
Agent based Framework for QoS Measurement applied in SOA

A uniform Approach based on a QoS Meta Model

Andreas Hausotter, Arne Koschel
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Andreas.Hausotter@hs-hannover.de

email: Arne.Koschel@hs-hannover.de

Johannes Busch, Markus Petzsch, Malte Zuch
University of Applied Sciences & Arts Hannover
Faculty IV, Department of Computer Science,

Hannover, Germany
email: Johannes.Busch@stud.hs-hannover.de
email: Markus.Petzsch@stud.hs-hannover.de

email: Malte.Zuch@hs-hannover.de

Abstract—Nowadays, enterprises are faced with a variety of
major challenges, such as the cut-throat competition in a global
market, a decreasing customer loyalty, and the strategic adjust-
ment moving from a product centric perspective to a customer
centric perspective. Therefore, businesses need to change their
operational processes in a flexible and agile manner to keep
their competitive edge. A Service-oriented Architecture (SOA)
may help to meet these needs. As the application landscape of
enterprises is inherently heterogeneous and highly distributed it
is a great challenge to provide services with a certain quality. This
is particularly the case when services are requested externally via
the web. Therefore, quality of service (QoS) measurement and
analysis is a crucial issue in Service-oriented Architectures. As
the key contribution of this paper we present a generic SOA
Quality Model (SOA QM) based on the measurement standard
ISO/IEC 15939, a SOA Information Model (SOA IM), and an
architectural concept of a QoS System. The SOA IM is an
XML-based specification for the measurement to be performed.
The QoS System provides an execution platform for the SOA
IM, based on a Complex Event Processing (CEP) approach
and guarantees minimal impact on the SOA environment. The
concepts are explained in detail using a standard process of the
German insurance domain.

Keywords—Service-oriented Architecture (SOA); Quality of Ser-
vice (QoS); Measurement Process; Complex Event Processing
(CEP).

I. INTRODUCTION

Distributed IT-systems are commonly used in today’s com-
panies to fulfill the needs of agility and scalability of their
business processes to manage the highly variable demand
of the market. Typical scenarios are real time logistics and
delivery, just in time supply chain management and in general,
handling services in real time to fit market demands.

The latter is commonly used within the finance and insur-
ance industry during their internal computation of risk and
money management and for their external customer services,
like proposal calculations (including the current market con-
ditions). Especially the external services must have a high
quality in terms of time behavior. Google has shown that a
latency of 100 ms up to 400 ms causes an impact of -0.2
% up to -0.6 % concerning the daily usage of web services
by the customers [1]. The integration of those services to
run business processes in a stable way, fulfilling the varying

demand of the market, is commonly realized with Service-
oriented Architectures (SOA).

Those architectures integrate (micro)-services within dis-
tributed systems to run business processes with a high ca-
pability in terms of agility. Especially the distribution of the
services over several systems allows to scale with the market
demands.

Distributing and handling several services is a common
concern of the insurance industry. But an increasing distri-
bution and more complex business processes will only gain
more agility with SOA, if the distribution of the services over
several systems is realized in a reasonable way. For getting
the required control of the distribution of those services, a
measurement system is required. Measuring the general QoS
in distributed systems is part of the motivation of this work and
is explained in detail in the next subsection. The subsection
after the discussion of the general motivation will show the
contribution to the general problem in measuring the QoS in
SOA within the application scenario of the insurance industry,
explained in section III.

A. Motivation

In many cases, it is not foreseeable to forecast, how much
computing power and bandwidth the infrastructure needs to
host the allocated services within the distributed computing
system. Beside these design decisions of the infrastructure,
there is a further problem in allocating the services to the
right locations within the distributed system. This allocation
will influence how much bandwidth and calculation power is
available for the services and how many services will share
identical resources during the same time. So if several services
will use the same part of the infrastructure, this could lead to
increasing latencies over the whole system, resulting in an
unfavorable time behavior for the users. Especially if some
services are requested with intense demands of the market,
latencies could rise in an unpredictable manner.

