiceCallID"/>
4 <MeasurementMethod Name="

y

recordTimeOfServiceCall">
5 <Implementation>
6 <Agent Class="ServiceAgent">
7 <Method>
8 <Attribute Name="ServiceCallID" Type

y

=.../>
9 <Attribute Name="Time" Type=... Computed

y

="time"/>
10 <Event Name="ServiceStartEvent"/>
11 </Method>
12 </Agent>
13 </Implementation>
14 </MeasurementMethod>
15 </BaseMeasure>

Listing 2. Start Time of a Proposal Service Call

The Derived Measure Count_StdDev_Calls presented
in listing 3 calculates the number of Proposal Service calls that
exceeds twice the standard deviation (cf. subsection IV, (2)).

1 <DerivedMeasure Name="Count_StdDev_Calls">
2 <Uses><DerivedMeasure Name="t_proc"/></

y

Uses>
3 <MeasurementFunction Name="

y

calculateNumberOfCallsAboveSTDDEV">
4 <Implementation>
5 <Analyzer>
6 <Query Class="ServiceDuration" Type

y

=...>
7 <Plain>
8 SELECT COUNT(*) FROM serviceduration
9 WHERE

10 TINTS > TIME_SECS(DATEADD(’DAY’,
11 -30,NOW()))
12 AND TPROC > (SELECT AVG(TPROC)
13 + (2 * STDDEV(

y

TPROC))
14 FROM serviceduration
15 WHERE TINTS > TIME_SECS(
16 DATEADD(’DAY’,-30, NOW())))
17 </Plain>
18 </Query>
19 </Analyzer>
20 </Implementation>
21 </MeasurementFunction>
22 <UnitOfMeasurement>ms</UnitOfMeasurement>
23 <TargetValue>1</TargetValue>
24 </DerivedMeasure>

Listing 3. Compute the Number of Proposal Service Calls that Exceed
Twice the Standard Deviation

Count_StdDev_Calls is based on a different Derived
Measure, namely t_proc, which computes the processing
time of a Proposal Service call (cf. Uses element, line 2).
The element Implementation comprises of all information
that is used to generate the analyzer class (cf. subsection
IV). The analyzer executes the SQL Select statement (cf.
lines 8 to 16), which represents the content of the ele-
ment Plain. This is done by the measurement function
calculateNumberOfCallsAboveSTDDEV, shown in

line 3, whenever an event ServiceDurationEvent has
been fired (cf. line 6).

Finally, the Indicator SLoT_proc, shown in listing 4,
evaluates the adequacy of the processing time of all Proposal
Service calls.

SLoT_proc is based on two different Derived
Measures, namely StdDev_Calls_Percentage, and
Failed_Calls respectively (cf. Uses element, lines 4
to 7). The first measure, StdDev_Calls_Percentage,
takes Count_StdDev_Calls and Count_Calls and
does some basic arithmetic computation.

The element DecisionCriteria specifies a decision
table, so that a value, computed by the Derived Measures, can
be mapped to the entry of the given nominal scale (i.e., high,
medium, low). The element Implementation comprises all
information to generate the analyzer class (cf. subsection IV),
which implements the decision table and the mapping.

1 <Indicator Name="SLoT_proc">
2 <AnalysisModel Name="

y

computeAdequacyOfProcessingTime">
3 <Scale TypeOfScale="Nominal" Type=.../>
4 <Uses>
5 <DerivedMeasure Name="

y

StdDev_Calls_Percentage"/>
6 <DerivedMeasure Name="Failed_Calls"/>
7 </Uses>
8 <DecisionCriteria>
9 <Implementation>

10 <Analyzer>
11 <IndicatorTable Class="

y

IndicatorController" Type="HMN">
12 <IndicatorEntry>
13 <Input>devPercentageCount < 5 &&

y

badCount == 0</Input>
14 <Result>low</Result>
15 </IndicatorEntry>
16 ...
17 </IndicatorTable>
18 </Analyzer>
19 </Implementation>
20 </DecisionCriteria>
21 </AnalysisModel>
22 </Indicator>

Listing 4. Compute the Adequacy of the Processing Time of all
Proposal Service Calls

IV. CONCEPTS IMPLEMENTATION BASED ON
GENERATORS

The initial phases of applying an IM (cf. Fig. 2) were
shown in Section III-B. This section discusses subsequent
phases (especially about generators, artefacts, etc.) in detail.
Please note, although its concepts are transferable, our QoS
Generator aims not to be of generic nature, but is tailored
specifically towards our XML based IM and needs of our
partner companies. Furthermore, the generated artefacts are
specific to our current QoS Platform. Both offer the flexibility
to tailor each part to the specific needs of each of our partner
companies.

