
Privacy Monitoring and Assessment for Ubiquitous Systems 

Architecture design and Java prototype implementation 

 

Mitja Vardjan and Jan Porekar 

Research department 

SETCCE 

Ljubljana, Slovenia 

{mitja.vardjan, jan.porekar}@setcce.si

 

 
Abstract—Pervasive services and their respective front-ends 

can have access to large amounts of personally identifying and 

sensitive private information. Most of the platforms allow for 

user to control which particular private information APIs the 

services can access and allow the end-user to accept or reject a 

particular privacy policy. However, the actual privacy 

practices of services may differ from the ones promised in the 

privacy policy. This paper outlines the basic assessment 

mechanisms and measures that enable user with insight on 

how much private information is actually being accessed and 

forwarded by each service deployed to the platform. The paper 

presents architecture for monitoring and assessing privacy 

practices of pervasive services deployed into a generic 

pervasive service platform. Furthermore, the paper presents 

platform specific privacy assessment implementation design 

for Java OSGi based pervasive platforms and describes an 

initial implementation and preliminary privacy assessment 

results, based on correlating data access events with data 

transmission events. 

Keywords-privacy; assessment; monitoring; pervasive; 

ubiquitous 

I.  INTRODUCTION 

The ubiquity of smart phones and Internet connected 
devices with integrated sensing capabilities is resulting in 
more and more collecting, processing, aggregating and 
trading of personal information. As third party applications 
deployed on smart phones and internet connected devices 
can gain access to sensitive personal information, the amount 
of privacy threats and attacks is increasing (see [1], [2], and 
[3]). 

The main focus of digital privacy protection is on a-
priory protection minimizing and preventing the actual data 
release out of the data subject’s realm. A lot of work has 
been done also on a-posterior privacy protection addressing 
protecting the data subject’s interests and threats resulting 
from situations after the data have been released to the data 
controller [5]. Threats, misuse cases and generic a-posterior 
solutions for privacy in ubiquitous systems have been 
investigated in [4] and [6]. Lately, Hildebrandt et al. [7] have 
argued that in the new data intensive world it is not enough 
to merely stick to the minimization of data release and data 
concealment. The suggested solution is to keep all privacy 
practices and additionally increase transparency on how the 
data is collected and stored (see [7] for more information). 

As a result of this there has been an increasing trend in 
research to specify and prototype the so-called Transparency 
Enhancing Tools (TETs). Some recent research that is 
related to this paper includes the privacy logging tools that 
have been investigated by Hedbom et al. [8]. Furthermore, 
the system-wide dynamic taint tracking and analysis system 
capable of simultaneously tracking multiple sources of 
sensitive data has been investigated by the TaintDroid [9]. 
The system provides real-time analysis by leveraging 
Android’s virtualized execution environment. 

In this paper, we present a Privacy Transparency 
Enhancing ARchitecture (PEAR) along with initial 
implementation of Transparency Enhancing Tool (TET). The 
tool enables monitoring of privacy practices performed by 
third party services deployed on SOCIEITES ubiquitous 
platform [12] that is based on Virgo OSGi container. First, 
we describe the privacy monitoring and assessment 
architecture and describe how it relates to management of 
pervasive third party services deployed on a ubiquitous 
service platform. Then, we present initial set of privacy 
assessment mechanisms and privacy assessment 
visualizations. 

II. PRIVACY MONITORING AND ASSESSMENT 

ARCHITECTURE 

A typical service installed on user’s personal mobile or 
other pervasive device can have access to a local database 
(Figure 1) where personal data is stored, including user 
related activity, location, and medical information. Mobile 
device’s built-in sensors may continuously insert new data 
into the database. Other sensitive data such as credential 
storage and user profile can also be made available to the 
service. Services can then use the ability to communicate 
with local network or the internet and send any available data 
to other nodes and users. 

To assess privacy practices of services, the privacy 
assessment component monitors any data access or data 
transmission by other services, calculates privacy assessment 
metrics, and outputs the assessment result to the end user 
(Figure 1). The user can then make an informed decision 
about any further actions against a service. The user can 
deny the service access to local data, disallow data 
transmission, or uninstall the service (Figure 1). 

52Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



Privacy Assessment

Service 
management

User 
context   

database

Communication 
gateway

Uninstall,
start, stop Service / App

Service / App

User profile   
and sensitive 

attributes
  storage

Sensors

Sensitive 
credential 

storage

2. Manage  
service(s) 

1. Get insight in 
understanding 

privacy practices 
of services

End-user or
System administrator

Manage 
permissions

Permissions

Figure 1. Interactions with the Environment 

It should be noted that such a service is not necessarily a 
malicious service, or a service that violates the service level 
agreement (SLA). It is just a service that is suspected of 
accessing and/or transmitting user data more than it is 
necessary for its normal operation, whether the service 
behavior is in accordance with the SLA or not. 

The approach shown in Figure 1 assumes a limited 
number of possibilities for a service to access or send data. 
These privacy monitoring points are integrated with privacy 
assessment component and whenever a service successfully 
uses these privacy monitoring points, the privacy assessment 
component is notified. From data properties, it can deduct 
and assess privacy practices of services. 

Internally, privacy assessment component consists of 
four main building blocks shown in Figure 2. Arrows 
indicate data flow. The event logger is integrated with 
privacy monitoring points from Figure 1, collects events 
from the monitoring points and stores them into privacy 
practices log. The log itself is not available to other 
components and services because it contains sensitive 
information – the details about all recorded data access and 
transmission events. 

Privacy Monitoring Points

Assessment Engine

Event Logger

Results Presentation
(Charts, Web Interface)

Privacy Practices Logs

Privacy Assessment

 

Figure 2. Internal Privacy Assessment Architecture 

The assessment engine periodically parses the log, 
calculates privacy metrics for all software units or other 
entities in the log, and stores the results. The last block 
further aggregates results and exposes them to authorized 
external components, or displays them to the user directly.  

A. Data Access Event 

Any successful attempt to access user’s data should be 
logged. Such data access events are not too hard to detect 
and log, assuming there are only a few possible ways to 
retrieve the data, and all of them are well-known. Examples 
include database access points and application-specific 
storage. Logging of data access events can be implemented 
by interception, such as with Aspect Oriented Programming 
(AOP) [13], or by integration of data access points and 
privacy assessment. The event details or features to store are 
at least those which may be available also for subsequent 
data transmission events and may help to correlate the events 
later. These details are typically time, data type, data size, 
and requestor identity (process ID, system user name, 
application-specific identity, etc.) 

Collection of all that information alone can be 
problematic from the privacy point of view and the user 
needs to trust the privacy assessment software will not abuse 
the collected data. 

B. Data Transmission Events 

Capturing data transmission events is not as 
straightforward as capturing data access events.  While there 
are only a limited number of data access points where 
particular data can be accessed, there are plenty possibilities 
(in terms of software) to transmit data over network.  

However, there are cases where a single and well-known 
communication gateway is expected to be used. For 
example, in some pervasive environments the data receiver is 
not resolvable to an IP, email or other common address, and 
the communication gateway (or a limited number of 
communication gateways) offers a convenient way to 
transmit messages to specified receivers (Figure 7). While 
this is not a requirement for the proposed architecture, it 
enables feasible and efficient gathering of additional data, 
associated with a particular transmission event. Examples of 
such additional data include the environment-specific 
receiver endpoint, software module which transmitted the 
data, and transmitter identity if there are many possible 
identities with different authorization levels. 

When it is required to detect and log all transmitted 
packets, it is necessary to use a traffic logger or parser on a 
lower level, which cannot be omitted when transmitting data. 
In such more general case where the logging point for data 
transmission is, e.g., on the TCP level (using a network 
traffic parser in Figure 7), less details about data 
transmission event can be gathered. This paper focuses on 
the former case, where a common gateway is assumed. 

 

III. PRIVACY ASSESSMENT METRICS 

The assessment results or privacy assessment metrics 
should give the user an estimated measure of how privacy 

53Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



invasive each unit of software is. The software unit can be 
anything that can be mapped to a particular service. The 
given assessment values shall be directly comparable 
between multiple software units and also between multiple 
time intervals. Therefore, the metrics value should increase 
with number of data access and data transmission events. For 
a fixed number of data access and data transmission events, 
it should increase with estimated probability that the 
accessed data have in fact been transmitted. In addition to 
metrics, derived from correlations between the events, 
number of data access events and number of data 
transmission events themselves are important metrics. All 
these metrics are presented in details below. 

Correlations are calculated from the available features 
from data access and data transmission events. First, 
correlations for individual event pairs are calculated for 
every available feature and labeled cij,k, where i is index of 
data access event, j is index of data transmission event, and k 
is feature index. An individual correlation cij is product of all 
feature correlations, e.g., time correlation and data size 
correlation for given events pair. 