Such a scenario is typical for the German insurance industry.
At the end of the year, millions of users are able to switch
their insurance contracts and will request therefore designated
online services. The general demand is not foreseeable and
the intensely interaction between the insurance industry and

16Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

the finance industry requires a high quality of those services.
Especially the historically low interest rates in today’s market
provokes fast changing business models and the need of a fast
adoption to new business processes and the ability to offer
services in a high quality to fulfill the external user demands
and the internal interaction within the finance industry. To ful-
fill those demands, distributed systems with SOA will benefit
from an across boarder measurement of the quality of those
services, especially in terms of latency. Such a measurement
system is the contribution of this work and is explained in the
following subsection.

B. Contribution

The need for a new development of a flexible measurement
system is influenced by the limitations of common solutions.
The scenario of this work is based on a German insurance
company, which already uses Dynatrace as a measurement
solution [2].

The partner from the insurance industry is currently restruc-
turing and modernizing his business processes and therefore,
he needs a more flexible and generic approach to integrate an
external measurement system for monitoring and analyzing the
time behavior of his services. Additionally, a more detailed
analyzer component was required to process the measured
data.

So on the one hand, the approach has to be integrated in a
generic way with minimal interaction points within the SOA of
the partner from the insurance industry to guarantee a simple
integration during the continuous development process. But on
the other hand, the solution should offer a flexible and detailed
analyzer component.

This article will present our currently ongoing applied re-
search work. Since it is still ”work in progress”, we will mostly
focus on measurement concepts and an adequate measurement
model here. We combine this with an initial description of the
main insurance application scenario used by us. More technical
details on our actual prototypic implemenation as well as QoS
measurement results, will be presented in future work.

The required solution was defined by the following:
• generic approach to generate the measurement system,
• automatic integration of the measurement system in the

existing SOA,
• lose couplings within the existing SOA,
• flexible agent based approach,
• technology independent approach using standards

(XML),
• individual and customizable analyzer component.
As stated above, beside technical concepts we will also

present some details from our mainly utilized application
scenario, which is based upon the ideas from the ”Check 24”
process. Within this process different offerings for the same
kind of insurance are compared. The offerings typically origin
from several insurance companies. They are, for example,
different offerings for car insurances. Based on certain input
parameters, the end user gets eventually different insurance
offers by this process. The proposal service used by ”Check

24” is a common service throughout the German insurance
sector is implemented by various insurance companies.

This service can be called externally by applications such as
”Check 24” through a common interface given by a so called
”BiPro specification”. BiPro is widely used throughout the
German insurance sector and the availiabilty of these services
has a significant impact on competitiveness. Internally the
proposal service is, for example, used in the process ”Angebot
erstellen” (”create proposal”) of the general German ”Ver-
sicherungsanwendungsarchitektur (VAA)” (cf. [32]), which
describes a set of standardized insurance processes working
within a generalized ”insurance application architecture”. Our
project partner has implemented a similar process for it’s own
agent respectively customer portal.

The remainder of this paper is structured as follows: In
the next Section II we discuss some related work. Section III
describes our application scenario in some detail. In Section IV
and Section V our general Quality of Service (QoS) measure-
ment model and concept are described. Eventually Section VI
concludes this paper and gives some outlook to future work.

II. PRIOR AND RELATED WORK

In prior work, we already discussed several aspects of
the combination of SOA, Business Process Management
(BPM), Workflow Management Systems (WfMS), Business
Rules Management (BRM), and Business Activity Monitoring
(BAM) [16][17][15] as well as Distributed Event Monitoring
and Distributed Event-Condition-Action (ECA) rule process-
ing [20][21]. Building on this experience, we now address the
area of QoS measurement for combined BRM, BPM, and SOA
environments within the (German) insurance domain context.

Work related to our research falls into several categories.
We will discuss those categories in turn.

General work on (event) monitoring has a long history (cf.
[12][13] or the ACM DEBS conference series for overviews).
Monitoring techniques in such (distributed) event based sys-
tems are well understood, thus such work can well contribute
general monitoring principles to the work presented here. This
includes also commercial solutions, such as the Dynatrace [2]
system or open source monitoring software like, for example,
the NAGIOS [14] solution. In those systems there is however,
generally not a focus on QoS measurement within SOAs. Also,
they usually do not take application domain specific require-
ments into account (as we do with the insurance domain).