A. Design of the QoS Generator
Several different artefacts have to be generated to apply

a specific IM. The basic design of the QoS Generator is

15Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 2. Phase from IM to QoS System.

Figure 3. Design of the QoS Generator.

given in Fig. 3. In general, it consists of a parser step and a
generator step. Purpose of the first step is to build an optimized
in-memory model of an IM. A parser gets the XML root
element and parses the abstract part (as shown through the
IndicatorParser) and then the concrete part (as shown by the
CriteriaImplementationParser). This distinction is necessary
for the desired flexibility of the QoS Platform itself.

The optimized model is part of the Context class and given
to each generator as part of the second step. Also, the Context
contains general configuration information and a TypeMap-
perRepository. This latter contains mappers to translate XML
types into implementation specific types (e.g., SQL, Java, etc.).

While the parsers are tailored towards the IM model, the
generators are tailored towards implementation artefacts or
concepts. Hence, there are generators for the QoS Agent, Indi-
cator implementation or complex event processing (CEP) rules.
Each generator has a specific task concluding in the generation
of certain artefacts. This further supports the flexibility of the
QoS Platform itself.

B. Implemented concepts and their artefacts
In the following paragraphs, different concrete parts and

their corresponding artefacts are presented. Note, only excerpts
are shown and currently not all elements of the abstract part
are used.

The concrete part of the Base Measure t_inst is given
in Listing 2. It defines Attribute elements and references
the computed QoS Event. The ServiceCallID is parsed from
Service Call data. The Time attribute will be computed through
the Agent itself. Furthermore, a class attribute is given in
the Agent element. It is used to structure the generated code
and the corresponding artefacts. The specific method name is
derived from the MeasurementMethod element.

The concrete part of the Derived Measure t_proc is
given in Listing 5. It contains the definition of the CEP rule,

which computes the complex event ServiceDurationEvent.
Plain element indicates that this code fragment will be placed
”as is” into a rule file. Only import definitions (e.g., for event
classes) will be added. The rule file is loaded on start up by the
CEP engine (JBoss Drools) of the QoS Measurement module.

1 <Rule>
2 <Event Name="ServiceDurationEvent"
3 Handle="output"/>
4 <Plain>
5 rule "Service Duration Rule"
6 when
7 $start : ServiceStartEvent()
8 $end : ServiceEndEvent(
9 this after[0s , 2s] $start &&

10 this.id == $start.id
11)
12 then
13 channels["analyzer"].send(
14 new ServiceDurationEvent(...)
15);
16 end
17 </Plain>
18 </Rule>

Listing 5. Concrete Part of a Rule.

The concrete part of the Derived Measure
COUNT_STDEV_CALLS is given in Listing 3. It contains
the SQL query to get the count of all events with a runtime
above the doubled standard deviation. The generated class
is shown in Listing 6. The query attribute contains the SQL
query of the Plain element. Again, the class attribute is used
to structure the code and artefacts, but the Type attribute is
specific for a query and specifies the return type (in this case
Long) of the query. The name of method is given in the
MeasurementFunction element. Furthermore, needed
imports and Spring code to integrate the jdbcOperations
object are generated.

1 public class ServiceDurationQuery {
2 ...
3 public Long

y

calculateNumberOfCallsAboveSTDDEV() {
4 return jdbcOperations.queryForObject(
5 query, Long.class);
6 }
7 }

Listing 6. Generated query class.

The concrete part of the Indicator SLoT_proc is given
in Listing 4. Each IndicatorEntry element consists of an
Input where the Indicator condition is defined and a Result
element, which contains the actual Indicator response. Each
of these results have to be a valid HMN type. The generated
IndicatorController class is given in Listing 7. The dependen-
cies to other Measure results are given through the Uses
element. This information is also used for generation and
manual modifications.

While the QoS Agent is only designed as part of the
QoS System, it is actually placed directly into the SOA as
part of the ESB.war. The used ESB is a partner specific
implementation. The generated class and rule files for the
DerivedMeasures are part of the QoS Platform (and part of
the QoS Platform.war). For example, the generated classes of

16Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Figure 4. Detailed view into the Analyzer Module.

the Analyzer module are shown in Fig. 4. Indicator and *-
Duration classes are integrated, if needed manually, onto the
QoS Platform. The AnalyzerService class is considered part
of the QoS Platform core and implements the REST interface
for downstream systems (e.g., alerting).

1 public class IndicatorController {
2 public String

y

computeAdequacyOfProcessingTime() {
3 ...
4 if(devPercentageCount < 5 &&
5 badCount == 0) {
6 return "niedrig";
7 }
8 if(devPercentageCount >= 5 &&
9 badCount == 0) {

10 return "mittel";
11 } else {
12 return "hoch";
13 }
14 }}

Listing 7. Generated indicator class.

V. MEASUREMENTS

For the evaluation of the described measurement concept,
it is stressed with an initial load test. The general ’Information
Need’ (Fig. 1) is the information about how volatile a software
system is currently being stressed. Static thresholds cannot
fulfill the desired ’Information Need’ of the partner companies
in the insurance industry. The dynamic approach of measuring
the spikes, which exceed the standard-deviation of a measuring
period, can provide better answers here. For the evaluation,
such spikes are directly provoked. When generating the spikes,
two parameters are randomly influenced:

• Intensity: The intensity of the spikes.
• Frequency: The frequency at which the spikes occur.

In the stress test, the two parameters ’Intensity’ and ’Fre-
quency’ are set. A high intensity means that a spike is ge-
nerated with a high level of volatility. The intensity describes,
how long the response time of a service request is and how
’intensive’ the standard deviation is exceeded according to
(1). The frequency determines, how often such a spike should
occur in the stress test. The stress test therefore generates
very volatile measurement events, which must be recorded
dynamically by the measuring system. So, a random variation
of these two parameters will provoke volatile stress situations
with unpredictable intensity and frequency. This allows the
measuring system to be tested as strongly and dynamically as
possible. Some of the preliminary results measured with the
QoS System are shown in Fig. 5. The yellow line shows the

Figure 5. Preliminary Measurement Results.

standard deviation barrier. In this case, 3 % of all measured
requests (6 service calls) are violating the barrier, thus the com-
puted indicator would be low. Above 5 % the indicator would
be middle. The red line shows the SLA barrier introduced by
service consumers like check24.de. If one request exceeds this
barrier the indicator switches to high. A more thorough test
and evaluation based on these loads will be given in our future
work. But based on these results, the measurement concept can
be used to even measure very volatile stress situations

VI. CONCLUSION AND FUTURE WORK

In this article we presented an approach for monitoring a
distributed SOA environment, which we see as a promising
path to take. Our SOA Quality Model is aimed to follow
the ISO/IEC-Standard 15939 (cf. [30]), which enables a wide
range of use cases. Our Measurement Concept outlines an
execution platform for the specific QoS Information Model,
which should cause minimal impact on the SOA environment.

The separation of Measurement Agents and QoS-Analyzer
on one hand allows lightweight agents and on the other hand
a very capable analyzer component. Furthermore certain parts
of our QoS Platform can be replaced or complemented with
common tools, e.g., from the microservices eco system. For
example, Netflix’s Hystrix could be used to implement a
BaseMeasure or Prometheus to implement DerivedMeasures.
This flexibility in our architecture with the general concept
given through our SOA Quality Model offers new opportunities
for our partner companies.

Already in previous work [1] [2] we presented our general
measurement concept, an initial business process (the ’check
24’ Proposal Service insurance use case, a basic business
relevant scenario), and our information model and concept. The
core contributions of the present article are implementation
details of our approach. Therefore in Section III we dive deeply
into our information model and in Section IV our model-
driven, generator based implementation is described in depth.

Our ongoing work of applying the QoS System to an
application scenario relevant to our partner in the insurance
industry (the so called ’Check 24 process’), will provide
evidence of the practical usability of the created framework. It
is expected, that our monitoring system will help to discover
potential bottlenecks in the current system design of our
partner’s distributed services. Therefore, it will create value
in the process of solving these issues.

17Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

In future work, we have planned to apply our existing work
to the more complex insurance process ’Angebot erstellen’
(’create individual proposal’) of the VAA [27]. Thus, we will
implement a more complex insurance scenario. Moreover, the
actual measurement and analysis of the results are an ongoing
process, which is yet to be finished.

We also have plans to apply these results onto cloud based
environments. Furthermore, a deeper subdivision or extraction
from the current coarse granular SOA services into more fine
grained microservices will be investigated by us in future work
’where it makes sense’, for example, to allow for a better
scalability of individual microservices.

REFERENCES
[1] A. Hausotter, A. Koschel, J. Busch, M. Petzsch, and Malte Zuch,

”Implementing a Framework for QoS Measurement in SOA”, submitted
for publication, 2017.

[2] A. Hausotter, A. Koschel, J. Busch, M. Petzsch, and Malte Zuch, ”Agent
based Framework for QoS Measurement Applied in SOA,” in: The 9th
International Conferences on Advanced Service Computing (Service
Computation), IARIA, Athens, Greece, 2017, pp. 16-23.

[3] T. Bergemann, A. Hausotter, and A. Koschel, ”Keeping Workflow-
Enabled Enterprises Flexible: WfMS Abstraction and Advanced Task
Management,” in: 4th Int. Conference on Grid and Pervasive Computing
Conference (GPC), 2009, pp. 19-26.

[4] C. Gäth, et al., ”Always Stay Agile! – Towards Service-oriented
Integration of Business Process and Business Rules Management,” in:
The Sixth International Conferences on Advanced Service Computing
(Service Computation), IARIA, Venice, Italy, 2014, pp. 40-43.

[5] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken,
”Always Stay Flexible! WfMS-independent Business Process Control-
ling in SOA,” in: IEEE EDOCW 2011: Workshops Proc. of the 15th
IEEE Intl. Enterprise Distributed Object Computing Conference, IEEE:
Helsinki, Finnland, 2011, pp. 184-193.

[6] A. Koschel and R. Kramer, ”Configurable Event Triggered Services for
CORBA-based Systems,” Proc. 2nd Intl. Enterprise Distributed Object
Computing Workshop (EDOC’98), San Diego, U.S.A, 1998, pp. 1-13.

[7] M. Schaaf, I. Astrova, A. Koschel, and S. Gatziu, ”The OM4SPACE
Activity Service - A semantically well-defined cloud-based event notifi-
cation middleware,” in: IARIA Intl. Journal On Advances in Software,
7(3,4), 2014, pp. 697-709.

[8] B. Schroeder, ”On-Line Monitoring: A Tutorial,” IEEE Computer,
28(6), pp. 72-80, 1995.

[9] S. Schwiderski, ”Monitoring the Behavior of Distributed Systems,”
PhD thesis, Selwyn College, University of Cambridge, University of
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996.

[10] Dynatrace LLC, ”Dynatrace Application Monitoring,” [Online].
URL: https://www.dynatrace.com/de/products/application-monitoring.
html [accessed: 2017-12-06].

[11] Nagios.ORG, ”Nagios Core Editions,” [Online]. URL: https://www.
nagios.org/ [accessed: 2016-12-26].

[12] N. W. Paton (ed.), ”Active Rules for Databases,” Springer, New York,
1999.

[13] ACT-NET Consortium, ”The Active DBMS Manifesto,” ACM SIG-
MOD Record, 25(3), 1996.

[14] M. Garcia-Valls, P. Basanta-Val, M. Marcos, and E. Estévez, ”A
bi-dimensional QoS model for SOA and real-time middleware,” in:
Intl. Journal of Computer Systems Science and Engineering, CLR
Publishing, 2013, pp. 315-326.

[15] V. Krishnamurthy and C. Babu, ”Pattern Based Adaptation for Service
Oriented Applications,” in: ACM SIGSOFT Softw. Eng. Notes 37,
2012(1), 2012, pp. 1-6.

[16] T. Frotscher, G. Starke (ed.), and S. Tilkov (ed.), ”Der Webservices-
Architekturstack,” in: SOA-Expertenwissen, Heidelberg, dpunkt.verlag,
2007, pp. 489-506.

[17] F. Curbera, R. Khalaf, and N. Mukhi, ”Quality of Service in SOA
Environments. An Overview and Research Agenda,” in: it - Information
Technology 50, 2008(2), 2008, pp. 99-107.

