SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

SocialGlue: a Pluggable, Scalable, and Multi-Platform Service for Data Analysis

Stefano Amico, Marika Cappai, Salvatore Carta, Luca Mancosu,
Fabrizio Mulas, Maria Luisa Mulas, Paolo Pilloni, and Giordano Sini.
Dip.to di Matematica e Informatica
Universita di Cagliari
Email: stefano.amico@domoslab.com, marika.cappai.unica@gmail.com,
{salvatore, luca_mancosu, fabrizio.mulas, marialuisamulas, paolo.pilloni, giordano.sini}@unica.it

Abstract—The growing use of Social Network Sites (SNS) and the
exponential growth of social data is opening new research chal-
lenges in several scientific domains, such as: Recommender Sys-
tems, Data Mining, Sentiment Analysis, and Human-Computer
Interaction, just to name a few. In this scenario, researchers
from different fields are facing several obstacles given the lack
of highly customizable frameworks able to let them perform a
large number of ad hoc studies of big data flows coming from
SNSs. Trying to overcome these challenges, this paper sets out
Social Glue (SG), a pluggable, scalable, and multi-platform social
analysis service. SG is designed to easily enable the connection to
potentially any SNS allowing scientists to plug and manage the
execution of their algorithms against connected SNSs seamlessly
from SG with the minimum effort. In this way, researchers can
focus more on the design of algorithms rather than in the software
infrastructure needed to set up their experiments.

Keywords—Social Web; Computational Services; Framework Ar-
chitecture.

I. INTRODUCTION

Being able to collect and process data is essential in all the
fields of science and engineering [1]. Moreover, most fields
nowadays are interdisciplinary and collaborative [2]. This
means that in the so-called Social Web (also known as Web
2.0), web communities can generate and share large amounts
of data. However, due to privacy and commercial reasons,
the data generated on one environment (e.g., the e-commerce
transactions) is not passed to other environments. Therefore,
to generate services to a web community by analyzing and
filtering the data generated by the users, each environment
and system has to collect its own data. However, if a single
environment to run multiple services without disclosing of
sensible data to the service providers existed, the problem
would be overcome and each service could run on much more
data, improving its effectiveness.

As Koch and Lacher highlight [3], computer-based systems
should support knowledge transfer and the exchange of infor-
mation generated by the community, in order to integrate dif-
ferent services provided to the community. In this matter, they
propose a set of guidelines to create a common infrastructure
that enables this knowledge transfer. Karacapilidis et al. [4]
proposed a web-based collaboration support platform for the
biomedical domain, to strengthen collaborative data analysis
and decision making in web communities.

As both the research works mentioned above clearly point
out, web communities tend to generate large amounts of data
that are recognized as a valuable source, and the development
of a flexible and domain-independent framework that allows
researchers and developers to exploit and analyze these data

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

and provide services to the users represents an open issue in
the current literature.

To overcome the aforementioned issues, in this paper we
present Social Glue (SG), a pluggable, scalable, and multi-
platform framework, that enables the providing of any service
to a web community. Indeed, our proposal allows researchers
and developers to plug, run, and use their algorithms on a
connected Social Network, with the minimum programming
effort. Therefore, the data integration highlighted in the lit-
erature as a requirement for a system that provides services
to a web community is made possible by Social Glue, since
the system is able to process the plugged algorithms on the
data generated by the web community. In other words, the
data generated in one environment, can be exploited in many
different contexts. The proposed framework has been designed
to exploit modularity and employ state-of-the-art technologies.

The main scientific contributions coming from this paper
are the following:

e the experimentation of a novel domain-independent
framework to provide services in Social Web environ-
ments is proposed in the literature; each algorithm can
run on our framework, by employing different types
of data generated by the web community while using
a social network;

e thanks to Social Glue, researchers and developers
themselves are provided with services offered by the
framework, i.e., algorithms upload, data and user base
availability, back-end interfaces to plug the algorithms,
and so on.

The rest of the paper is organized as follows: Section II
provides an overview of the state of the art in the field
of computational services for web communities, Section III
provides a high level description of the architecture of Social
Glue, while Section IV sets out a detailed description of each
layer composing the system architecture; Section V contains
conclusions and future work.