Active DBMS (ADBMS) offer some elements for use in
our work (see [18][19] for overviews). Event monitoring
techniques in ADBMSs are partially useful, but concentrate
mostly on monitoring ADBMS internal events, and tend to
neglect external and heterogeneous event sources. A major
contribution of ADBMSs is their very well defined and proven
semantics for definition and execution of Event-Condition-
Action (ECA) rules. This leads to general classifications for
parameters and options in ADBMS core functionality [19].
We may capture options that are relevant to event monitoring
within parts of our general event model. QoS aspects are
handled within ADBMS, for example, within the context of

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

database transactions. However, since ADBMSs mostly do
not concentrate on heterogeneity (and distribution), let alone
SOAs, our work extends research into such directions.

The closest relationship to our research has work, which
directly combines the aspects QoS and SOA. Since about 2002
several articles fall into this category. However, in almost all
known articles the SOA part focuses on WS-* technologies.
This is in contrast to our work, which takes the operational
environment of our insurance industry partners into account.

Examples of WS-* related QoS work include QoS-based
dynamic service bind [26][27], related WS-* standards such
as WS-Policy [22], and general research questions for QoS in
SOA environments [23].

Design aspects and models for QoS and SOA are, for
example, addressed in [28][24][33][25][26], SOA performance
including QoS in [34], and monitoring for SOA is discussed
in articles such as [30][31][29][35].

III. APPLICATION SCENARIO

Customers are using online platforms to compare the condi-
tions and proposals offered by different companies. The online
platform check24.com allows customers to compare different
insurance proposals. Therefore, the insurance companies need
to respond to those requests to be aware for potential cus-
tomers on such platforms. The underlying scenario for this
work is a service for calculating individual proposals for such
online platforms. This scenario is automatically requested by
the online customer information platform and needs to respond
in a timely manner. The business process for calculating the
proposal follows four steps:

• check input parameters for plausibility,
• call all additional relevant services to get required data,
• calculate the proposal based on internal business rules,
• deliver the proposal to the requesting online platform.
The partner from the insurance industry has already devel-

oped a distributed system to create and run such business pro-
cesses. This system uses the approach of SOA and integrates
various micro-services located across several locations.

Measuring the time behavior is a feasible approach to
maintain the overall system and scale it to changing market
demands to fulfill the required quality of such services (QoS).
The distributed system is designed with the concept illustrated
in Fig. 1. The system part alpha is the enterprise service
bus (ESB) of the system, which is responsible to integrate
the business processes with further applications and services.
Those business processes are parameterized by specific busi-
ness rules, stored in a business rule database.

The communication with this business rule database is
realized via web service calls. So in general, alpha is the
central communication component of the system.

The system part beta is the current process engine to run the
business processes and is connected via JMS with alpha. Those
business processes are influenced by the stored business rules
and the business process data, which are stored in a separated
database.

Figure 1: The application scenario

This distributed system defines the scenario where several
services are parameterized, called and integrated (via alpha)
over several locations. The generic and XML-based measure-
ment concept of this work will use this scenario to measure
QoS-Parameters, especially the time behavior of services. The
specific measurement model is described in the next section.

IV. MEASUREMENT MODEL

The assessment of the QoS in Service-oriented Architec-
tures is based on a SOA Quality Model (SOA QM), which
combines characteristics and sub-characteristics in a multilevel
hierarchy. For this purpose we adjusted the ISO/IEC-Standard
9126 to meet the SOA-specific requirements. Fig. 2 illus-
trates the characteristics, sub-characteristics and relationships
between these concepts. In our research work we will focus
on Time Behavior, which contributes to Efficiency.

Although ISO/IEC 9126 was revised by the ISO/IEC-
Standard 25010 (Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE)
– System and software quality models, cf. [9][6]) we use
ISO/IEC 9126 as a starting point because of it’s high degree of
awareness in German-speaking countries (cf. [7]). Moreover,
the German version of the ISO/IEC 25000 series has been
prepared by the German Institute for Standardization (DIN)
but is not yet available (cf. [11])

Instead of applying the quality metrics devision of SQuaRE
(i.e. ISO/IEC 2503x), our approach is based on the compre-
hensive ISO/IEC-Standard 15939 (cf. [9]). The basic model,
as to be found in similar form in the contribution of Garcia
et al. ([10]) has been aligned and extended by quality require-
ments, quality models, and some system components. In the
following subsections we describe the main concepts of our
SOA Measurement Information Model (SOA MM) as shown in
Fig. 4.