    ∏      
 
    

In Figure 3, all non-zero correlations between individual 
data access and transmission events cij are symbolized with 
dotted lines. Event pairs where data transmission precedes 
data access are obviously uncorrelated, and correlations c11, 
c21, c22, c31, c32, c41, c42, and c43 are zero and not shown in 
Figure 3. 

 

 
Figure 3. Events through time 

 
Data size correlation function for individual event pairs is 

given by (2). The argument is difference in sizes of accessed 
data sa and transmitted data st. If it was assumed that 
whenever a piece of data was accessed and then transmitted, 
its transmitted size was exactly the same as the size of 
original local data (ignoring even the addition of 
transmission protocol headers), then  Kronecker delta 
function would be most appropriate. To amend for possible 
modification, aggregation, splitting, compression and 
encryption of the data before its transmission, the function is 
smooth, based on Gaussian curve, with asymptote greater 
than zero. Constants k1 and k2 present x-axis scaling and 
value at infinity, respectively. They can be adjusted to fine 
tune the algorithm. 

        
 (
       
  

)
 

  (    )      ) 

 
Figure 4. Correlation in data size for a single pair of events 

 
Figure 4 shows an example of (2) where value of k1 

depends on sign of st - sa. The example in Figure 4 is suitable 
for environments where data aggregation is less likely than 
data compression and splitting. For environments where 
services may often encrypt the data before transmission, it is 
even more important to adjust k1 in this manner, because 
encryption usually includes compression. 

Correlation in time is a completely different function, 
based on sigmoidal function of argument Δt or tt - ta, where tt 
and ta are times of data transmission and data access, 
respectively. Equation (3) presents the function for positive 
Δt values. 

       (  
 

   
 
  
  
   
)  

(    )

(  
 

     
)
    

For negative argument values the correlation in time is 
zero (see Figure 5, for example) because a transmission 
event should not be correlated to any later data access event. 

 

 
Figure 5. Correlation in time for a single pair of events 

 

t

t

Data access
events

Data
transmission
events tr

1
tr

2
tr

3

a
1

a
2

a
4

c
12

c
13

c
23

a
3

c
33

0

0.2

0.4

0.6

0.8

1

-10 -8 -6 -4 -2 0 2

c
o

rr
e

la
ti
o

n
 i
n

 d
a

ta
 s

iz
e

st - sa

0

0.2

0.4

0.6

0.8

1

0 2000 4000 6000 8000 10000

c
o

rr
e

la
ti
o

n
 i
n

 t
im

e

t t - t a

54Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



The combined correlation for a single pair of events is 
calculated by (1). Additional features can be added where 
applicable. If only time and size features are available, then n 
from (1) equals 2. Correlations given by (1) are still 
intermediate results. Next step is to calculate correlation for a 
single data transmission event using (4). This is 
accomplished in two basic manners, which produce two or 
more results: 

 Correlation with all data access events, i.e., for every 
i in (4). 

 Correlation with only those data access events where 
the requestor matches the sender from the 
transmission event, i.e., for a limited set of i values. 
Depending on implementation, the requestor and 
sender can have one or more formats and meanings, 
leading to one or more distinct correlation results. 

   ∑      

The rationale for multiple correlations with data access 
events is availability of alternative routes from data retrieval 
to transmission (Figure 6). Correlation of a transmission 
event with only those data access events where the requestor 
matches data sender is the more reliable correlation in terms 
of least false positive errors. If it is known that component 
CB transmitted data that has similar features to data D that 
had been retrieved previously by component CA, then it is 
possible that component CB transmitted data D. This 
possibility is more likely if it is known that CA equals CB, 
hence the greater reliability of such correlation. This 
correlation is most appropriate in cases where software 
components are assumed to retrieve the data and then 
transmit the data themselves. For events where this 
assumption is not satisfied (alternative route 2 in Figure 6), 
this correlation is more prone to false negative errors than 
correlation with all data access events. 

The correlation with all data access events does not make 
that assumption, but is more likely to falsely correlate a data 
transmission event with data access events, i.e., it is more 
prone to false positive errors. This is especially problematic 
in a pervasive and sensor rich environment where multiple 
data are accessed and processed by third party services and 
may be independently transmitted to other parties. Such 
cases highlight the convenience, or even necessity of using a 
single communication gateway at high level where more 
features about the requestor and transmitter can be retrieved. 