II. RELATED WORK

This section presents related work on platforms that support
web communities to provide services to them.

In [4], the authors present Dicode, a framework to support a
biomedical research community at collaborative analyzing data
and enable decision making processes. The platform is flexible,
in the sense that heterogeneous workloads can be processed
by the framework. However, no layer that enables external
contributions to process data in different ways is presented, so
the system can only be employed by the community to run a
fixed set of services.

28

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

Tiwana and Bush [5] presented an architecture to enable
social exchange in distributed web communities. Again, with
social exchange the authors intend the transfer of information
among the users, but differently from SG, the possibility to
employ the social data to run different types of services on a
flexible architecture is not available.

Koch [6] presented an approach to support interoperable
community platforms in the university domain, by also allow-
ing the members of the community to manage their identity.
The approach, however, assumes that different platforms for
different services and communities exist, while in our approach
we aim at developing a unique framework and environment
to provide different types of services and exploiting all the
data generated by the web community. In [7], the author
considers also aspects such as the modularization of the
provided services and the use of ubiquitous user interfaces.

The capability to provide different types of services has
been developed in several systems as a form of context-
awareness (i.e., to provide services according to the context
in which the system operates). Zafar et al. [8] present an
architecture of these types of systems. This type of frameworks
provide ad-hoc services, like location aware tour-guides [9],
[10]. Therefore, a system is devoted at providing a single
service, and there is no chance to integrate other types of
algorithms to run on these frameworks.

As this analysis shows, our proposal has some peculiarities
that set us apart from other similar frameworks proposed
in the literature. Our solution provides a way to integrate
different types of services in a flexible framework to provide
the knowledge transfer and data integration highlighted in the
Introduction.

III. HIGH LEVEL ARCHITECTURE

This section introduces the architecture of the proposed
framework, by giving an overview of the layers that compose
it.

The Social Glue framework is characterized by a multi-
layered architecture composed of three macro-layers: the
Clients layer, the Back-end layer, and the Modules layer. Each
layer is in turn composed of sub-modules called Plugins in the
Clients layer, Adapters in the Back-end layer, and Modules in
the Modules layer. As can be seen in Figure 1, at the top of
the architecture sits the Clients layer which exploits low level
layers to give users the possibility to extend the framework
by adding customized elements called plugins. Plugins are the
tools users have to develop in order to interconnect with real-
world social networks, to create custom web communities and,
more important, to manage the execution of their algorithms
against available communities. As an example use case, Social
Glue natively implements two plugins built exploiting a famous
social network engine called Elgg [11]: the Simulator Movie
and the Social Monitor plugin. The former implements the
functionalities needed for the creation and the management of
a web community of movie lovers, the set up of algorithms
to be executed against the community, and the management
of the output of executed algorithms. The latter, instead, is in
charge of implementing an administration interface to allow
users to control the lifecycle of all available algorithms.

All the functionalities offered by a plugin are supported
by the Back-end layer. This layer exposes a set of REpre-
sentational State Transfer (REST) Application Programming

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

Clients Layer

WORDPRESS PLUGIN

FACEBDOK PLUGIN

PLUGIN PLUGIN
SOOLAL MONITOR MOVIE SIMULATOR
HTTP
Back-end Layer
| o= |

Figure 1. Social Glue Framework

Interfaces (APIs) that are responsible for the management of
the algorithms. The Back-end layer is composed of a variable
number of “Adapter” classes that manage the loading of the
algorithms plugged in the system through the lower level of
the architecture. In general, there must be an adapter for every
available algorithm. The functionalities of the adapters are
exposed to the higher level by means of a standard API in
order to give clients full control on the execution of algorithms.

Finally, the Module layer actually contains the source code
of the algorithms researchers plugged in the system. Every
algorithm inserted constitutes a module that has to expose
a standard interface to let the corresponding adapter in the
Back-end layer expose all the functionalities the plugins in the
Clients layer need to control the execution of the algorithms.