A. Information Need and Information Product

The determination of the QoS in a SOA is always demand-
driven, since both the specification (’What and how should
be measured?’) as well as the execution of the measurement
itself and the subsequent interpretation of the results can cause
a significant organizational and technical effort.

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

Figure 2: SOA Quality Model

Therefore, first of all the Information Need with objectives,
potential risks and expected problems is to be defined and
documented properly. In terms of the application scenario pre-
sented in section III the objective is to assess the performance
of the business process for calculating the offer in order to
identify and resolve problems in time.

B. Core measurement process
The Information Product is the result of the execution of the

Core Measurement Process as depicted in Fig. 3 (cf. [8]). The
Information Need provides the input for the subprocess Plan
the Measurement Process (planning stage), the subprocess
Perform the Measurement Process (execution stage) generates
the output, i.e., the Information Product. The process goal is
to satisfy the Information Need. All concepts presented below
directly or indirectly contribute to the Information Product.

C. Concepts of the planning stage
In the focus of our research work are SOA Services whose

QoS is to be investigated. For this purpose, Quality Attributes
are measured. In this context, the Measurable Concept outlines
in an abstract way, how the attributes values are determined
to satisfy the required Information Needs. In doing so, it
references one or more sub-characteristics of the SOA QM.

For the application scenario described in section III, the
process performance is to be determined first and then evalu-
ated. The corresponding Measurable Concept is the calculation
of the processing time. To do this, instantiation of a process
and termination of the process instance are to be determined.
The process identification represents the Quality Attribute to
be measured, and the sub-characteristic, referenced by the
Measurable Concept, is the Time Behavior.

In order to implement the Measurable Concept and to
perform measurements of attributes, first of all Measures are

Figure 3: Process for determining the QoS (cf. [8])

to be specified. A Measure assigns each Quality Attribute a
value on a Scale of a particular Type. The ISO/IEC-Standard
15939 provides 3 different types of Measures, namely Base
Measures, Derived Measures, and Indicators respectively.

A Base Measure specifies by its Measurement Method how
the value of a Quality Attribute is to be determined. It’s always
atomic and therefore independent of other Measures.

A Derived Measure uses one or more Basic Measures or
other Derived Measures, whilst the Measurement Function
specifies the calculation method and thus the combination of
the Measures used.

For the application scenario illustrated in section III, the
Basic Measures process instantiation tinst and process in-

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

stance termination tterm are specified. The identification of
the processes instance piID represents the Quality Attribute
measured by tinst and tterm. As the Measurement Method,
we select the time of the start and end event respectively. The
Derived Measure processing time of the instance TProc will
be calculated by the Measurement Function
TProc(piID) = ∆t = tterm(piID) − tinst(piID).

Finally, an Indicator is a qualitative evaluation of Quality
Attributes, which directly addresses the issue raised in the
Information Needs. Indicators always use a nominal scale with
qualifying values and thus show if necessary action or the need
for further root cause analysis. An Indicator is derived from
other Quality Measures, i.e., Base and Derived Measures, and
Indicators. The combination of the Quality Measures used and
the method of calculation is based on an Analysis Model in
conjunction with Decision Criteria using thresholds and target
values.

For the application scenario illustrated in section III, the
indicator adequacy of the processing time of a process instance
SLoTProc(TProc) according to table I:

TABLE I. ADEQUACY OF THE PROCESSING TIME

TProc SLoTProc

∈ (0, 3000ms] high
∈ (3000ms, 7000ms] medium
∈ (7000ms,∞) low

D. Concepts of the execution stage

After the concepts of the planning stage have been pre-
sented, now those of the execution phase will be explained
briefly (subprocess Perform the Measurement Process, de-
picted in Fig. 3). Section V will discuss their conceptual
implementation more detailed.

The actual measuring procedure, i.e., the execution of the
instructions for determining the value of a Quality Attribute,
is called Measurement. Hereby, Measurement Results are cre-
ated, collected in a container, namely Data, which is inserted
into a Data Store.