[18] S.W. Choi, J.S. Her, and S.D. Kim, ”QoS Metrics for Evaluating
Services from the Perspective of Service Providers,” in: Proc. of the
IEEE International Conference on e-Business Engineering, Washington
DC, USA : IEEE Computer Society (ICEBE’07), 2007, pp. 622-625.

[19] Z. Balfagih and M.F. Hassan, ”Quality Model for Web Services
from Multi-stakeholders’ Perspective,” in: Proceedings of the 2009
International Conference on Information Management and Engineering,
Washington DC, USA : IEEE Computer Society (ICIME’09), 2009, pp.
287-291.

[20] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj, ”Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise
Architectures,” in: Proceedings of the 8th IEEE Intl. Enterprise Dis-
tributed Object Computing Conference (EDOC’04), Washington DC,
USA, IEEE, 2004, pp. 21-32.

[21] M. Varela, L. Skorin-Kapov, F. Guyard, and M. Fiedler, ”Meta-
Modeling QoE”, PIK-Praxis der Informationsverarbeitung und Kom-
munikation, 2014, Vol. 37(4), pp. 265-274.

[22] R.W. Maule and W.C. Lewis, ”Performance and QoS in Service-Based
Systems”, Proc. of the 2011 IEEE World Congress on Services, IEEE
Computer Society, 2011, pp. 556-563.

[23] B. Wetzstein, et al., ”Monitoring and Analyzing Influential Factors
of Business Process Performance,” in: Proc. IEEE Intl. Enterprise
Distributed Object Computing Conf. (EDOC’09), 2009, pp. 141-150.

[24] F. Rosenberg, C. Platzer, and S. Dustdar, ”Bootstrapping Performance
and Dependability Attributes of Web Services,” in: Proc. International
Conference on Web Services (ICWS’06), 2006, pp. 205-212.

[25] M. Schmid, J. Schaefer, and R. Kroeger, ”Ein MDSD-Ansatz zum QoS-
Monitoring von Diensten in Serviceorientierten Architekturen,” in: PIK
Praxis der Informationsverarbeitung und Kommunikation, 31 (2008) 4,
2008, pp. 232-238.

[26] S.M.S. da Cruz, R.M. Costa, M. Manhaes, and J. Zavaleta, ”Monitoring
SOA-based Applications with Business Provenance”, Proc. of the 28th
Annual ACM Symposium on Applied Computing (ACM SAC), ACM,
2013, pp. 1927-1932.

[27] GDV (Gesamtverband der Deutschen Versicherungswirtschaft e.V. –
General Association o.t. German Insurance Industry), ”Die Anwen-
dungsarchitektur der Versicherungswirtschaft: Das Objektorientierte Fa-
chliche Referenzmodell (The application architecture of the German
insurance business – The functional object-oriented reference model”,
VAA Final Edt. Vers. 2.0, 2001, [Online]. URL: http://www.gdv-online.
de/vaa/vaafe html/dokument/ofrm.pdf [accessed: 2017-01-11].

[28] ISO - International Organization for Standardization (ed.), ”ISO/IEC
25010:2011 - Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models”, 2011.

[29] M. Azuma, ”SQuaRE: the next generation of the ISO/IEC 9126 and
14598 international standards series on software product quality, ” in:
Proc. of European Software Control and Metrics (ESCOM), 2001, pp.
337-346.

[30] ISO - International Organization for Standardization (ed.), ”ISO/IEC
15939:2007 - Systems and software engineering - Measurement pro-
cess,” 2007.

18Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

https://www.dynatrace.com/de/products/application-monitoring.html
https://www.dynatrace.com/de/products/application-monitoring.html
https://www.nagios.org/
https://www.nagios.org/
http://www.gdv-online.de/vaa/vaafe_html/dokument/ofrm.pdf
http://www.gdv-online.de/vaa/vaafe_html/dokument/ofrm.pdf

	Introduction
	Motivation
	Contribution

	Prior and Related Work
	Plan the Measurement Process
	Core Concepts of the Abstract Information Model
	Mapping of the Concepts of the Information Model

	Concepts Implementation based on Generators
	Design of the QoS Generator
	Implemented concepts and their artefacts

	Measurements
	Conclusion and Future Work
	References