The low level layers have been designed to allow users
to deploy system configurations able to scale horizontally
in cases where multiple and potentially resource-intensive
computations have to be performed in parallel. In fact, the
the web service is able to correctly handle multiple databases
sources and multiple modules/adapters provided that the logic
flow of the program is designed to work in a stateless way and
a web proxy is properly configured to route the HTTP traffic.

IV. ARCHITECTURE LAYERS

The following section provides a detailed description of the
previously presented layers composing Social Glue.

A. Clients Layer

As highlighted in Section III, at the top of the architecture
sits the Clients layer. The entire system has been designed
keeping in mind the modularity it has to offer to the final users
and this layer is no exception. Indeed, a user can develop and
plug into this layer her/his social plugins implementations to
exploit public APIs to interact, for example, with a real world
social network or even with a user-created social network.

In general, in addition to the implementation of the plugin
that handles the communication with the social network, it is
possible to implement also a custom administration plugin in
order to provide a user-friendly web area where administrators
can manage the APIs exposed by the Back-end layer (see

29

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

Subsection IV-B). By default, the framework provides an
administration area to let users manage the lifecycle of the
loaded algorithms. In cases where it is needed a finer control
over the management of the algorithms, it is possible to
implement custom administration functionalities by exploiting
the APIs exposed by the lower level.

In the following, we will provide a more detailed descrip-
tion of the use case previously introduced (see Section III).
This use case has been developed to set up a series of pre-
liminary tests to investigate how the entire system behaves in
terms both of reliability and performance during the execution
of popular recommendation algorithms against a social com-
munity. As mentioned before, for our use case we decided to
opt for a well-known and open source framework called Elgg
that offers the possibility to build web communities with the
minimum development effort. The framework is very powerful
and in its base configuration is able to support blogging
and microblogging functionalities, groups management, and
several common social actions such as: comments on posts,
tags, likes, and so on.

Elgg’s architecture is highly modular and extensible. Its
plugin system allows the user to easily develop and integrate
new plugins inside the framework in order to provide her/his
customized functionalities. As previously mentioned, for our
use case we exploit Elgg’s flexibility to create a social net-
work for movie lovers that we populated using a well-known
dataset called Movielens [12]. The community is managed
by means of a custom plugin called Simulator Movie. This
plugin supports the insertion of new users and movies, the
population of the community by means of a dataset and so
on. In addition to the community-related features, the plugin
gives administrators the possibility to load algorithms to be
executed against the community by exploiting the lower layers
of the architecture. In our case, we loaded a recommendation
algorithm to build tailored movies recommendations by ex-
ploiting users’ preferences contained in the dataset we used to
populate the community. In this way, we were able to provide
users with tailored movies recommendation directly inside the
social network (see Section IV-C).

The execution and management of the algorithms is de-
manded to another custom Elgg plugin called Social Monitor.
Social Monitor implements all the functionalities related to
the management of the algorithms the administrators intend
to execute against a certain community. Figure 2 shows a
screenshot of the Social Monitor. Starting from the top of
the screen, the user has an overview of all the algorithms
she/he can launch. In particular, it is indicated the name of
the algorithm, whether or not some form of input data is
required, and the possibility to launch the execution by means
of the “Execute” button. Just below the “Algorithms” menu is
shown the “Thread Pool” view that reports the current state
of the low level threads that are in charge of executing the
algorithms. In this particular case, it reports that there are two
threads currently in execution and both of them are waiting for
their inputs (see the “Waitdata Instances” label). The “Thread
Pool Information” shows low level details about the current
state of the Thread Pool. In particular, starting from the top
of the view, the following information is shown: the current
number of busy threads, the total capacity of the queue (i.e.,
the maximum number of algorithms that can be enqueued for
execution), and the maximum number of threads the pool can

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

contain. Finally, at the bottom of the screen, is shown the
“Running Algorithm Status” that reports general information
about the algorithms currently in execution. In this particular
case, there are two running algorithms both waiting for their
input data.