The measurement system comprises different supporting
software components, which are conceptually presented in sec-
tion V. The QoS Measurement performs the instructions spec-
ified in the Measurement Method or Measurement Function
respectively, to generate the Measurement Results for further
processing. The QoS Analyser performs the statistical analysis
and evaluation of the collected data and creates the Information
Product. The QoS Reporting makes the Information Product
available to the Measurement User (cf. Fig. 3)

E. QoS Measurement Information Model

We designed a domain-specific language to specify the
values of the concepts introduced above according to the
Information Need. This specification document is referred
to as QoS Information Model (QoS IM). The aim of this
approach is to automate the measurement process by the

generation of artifacts required by the QoS system to execute
a measurement.

The QoS IM consists of an abstract and a concrete section.
In the abstract section, the concepts of the Planning Stage
and partly the Execution Stage are specified. In the concrete
section, the implementation specific definitions are done. Since
our QoS-System is based on a complex event processing
(CEP) approach, the specification of events, agents and rules
is subject of this section.

A sophisticated XML Schema was developed to realize the
domain-specific language. We opted for XML as a universally
accepted standard that is highly flexible, platform and vendor
independent and supported by a wide variety of tools. In a
follow-up project an XText-based tool will be developed that
generates the (XML) QoS IM from a (XText) source code.

Its semantic model is shown in Fig. 4. The following rules
for modeling apply:

• Concepts are mapped to XML elements (graphically
represented by UML classes).

• Details of a concept are mapped to XML attributes of
the owning element (graphically represented by UML
instance variables).

• If possible, relationships between concepts are mapped
to element hierarchies (graphically represented by UML
associations).

• Otherwise they are mapped to constraints (i.e. keyrefs)
(graphically represented by UML dependencies).

V. MEASUREMENT CONCEPT

In section IV, a QoS IM based upon a SOA QM is
described. To execute a specific QoS IM (and thus subprocess
”Perform the Measurement Process”) an execution platform is
needed. This platform and the underlying QoS architecture is
given in this section. First reasons for choosing this specific
architecture are discussed shortly. Furthermore an overview is
shown, detailing in the central agent concept and CEP.

A. Design Decisions

As described above the goal of the measurement concept
is to provide the execution platform for a specific QoS IM.
Therefore basic design criteria for the measurement concept
are derived from the QoS IM. Furthermore quality require-
ments are given, which also have to be considered in the
architecture design. These criteria are:

• measurement of Quality Attributes as described by QoS
IM,

• flexibility of measurement and computation,
• low impact (modification, performance, etc.) onto SOA

components.
The proposed Measurement Concept is based upon a general

architecture given in [3]. The basic idea is to separate the
measurement (e.g. sensors, agents, etc.) and ”analysis and
statistics” functionality into different modules. This separation
opens the opportunity to cater each module to their specific
functional and quality requirements.

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

Figure 4: QoS Measurement Information Model (QoS MIM)

Overall the given general architecture already fulfills the
requirement to measure Quality Attributes and provide the
needed evaluations to produce Measurement Results and In-
formation Products.

The measurement module has to provide the QoS System
with information about the observed service. To provide the
needed flexibility a sensor has to be placed into it. To keep
the impact onto the SOA at a low level an agent based
approach was chosen. Agents capsule the needed parsing and
computation and thus can be easily integrated into arbitrary
SOA modules. Furthermore minimizing the performance im-
pact (through threading, non-blocking, etc.) can be integrated
into the agents.

The ”analysis and statistics” module does not have these
strict requirements on performance impact. Flexibility of
computation and measurement execution is the main quality
requirement. Thus a platform approach was chosen. Basically
artifacts generated through the QoS IM are placed into the
QoS platform and executed.

B. Overall system architecture

On a high level the QoS system splits the measurement
agents and further processing (QoS platform) into different

components. This approach allows to easily split these com-
ponents into different processes to comply to the quality
requirements. While the measurement agents (encapsulating
the agent concept) represents the client component, the server
component is represented by the QoS platform and contains
the CEP engine and further analysis processing. Fig. 5 shows
a high level overview of important components and their
relationships.

The general purpose of the measurement agents is to emit
specific events based on the defined Base Measures. As
described in section IV events are emitted, e.g., for process
instance instantiation/termination. In general, concepts for
agent implementation can be categorized by agent location
and time of execution (cf. [5] and [4]). To measure a specific
process instance agents can be placed into corresponding SOA
service calls thus measurement agents are only logically placed
into the QoS System component. One and currently used
approach is to use the concept of interceptors, which offers a
low modification impact and can deliver precise Measurement
Results.

The QoS Platform consist of several components, most
notable the QoS Measurement and QoS Analyzer. In general
the purpose of these modules are to collect, clean and compute

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

Figure 5: The QoS architecture

the emitted events and provide further analysis of stored
Measurement Results (specifically stored as complex events).

Before any event is given to the Measurement Method, it
will be handled by the control module. Purpose of this module
is event routing, general cleaning steps and an optional filter
step. Cleaning (or formatting) events in the analyzer is needed
because measurement agents are placed in the monitored
system, thus shall minimize their performance impact. The
Measurement Method is implemented as a CEP rule executed
by the engine and emits complex events for further near real-
time processing and long term analysis.

The QoS Analyzer module provides a basis for statistical
analysis and evaluations. Every complex event is stored into a
Data Store implemented as a relational database. The different
analysis and evaluations defined by Derived Measures and
Indicators are implemented through SQL and plain Java.
Furthermore the module provides an interface to the computed
Information Product.

C. Applying the described measurement concept

In Fig. 6 the given measurement concept (QoS platform)
is applied onto the application scenario thus providing the
missing link between the QoS IM and the insurance based
application scenario. In this example a simplified scenario
is used consisting only of an external ”Check24” mock-up
service (representing a simple consumer), the central ESB
and the proposal service (which represents the producer). The
task of the measurement model and thus the concept is to
measure the processing time of this service and to compute
the Information Product for further evaluations.

To measure this service the measurement agents, defined
through base measures, are placed directly into the ESB. This
offers a measurement independent of service location and
different load balancing scenarios. To minimize the integration
effort functionality given by Spring Integration is extensively

Figure 6: Applied QoS architecture

used (especially the interceptors for message queues). In this
simplified example base measures (and thus the agents) only
determine service call start / end times and announces these
to the QoS platform. Furthermore the agents try to minimize
their performance impact by using non-blocking techniques
and performing only necessary parsing steps (e.g. service call
id’s, etc.). These will be shown in detail in further publications.

As described above the QoS platform performs further
cleaning and processing steps to compute the QoS IM indi-
cators (SLoTProc(TProc)) and provides these to downstream
systems (e.g. reporting, presentation, load balancing, etc.).

VI. CONCLUSION AND FUTURE WORK

The presented approach for monitoring a distributed SOA
environment is a promising path to take: The SOA QM is
aiming to follow the ISO/IEC-Standard 15939 (cf. [8]), which
enables a wide range of use cases. The Measurement Concept
outlines an execution platform for the specific QoS IM, which
should cause minimal impact on the SOA environment. The
separation of Measurement Agents and QoS-Analyzer allows
lightweight agents on the one hand and a very capable analyzer
component on the other hand.

The still ongoing work of applying the QoS System to an
application scenario relevant to our partner in the insurance
industry (the ”Check 24 process”), will provide evidence of
the practical usability of the created framework. In this paper
the framework and the corresponding plattform are applied
onto a basic, business relevant scenario (the proposal service).
Furthermore it is planned to apply these technique to the
more complex process ”Angebot erstellen” (”create individual
proposal”) of the VAA thus implementing a more complex
scenario. It is expected that the monitoring system will help

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

to discover potential bottlenecks in the current system design
of our partners distributed services and therefore creating high
value in the process of solving these issues.

In future work, the actual measurement and analysis of the
results are to be done. It is also planned to apply these results
onto cloud based environments.

REFERENCES

[1] J. Brutlag, ”Speed Matters for Google Web Search,” Google Inc.,
Mountain View, 2009, [Online]. URL: http://services.google.com/fh/
files/blogs/google delayexp.pdf [accessed: 2016-12-26].

[2] Dynatrace LLC, ”Dynatrace Application Monitoring,” [Online]. URL:
https://www.dynatrace.com/de/products/application-monitoring.html
[accessed: 2016-12-26].

[3] A. Wahl, A. Al-Moayed, and B. Hollunder, ”An Architecture to Measure
QoS Compliance in SOA Infrastructures,” Service Computation, 2010,
pp. 27-33.

[4] E. Oberortner, U. Zdun, and S. Dustdar, ”Patterns for Measuring
Performance-related QoS Properties in Service-oriented Systems,” Pat-
tern Languages of Programs Conference, 2010, pp. 1-21.