 

 
Figure 6. Alternative routes of data transmission 

 
Figure 7. Data Transmission Detection 

Regardless of the correlation type used in (4), final 
metrics for data sender s are calculated by summing those cj 
where the sender associated with cj matches s (5). This 
produces at least two different Cs values for each sender: at 
least one Cs,all, where (4) had been calculated for every i, and 
at least one Cs,matching, where (4) had been calculated for only 
those events where the requestor and sender match. 

   ∑      

IV. PRIVACY ASSESSMENT IMPLEMENTATION FOR VIRGO 

The Privacy Transparency Enhancing Tool has been 
developed for ubiquitous platform SOCIEITES [12], based 
on Virgo application server. In current implementation, the 
data access monitoring points and communication or sharing 
monitoring points have been realized. 

The platform supports the concept of identities and each 
local service or a remote peer can be associated with an 
identity. Details such as requestor and sender identity and 
Java class name are captured for all data access and 
transmission events by parsing Java stack trace (Figure 7). 
On this platform it is very likely that services will use the 
common communication gateway for communication with 
other peers because it offers a convenient way to resolve 
remote identities and communicate with them. If this was not 
the case, a traffic parser on a lower level should have been 
used instead (Figure 7). 

Java class name and identity values are stored as 
requestor in data access events and sender in data 
transmission events. This results in three distinct correlation 
types for a single data transmission event produced by (4): 

 correlation with all data access events, 

 correlation with only those data access events where 
the requestor class matches the sender class from the 
transmission event, and 

 correlation with only those data access events where 
the requestor identity matches the sender identity 
from the transmission event. 

User's device or devices

Software component 1

Software component 2

User's data

World

Retrieve data

Pass data

Send data
(alternative

route 1)

Send data
(alternative

route 2)

?

Java Class A

Java Class B

Java Net Library

JVM

OS

Network Interface
Network Monitor,

e.g. tcpdump
Traffic Parser

Stack Parser
Communication

Gateway

55Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



These result in two final results for each sender class and 
two final results for each sender identity, which make four Cs 
result types from (5). The first two metrics are calculated for 
each class, and the last two for each identity: 

 assessment metric for data sender class where all 
data access events were correlated, 

 assessment metric for data sender class where only 
data access events with matching requestor class 
were correlated, 

 assessment metric for data sender identity where all 
data access events were correlated, and 

 assessment metric for data sender identity where 
only data access events with matching requestor 
identity were correlated. 

For transmission events where data is passed to and 
transmitted by some other class (alternative route 2 in Figure 
6), the value of correlation cj from (4) with only data access 
events with matching class is zero. However, the correlation 
with events with matching identities amends for the missing 
information about passing the data between components. 
Correlation with those data access events where the requestor 
identity matches data sender identity implies a reasonable 
assumption – both components, services or classes that 
retrieve and transmit the data, do that under the same 
identity. In the unlikely situation where this is not the case, 
the metric derived from correlation with all data events still 
provides non-zero results. 

V. ASSESSMENT RESULTS 

A. Presenting Results to User 

Only high-level results calculated with (5) are shown to 
the user. A web based graphical user interface (GUI) shows 
results in form of bar charts, generated by the prototype 
(Figures 8-12). Figures 8, 9 and 12 show overall numbers of 
data access and data transmission events by identity and 
class name. Figure 9 shows the remote identities of data 
receivers. These basic results complement the metrics 
calculated by the assessment and help the user understand 
service behavior. 

 

 
Figure 8. Local data access by identities 

 

 
Figure 9. Data transmissions by receiver identity 

 
Privacy assessment metrics for a particular class are 

shown in Figure 10, and Figure 11 shows the metrics for a 
particular identity. There are two classes that have 
transmitted data (the blue bars in Figure 10), but they have 
not accessed the data (value of both light-red bars is zero). 
However, this does not necessarily mean they have not 
transmitted local data because the non-zero blue bars indicate 
some data access events that had occurred before these 
classes transmitted data and the classes in Figure 10 might 
had received the data from other data requestor classes (route 
2 in Figure 6). 

Similar picture is shown in Figure 11, where the non-zero 
light-red bar shows the identity under which local data has 
been accessed at least once, and then at least once something 
has been transmitted under same identity. The higher blue 
bar for that identity shows there had been data access events 
by other identities, too. These data access events increased 
number of correlations by all data access events, i.e., the 
number of summands in (4). 