Algorithms

Algorithm Needs Input Command
algol Input Needed Execute

recommendation Input Needed Execute
hello No Input Needed Execute

hello2 No Input Needed Execute

fibonacci No Input Needed Execute
Thread Pool
Instance Information Thread Pool Information
Total Instances: Core Pool Size: 2
Cancel Instances: Queue Capacity: 4

Max Pool Size:
Ready Instances:

2
0
Pending Instances: 0
0
Waitdata Instances: 2

Error Instances: 0

Running Algorithm Status

Go to Page: 1 Go

Results per page: 20 Choose!

Algorithm 1D Status Time start Time stop Time
spent in
previous
state

algol VCxmCDNs WAITDATA 09/11/2015 01/01/1970 ms (Os)

11:15:55 00:00:00
Oms Oms
algol ovQklwPs WAITDATA 04/11/2015 01/01/1970 ms (0s)
15:40:27 00:00:00
Oms Oms

Figure 2. Social Monitor plugin

B. Back-End Layer

The Back-end layer is in charge of providing the core
services to the higher layer. From a technological point of
view, we decided to adopt a well-known and widely used
software stack. The core of the Back-end is written in Java
and implemented by exploiting the Spring framework [13] and
the MySQL [14] database to manage the persistence of the
data. The entire application runs on the Apache Tomcat [15]
web application server. Thanks to this high flexible software
architecture we implemented both the core logic and the set
of RESTFull APIs invoked by the higher layer. This layer
is responsible of managing the run-time load and unload of
the user/researcher provided algorithms and, most important,
it implements the control logic that handles the entire lifecycle
of the algorithms plugged in the system by means of the lower
layer (see Section IV-C).

The control logic is instructed on how to execute a certain
algorithm by means of a simple configuration file that the
user/researcher is requested to provide for every algorithm
she/he intends to load. The following string represents an
example of an entry of the configuration file:

{ “name” :recommendation, “class” :RecAlgoAdapter, “needlnputs”:true}

The first attribute, called “name”, indicates the name of the
algorithm, “class” reports the actual Java class (Adapter) in
charge of handling the execution of the algorithm loaded from
the lower layer, and “needInputs” is a boolean value that
specifies whether or not it is necessary to manually upload
the input for the algorithm.

30

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

The most important component of the Back-end, in charge
of handling all the steps needed to execute the algorithms,
has been implemented by means of a finite state automata
(see Figure 3). We opted for this tool because we needed a

@
[[[[[! execute

needinputs = true needinputs = false
has_data = 0 has_data =0

execute
needinputs = true
has_data = 0

[64]
WATDATA

if errorparsingin futs
needinputs = trie
has_data = 0

::::::

has_data = 0/1

PENDING
(TASKS POOL)

execute
needinputs = false/tru
has_data = 0/1

execute

cancel
needinputs = falseftrue
has_data = 0/;

CANCEL

ERROR

EXECUTE

execute
needinputs = falseftrue
has_data = 0/1

download/return-to

download/return-to

Figure 3. Back-end finite state automata

relatively simple and, at the same time, robust mechanism
able to handle the concurrent execution of potentially very
heterogeneous algorithms. Indeed, the entire system must be
able to correctly execute algorithms that can differ a lot in
terms of computational complexity, input/output dimension,
memory consumption, and so on.

Let us now describe in detail the automata and, in partic-
ular, its states and the possible transitions between states that
can take place during the execution of an algorithm. A client,
through an ad hoc graphic control panel that in turn invokes
the Back-end APIs, can issue the commands for a particular
algorithm in order to trigger the transitions between states. As
can been seen in Figure 3, the initial state is called “START”
and this is the state that is associated to the invocation of
the “execute” command. According to the type of algorithm
being executed (i.e., according to the configuration provided
by the user by means of the configuration file), the automata
can transit to two different states. In particular, the state
changes to “WAITDATA” if the current algorithm needs to
be provided of input data (i.e., the label “needInputs” is equal
to true). When an input is provided (i.e., the label “hasData”
is set to 1), the current active state becomes “PENDING”.
The same state is reached directly when the algorithm being
executed does not need input data (i.e.,“needInputs” is equal
to false). At this point, the algorithm is ready to be executed
and the control passes to the execution logic that has been
implemented using a common thread pool. When one of the
threads in the pool becomes idle (i.e., it can execute the current
algorithm), the active state becomes “EXECUTE” (i.e., the
system starts the execution of the algorithm). Eventually, the
system reaches the “READY” state when the execution of the
algorithm finishes correctly. On the contrary, a transition to the
“ERROR?” state signals that the execution has been terminated