[5] E. Oberortner, S. Sobernig, U. Zdun, and S. Dustdar, ”Monitoring
Performance-Related QoS Properties in Service-Oriented Systems: A
Pattern-Based Architectural Decision Model,” EuroPLoP, 2011, pp. 1-
37.

[6] M. Azuma, ”SQuaRE: the next generation of the ISO/IEC 9126 and
14598 international standards series on software product quality, ” in:
Proc. of European Software Control and Metrics (ESCOM), 2001, pp.
337-346.

[7] H. Balzert, ”Lehrbuch der Softwaretechnik: Softwaremanagement”,
Springer Spektrum, Heidelberg, 2008.

[8] ISO - International Organization for Standardization (ed.), ”ISO/IEC
15939:2007 - Systems and software engineering - Measurement pro-
cess,” 2007.

[9] ISO - International Organization for Standardization (ed.), ”ISO/IEC
25010:2011 - Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models”, 2011.

[10] F. Garcia, et al., ”Towards a consistent terminology for software mea-
surement,” in: Information and Software Technology, vol. 48, 2006, No.
8, pp. 631-644.

[11] DIN NIA, ”ISO/IEC 25000 System und Software-Engineering -
Qualitätskriterien und Bewertung von System- und Softwareprodukten
(SQuaRE - Leitfaden für SQuaRE,” [Online]. URL: http:
//www.din.de/de/mitwirken/normenausschuesse/nia/normen/wdc-beuth:
din21:204260933 [accessed: 2017-01-01].

[12] B. Schroeder, ”On-Line Monitoring: A Tutorial,” IEEE Computer, 28(6),
pp. 72-80, 1995.

[13] S. Schwiderski, ”Monitoring the Behavior of Distributed Systems,”
PhD thesis, Selwyn College, University of Cambridge, University of
Cambridge, Computer Lab, Cambridge, United Kingdom, 1996.

[14] Nagios.ORG, ”Nagios Core Editions,” [Online]. URL: https://www.
nagios.org/ [accessed: 2016-12-26].

[15] T. Bergemann, A. Hausotter, and A. Koschel, ”Keeping Workflow-
Enabled Enterprises Flexible: WfMS Abstraction and Advanced Task
Management,” in: 4th Int. Conference on Grid and Pervasive Computing
Conference (GPC), 2009, pp. 19-26.

[16] C. Gäth, et al., ”Always Stay Agile! – Towards Service-oriented In-
tegration of Business Process and Business Rules Management,” in:
The Sixth International Conferences on Advanced Service Computing
(Service Computation), IARIA, Venice, Italy, 2014, pp. 40-43.

[17] A. Hausotter, C. Kleiner, A. Koschel, D. Zhang, and H. Gehrken, ”Al-
ways Stay Flexible! WfMS-independent Business Process Controlling in
SOA,” in: IEEE EDOCW 2011: Workshops Proc. of the 15th IEEE Intl.
Enterprise Distributed Object Computing Conference, IEEE: Helsinki,
Finnland, 2011, pp. 184-193.

[18] N. W. Paton (ed.), ”Active Rules for Databases,” Springer, New York,
1999.

[19] ACT-NET Consortium, ”The Active DBMS Manifesto,” ACM SIGMOD
Record, 25(3), 1996.

[20] A. Koschel and R. Kramer, ”Configurable Event Triggered Services for
CORBA-based Systems,” Proc. 2nd Intl. Enterprise Distributed Object
Computing Workshop (EDOC’98), San Diego, U.S.A, 1998, pp. 1-13.

[21] M. Schaaf, I. Astrova, A. Koschel, and S. Gatziu, ”The OM4SPACE
Activity Service - A semantically well-defined cloud-based event notifi-
cation middleware,” in: IARIA Intl. Journal On Advances in Software,
7(3,4), 2014, pp. 697-709.

[22] T. Frotscher, G. Starke (ed.), and S. Tilkov (ed.), ”Der Webservices-
Architekturstack,” in: SOA-Expertenwissen, Heidelberg, dpunkt.verlag,
2007, pp. 489-506.

[23] F. Curbera, R. Khalaf, and N. Mukhi, ”Quality of Service in SOA
Environments. An Overview and Research Agenda,” in: it - Information
Technology 50, 2008(2), 2008, pp. 99-107.

[24] S.W. Choi, J.S. Her, and S.D. Kim, ”QoS Metrics for Evaluating Services
from the Perspective of Service Providers,” in: Proc. of the IEEE
International Conference on e-Business Engineering, Washington DC,
USA : IEEE Computer Society (ICEBE’07), 2007, pp. 622-625.

[25] Z. Balfagih and M.F. Hassan, ”Quality Model for Web Services from
Multi-stakeholders’ Perspective,” in: Proceedings of the 2009 Inter-
national Conference on Information Management and Engineering,
Washington DC, USA : IEEE Computer Society (ICIME’09), 2009, pp.
287-291.

[26] M. Garcia-Valls, P. Basanta-Val, M. Marcos, and E. Estévez, ”A bi-
dimensional QoS model for SOA and real-time middleware,” in: Intl.
Journal of Computer Systems Science and Engineering, CLR Publishing,
2013, pp. 315-326.

[27] V. Krishnamurthy and C. Babu, ”Pattern Based Adaptation for Service
Oriented Applications,” in: ACM SIGSOFT Softw. Eng. Notes 37,
2012(1), 2012, pp. 1-6.

[28] G. Wang, A. Chen, C. Wang, C. Fung, and S. Uczekaj, ”Integrated
Quality of Service (QoS) Management in Service-Oriented Enterprise
Architectures,” in: Proceedings of the 8th IEEE Intl. Enterprise Dis-
tributed Object Computing Conference (EDOC’04), Washington DC,
USA, IEEE, 2004, pp. 21-32.

[29] B. Wetzstein, et al., ”Monitoring and Analyzing Influential Factors of
Business Process Performance,” in: Proc. IEEE International Enterprise
Distributed Object Computing Conference (EDOC’09), 2009, pp. 141-
150.

[30] F. Rosenberg, C. Platzer, and S. Dustdar, ”Bootstrapping Performance
and Dependability Attributes of Web Services,” in: Proc. International
Conference on Web Services (ICWS’06), 2006, pp. 205-212.

[31] M. Schmid, J. Schaefer, and R. Kroeger, ”Ein MDSD-Ansatz zum QoS-
Monitoring von Diensten in Serviceorientierten Architekturen,” in: PIK
Praxis der Informationsverarbeitung und Kommunikation, 31 (2008) 4,
2008, pp. 232-238.

[32] GDV (Gesamtverband der Deutschen Versicherungswirtschaft e.V. –
General Association of the German Insurance Industry), ”Die An-
wendungsarchitektur der Versicherungswirtschaft: Das Objektorientierte
Fachliche Referenzmodell (The application architecture of the German
insurance business – The functional object-oriented reference model,”
VAA Final Edition. Version 2.0., 2001, [Online]. URL: http://www.
gdv-online.de/vaa/vaafe html/dokument/ofrm.pdf [accessed: 2017-01-
11].

[33] M. Varela, L. Skorin-Kapov, F. Guyard, and M. Fiedler, ”Meta-Modeling
QoE”, PIK-Praxis der Informationsverarbeitung und Kommunikation,
2014, Vol. 37(4), pp. 265-274.

[34] R.W. Maule and W.C. Lewis, ”Performance and QoS in Service-Based
Systems”, Proc. of the 2011 IEEE World Congress on Services, IEEE
Computer Society, 2011, pp. 556-563.

[35] S.M.S. da Cruz, R.M. Costa, M. Manhaes, and J. Zavaleta, ”Monitoring
SOA-based Applications with Business Provenance”, Proc. of the 28th
Annual ACM Symposium on Applied Computing (ACM SAC), ACM,
2013, pp. 1927-1932.

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-528-9

SERVICE COMPUTATION 2017 : The Ninth International Conferences on Advanced Service Computing

	Introduction
	Motivation
	Contribution

	PRIOR AND RELATED WORK
	APPLICATION SCENARIO
	MEASUREMENT MODEL
	Information Need and Information Product
	Core measurement process
	Concepts of the planning stage
	Concepts of the execution stage
	QoS Measurement Information Model

	MEASUREMENT CONCEPT
	Design Decisions
	Overall system architecture
	Applying the described measurement concept

	CONCLUSION AND FUTURE WORK
	References