 

 
Figure 10. Privacy assessment results by Java class 

 

56Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



 
Figure 11. Privacy assessment results by identity 

 

B. Reacting to Results at Enforcement Points 

Seeing the privacy assessment results, the user can 
choose to react and impose limits on a particular service. To 
do that, enforcement points should be implemented at 
communication gateway, system firewall, and/or data access 
points (Figure 1). The more rigorous measure is to uninstall 
the services suspected of unnecessary user data transmission. 
Of course, there may always be services that access local 
data, receive and transmit data over network as part of their 
normal operation. A service with a low non-zero correlation 
may be even more suspicious than a service with higher 
correlation, e.g., if the former is not supposed to use network 
excessively or not at all. 

VI. CONCLUSION AND FURTHER WORK 

Privacy monitoring and assessment architecture was 
presented. The initial assessment analysis mechanisms based 
on correlating data access and transmission events have been 
described and the implementation of assessment 
visualization mechanisms has been presented. In the future 
we aim to extend the assessment method with more data type 
semantics and explore how current assessment mechanisms 
can support privacy risk and threat metrics combining our 
system with results from [10]. Additionally, we aim to port 
and adapt the prototype implementation for Android OS to 
support monitoring and assessing services deployed on smart 
phones. 

ACKNOWLEDGMENT 

Authors would like to thank the SOCIETIES project [11] 
consortium and EC for sponsoring the project. 

REFERENCES 

[1] L. Sheea, J.Alford, and R. Coffin,  “Future of Privacy Forum Mobile 
Apps Study,” http://www.futureofprivacy.org/wp-content/uploads/ 
Mobile-Apps-Study-June-2012.pdf, June, 2012  [retrieved: March, 
2013]. 

[2] M. Becher et al. “Mobile security catching up? Revealing the nuts 
and bolts of the security of mobile devices,” Security and Privacy 
(SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 96-111. 

[3] A. Shabtai et al., “Google Android: A Comprehensive Security 
Assessment,” IEEE Security & Privacy, March/April, 2010, pp. 35-
44. 

[4] M. Deng, K. Wuyts, R. Scandariato, B. Preneel, and W. Joosen, “A 
privacy threat analysis framework: supporting the elicitation and 
fulfillment of privacy requirements,” Requirements Engineering, vol. 
16, no. 1, 2011, pp. 3-32. 

[5] C. Bryce et al., “Ubiquitous Privacy Protection: position paper,” 
Proceedings of the 5th Workshop on Ubicomp Privacy in conjunction 
with the 9th International Conference on Ubiquitous Computing 
(UbiComp'2007), September, 2007, pp 397-402. 

[6] K. Dolinar, J. Porekar, and A. Jerman Blazic, “Design Patterns for a 
Systemic Privacy Protection,” The International Journal On Advances 
In Security, IARIA, 2009, vol2-3, pp. 267 – 287. 

[7] M. Hildebrandt et al., “D 7.12: Behavioural Biometric Profiling and  
Transparency Enhancing Tools,” FIDIS WP7 deliverable, 
http://www.fidis.net/fileadmin/fidis/deliverables/fidis-wp7-
del7.12_behavioural-
biometric_profiling_and_transparency_enhancing_tools.pdf 
[retrieved: March, 2013]. 

[8] H. Hedbom, T. Pulls, and M. Hansen, “Transparency Tools,” Privacy 
and Identity Management for Life, doi: 10.1007/978-3-642-20317-6, 
Springer Berlin Heidelberg, 2011, pp. 135-143. 

[9] W. Enck et al., “TaintDroid: an information-flow tracking system for 
realtime privacy monitoring on smartphones,” Proceedings of OSDI, 
2010, pp. 393-407. 

[10] R. Savola, “Towards a risk driven methodology for privacy Metrics 
development,” Symposium on Privacy and Security Applications 
(PSA’10), August 2010, pp. 20-22. 

[11] Self Orchestrating CommunIty ambiEnT IntelligEnce Spaces 
(SOCIETIES), EU FP7 project, Information and Communication 
Technologies, Grant Agreement Number 257493. 

[12] M. Bordin, J. Floch, S. Rego, and A. Walsh, “D3.1: Service Model 
Architecture”, SOCIETIES project WP3 deliverable. 

[13] R. Johnson et al., “The Spring Framework – Reference 
Documentation,” chapter 6, “Aspect Oriented Programming with 
Spring,” 
http://static.springsource.org/spring/docs/2.0.x/reference/aop.html 
[retrieved: April, 2013]. 

57Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing



 
Figure 12. Local data access by Java classes 

58Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing