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

because of an unexpected error. In this case, the execution
of the algorithm gets stopped and the system waits for the
intervention of the user. From “READY”, the automata can
pass to “CANCEL” when the user downloads the results and
then again to the “PENDING” state if the user triggers another
“execute” action. From the “READY” state the control can
pass to the “WAITDATA” state in cases when the user, after
downloading the results, chooses to provide new input data for
the current instance of the algorithm in order to wait for a new
execution by following the same state transitions described
above.

Let us now describe in more detail the “CANCEL” state
previously introduced. An algorithm can be in this state when:

e the user has executed the “download and cancel”
command after a correct execution of the algorithm;

e the user can decide to cancel the execution because
she/he deems that the current algorithm is waiting in
the “PENDING” state for a too long time (i.e., the
entire system could be busy).

It is important to note that the system, when the current
state is “CANCEL”, is able to save the provided input and
configurations in order for the user to restart the execution at
a later time. Finally, as we saw before, the “ERROR” state
is reached when the execution of an algorithm terminates
abnormally. From this state, there are three possible transitions
towards the following states:

e “CANCEL”: the user decides to cancel the execution
of the current algorithm;

o “PENDING”: the user decides to reschedule the exe-
cution of the algorithm using the same configurations;

o “WAITDATA”: the user decides to relaunch the exe-
cution by providing different inputs to the algorithm.

C. Modules Layer

The Modules Layer is designed to provide researchers
and developers the opportunity to integrate their algorithms
on the framework. Each algorithm can be seen as a module
that runs on the framework and is a service provided to the
researcher/developer. The integration of the source code of
each module (that can also be in a different programming
language, like C or C++), is made possible by the Java Native
Interface (JNI), which enables Java to use the native code of
the operating system.

We will now provide an example of a module integrated in
our framework, which is a user-based Collaborative Filtering
recommendation algorithm. The choice to integrate this type
of module in our framework was made because it lends itself
well to a web community domain, characterized by social
interactions. Indeed, the algorithm is able to analyze the
different items a user had an experience with, and provide
recommendations for items she/he has not considered yet, but
that might interest her/him. In general, with the term item we
refer to something generic, which in a social domain might
be anything, from a Youtube video a user has posted, to a
restaurant she/he visited and evaluated on Facebook.

In order to provide the recommendations, a user model like
the one in Table I is considered. A model contains for each item
i, that the user u evaluated, a rating r,, that expresses with

31

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

TABLE I. EXAMPLE OF USER MODEL

11 12 13 14 15 6 17 18
u Tul Tu3 Tut Tus8

TABLE II. EXAMPLE OF RATINGS MATRIX

i1 i2 i3 i4 is i6 i7 i8
Ul T11 713 T14 T17 T18
u2 T21 r22 T24 r25 r27
us r22 33 T34 36
Un Tnl Tn2 Tn3 Tn5 Tn6 Tn8

a numerical value how much the user likes the corresponding
item.

All the user models, like the one previously described take
the form of a matrix, usually called rating matrix, like the one
in Table II.

The missing ratings for each user are predicted with a
widely-used User-Based Nearest Neighbor Collaborative Fil-
tering algorithm, presented in [16]. The algorithm predicts a
rating p,,; for each item ¢ that was not evaluated by a user u, by
considering the rating r,,; of each similar user n for the item <.
A user n similar to u is called a neighbor of u. To indicate that
we are dealing with a user-based approach, the set of neighbors
of this algorithm will be indicated as neighbors“*. Equation
1 gives the formula used to predict the ratings:

ZnCneighbors““(u) US(ZTSZ"ITL(U, n) ’ (T"i - F")

ZnCneighborsu“(u) USGTSZTTL(’U,, n)

Pui =Ty +
(1)

Values 7, and 7,, represent, respectively, the mean of the
ratings expressed by user u and user n. Similarity userSim()
between two users is calculated using the Pearson’s correla-
tion [17], a coefficient that compares the ratings of all the
items rated by both the target user and the neighbor. Pearson’s
correlation between a user v and a neighbor n is given in (2).
I, is the set of items rated by both user u and user n.

Yict,, (Tui = Tu)(rni —Tn)

userSim(u,n) =

2

The values of the metric range from 1.0 (complete similar-
ity) to -1.0 (complete dissimilarity). Negative correlations do
not increase the prediction accuracy [18], so they are discarded.

The output of the algorithm is a ranked list of top-n items
with the highest predicted rating, which is recommended to
each user of the community.

In order to evaluate the recommendation algorithm’s ac-
curacy, we need to choose the number of neighbors for each
user (parameter neighbors,,). The experiments that run the
algorithm with different values of the parameter are now
presented. Figure 4 shows the RMSE of the prediction
algorithm for increasing values of neighbors“"; this is the
common way to choose the value [19]. Our results reflect
the trend described by the authors, i.e., for low values of the
parameter, great improvements can be noticed. As expected,
RMSE takes the form of a convex function (Figure 5 shows a

Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

\/Zicm (rui —Tu)? \/ Sicr, (tni —Tn)?

Movielens 1-M

1,3500
1,3000
1,2500
1,2000

w 1,1500

4

M

£ 1,1000
1,0500
1,0000

0,9500

0,9000
1 10 50 100 200 300 6040

neighbors(uu)

Figure 4. RMSE values for increasing number of neighbors"" in the
MovieLens-1M dataset

Movielens 1-M

0,9200

0,9180

0,9160

RMSE

0,9140

0,9120

0,9100
1 10 50 100 200 300 6040

Figure 5. RMSE takes the form of a convex function in the MovieLens-1M
dataset

detail of Figure 4), which indicates that after a certain value
improvement stops. In the experiment that value is 100.

Independent-samples t-tests to evaluate the difference be-
tween the results obtained between 100 and the other numbers
of neighbors, are presented in Table III. Results show that there
is no difference between choosing 100 and 200 neighbors.
Since it is faster to compute predictions considering 100
neighbors instead of 200, neighbors“® = 100 is the value
chosen for the algorithm.

V. CONCLUSION AND FUTURE WORK

In this work, we presented Social Glue which is a scalable,
pluggable, and multi-platform social analysis service designed
to overcome many of the obstacles researchers face during the
analysis of huge amounts of data coming for example from
social networks sites. Social Glue is able to easily integrate
with any kind of social network site allowing scientists to
execute any kind of algorithm by means of its advanced
plugin mechanism. In this way, researchers can both launch

TABLE III. STUDENT’S T-TESTS - VALUES OF THE
NEIGHBORSYU PARAMETER.

MovieLens-1IM p

RMSE1 VS. RMSE100 0.00
RMSE1g vs. RMSE100 0.00
RI\/[SE5(] VS. RMSEl()o 0.00

R]\/[SEH]U VS. RMSE200 0.82
RMSElOO VS. RMSE300 0.33
RMSFE100 vs. RM S Egoa0 0.24

32

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

and monitor their algorithms focusing on the experiments
rather than wasting a considerable effort on the software
infrastructure needed merely to set up the experimentations.

The usage scenario we described clearly shows the poten-

tial benefits the platform can provide. As a future work, we are
planning a large scale experimentation based on data collected
from multiple real big data providers in order to evaluate how
the service performs with different and well-known analysis
algorithms.

ACKNOWLEDGMENT

This work is partially funded by Regione Sardegna un-

der project SocialGlue, through PIA - Pacchetti Integrati
di Agevolazione “Industria Artigianato e Servizi” (annualita
2010).

[1]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

[14]
[15]

Copyright (c) IARIA, 2016.

REFERENCES
“Challenges and opportunities with big data,” Tech.
Rep., Spring 2012. [Online]. Available: http://cra.org/ccc/wp-

content/uploads/sites/2/2015/05/bigdatawhitepaper.pdf

E. S. Lee, “Facilitating collaborative biomedical research,” in
GROUP ’07 Doctoral Consortium Papers, ser. GROUP ’07. New
York, NY, USA: ACM, 2007, pp. 5:1-5:2. [Online]. Available:
http://doi.acm.org/10.1145/1329112.1329117

M. Koch and M. Lacher, “Integrating community services-a common
infrastructure proposal,” in Knowledge-Based Intelligent Engineering
Systems and Allied Technologies, 2000. Proceedings. Fourth Interna-
tional Conference on, vol. 1, 2000, pp. 56-59 vol.1.

N. Karacapilidis, S. Christodoulou, M. Tzagarakis, G. Tsiliki, and
C. Pappis, “Strengthening collaborative data analysis and decision
making in web communities,” in Proceedings of the 23rd International
Conference on World Wide Web, ser. WWW ’14 Companion.
Republic and Canton of Geneva, Switzerland: International World
Wide Web Conferences Steering Committee, 2014, pp. 1005-1010.
[Online]. Available: http://dx.doi.org/10.1145/2567948.2578845

A. Tiwana and A. A. Bush, “A social exchange architecture
for distributed web communities,” J. Knowledge Management,

vol. 5, no. 3, 2001, pp. 242-249. [Online]. Available:
http://dx.doi.org/10.1108/13673270110401220
M. Koch, “Interoperable community platforms and identity

management in the university domain,” International Journal on
Media Management, vol. 4, no. 1, 2002, pp. 21-30. [Online].
Available: http://dx.doi.org/10.1080/14241270209389977

——, “Requirements for community support systems - modularization,
integration and ubiquitous user interfaces,” Behaviour & Information
Technology, vol. 21, no. 5, 2002, pp. 327-332. [Online]. Available:
http://dx.doi.org/10.1080/0144929021000048484

M. Zafar, N. Baker, B. Moltchanov, S. L. Joao Miguel Goncalves, and
M. Knappmeyer, “Context Management Architecture for Future Internet
Services,” in ICT Mobile Summit 2009, Santander, Spain, Jun. 2009.
S. Yasuyuki et al., “C-MAP: building a context-aware mobile assistant
for exhibition tours,” in Community Computing and Support Systems,
Social Interaction in Networked Communities [the book is based on
the Kyoto Meeting on Social Interaction and Communityware, held in
Kyoto, Japan, in June 1998], ser. Lecture Notes in Computer Science,
T. Ishida, Ed., vol. 1519. Springer, 1998, pp. 137-154.

K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou,
“Developing a context-aware electronic tourist guide: Some issues and
experiences,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI "00. New York, NY, USA:
ACM, 2000, pp. 17-24.

“Elgg,” https://elgg.org/, retrieved: 01-2016.
“Movielens,” https:/movielens.org/, retrieved: 01-2016.

“Spring framework,” http://projects.spring.io/spring-framework/, re-
trieved: 01-2016.

“Mysql,” https://www.mysql.com/, retrieved: 01-2016.
“Apache tomcat,” http://tomcat.apache.org/, retrieved: 01-2016.

ISBN: 978-1-61208-459-6

[16]

[17]

[18]

[19]

J. B. Schafer, D. Frankowski, J. L. Herlocker, and S. Sen, “Collaborative
filtering recommender systems,” in The Adaptive Web, Methods and
Strategies of Web Personalization, ser. Lecture Notes in Computer
Science, vol. 4321. Springer, 2007, pp. 291-324.

K. Pearson, ‘“Mathematical contributions to the theory of evolution.
iii. regression, heredity, and panmixia,” Philosophical Transactions
of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences, vol. 187, 1896, pp. 253-318. [Online].
Available: http://rsta.royalsocietypublishing.org/content/187/253

J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, “An algorithmic
framework for performing collaborative filtering,” in Research and
Development in Information Retrieval, American Association of Com-
puting Machinery. American Association of Computing Machinery,
8/1999 1999.

C. Desrosiers and G. Karypis, “A comprehensive survey of
neighborhood-based recommendation methods,” in Recommender Sys-
tems Handbook. Berlin: Springer, 2011, pp. 107-144.

33

