
A Service Localisation Platform

Luke Collins and Claus Pahl
School of Computing

Dublin City University
Dublin 9, Ireland

Email: luke.collins4@mail.dcu.ie, claus.pahl@dcu.ie

Abstract—The fundamental purpose of service-oriented com-
puting is the ability to quickly provide software and hardware
resources to global users. The main aim of service localisation
is to provide a method for facilitating the internationalisation
and localisation of software services by allowing them to be
adapted to different locales. We address lingual localisation by
providing a service translation using the latest web services
technology to adapt services to different languages and currency
conversion by using real-time data provided by the European
Central Bank. Units and Regulatory Localisations are performed
by a conversion mapping, which we have generated for a subset
of locales. The aim is to investigate a standardised view on the
localisation of services by using runtime and middleware services
to deploy a localisation implementation. Our contribution is a
localisation platform consisting of a conceptual model classifying
localisation concerns and the definition of a number of specific
platform services.

Keywords - Service Localisation; Service-oriented Computing;
Service-oriented Architecture.

I. INTRODUCTION

Distributed web services can provide business and private
consumers with computing abilities which may not be feasible
for them to develop in-house. These web services are currently
in high demand in the context of cloud computing [3], [19].
However, the area of services computing introduces new
issues, for example, in areas like Europe, where there is a
wide range of languages spoken, services are very often only
developed for single language and are only supported for that
single language. Often it is the case that companies do not have
the resources or capability to develop multilingual products.
Localisation encapsulates a large number of issues which need
to be addressed. These include, but are not limited to:

• Language Translation - conversion of services based
on language. e.g., English→ French.

• Regulatory Compliance Constraints - conversion of
services based on information such as taxation and
other regulatory constraints.

• Currency Conversion - conversion of services based
on currency, e.g., Euro→ Dollar.

• Units Conversion - based on standard units measure-
ments, e.g., Metric→ Imperial.

Further concerns such as standardised vocabularies and con-
ventions could be added.

Localisation is typically performed on textual content (i.e.,
strings) and refers to either languages only or physical location.
However, the purpose of this work is to develop a method

of localising services by implementing a ’mediator’ type
service which interacts between the Application Programming
Interfaces (APIs) of the service provider and the requester. We
are going to focus on a number of locale dimensions such as
language, taxation, currency and units. An example of a request
which requires localisation can be seen in Figure 1, which
illustrates an example of a financial service provided to a range
of locales (locations or regions requiring equal conversions).

Fig. 1: Overview of Requests Requiring Localisation

We aim to provide service-level language translation tech-
niques to localise services (including API interfaces) to differ-
ent languages. Regulatory translation which includes currency,
units and taxation among other legal governance and com-
pliance rules will be provided by standards-based mappings.
Regulatory translation is important for applications to comply
with varying regional laws and regulations.

The objectives of service localisation include primarily
the introduction of service-centric localisation techniques. A
specific need is to make localisation techniques available at
runtime for dynamic localisation, which is required for cur-
rencies and other variable aspects. Thus, Service Localisation
(SL) provides a mechanism for converting and adapting various
digital resources and services to the locale of the requester. A
greater end-to-end personalisation of service offerings is an
aim. A Localisation Provider act as an intermediary between
the service provider and the requester. In our proposed plat-
form, this is supported by a mediation service. By generating
a common platform solution for these localisation issues, we
allow the ability to dynamically localise Web services to be
made with little effort. Our key contributions are:

• Software Localisation at Service Level - the main
concern is a standardised mapping within a potentially

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

heterogeneous environment.

• Adaptation and Integration - the main concern is
the maintenance of service quality after it has been
localised through adaptation.

The novelty of the proposed solution lies in filling a gap
between service adaptation techniques (largely ignoring the
regulatory and lingual aspects) and service internationalisation,
which looks into localisation concerns, but only to a basic ex-
tent covering data formats and unit and currency conversions.
We aim to show through a concrete example an appropriate use
of Service Localisation. The example also attempts to illustrate
various benefits and use cases. We also discuss motivating
factors behind using a localisation technique.

In the next section, we discuss the motivation behind
developing a Service Localisation implementation. Section 3
defines a platform architecture for Service Localisation. In
Section 4, we introduce aspect-specific localisation techniques
which we investigated and implemented. Section 5 introduces
the implementation and evaluates our solution to the Service
Localisation problem. Section 6 contains the related work dis-
cussion. In Section 7, future directions and possible extended
infrastructures are explored. We end with related work and
concluding comments.

II. MOTIVATION

Our main focus is a platform for service localisation, which
makes a shift from the typical ”one size fits all” scenario
towards a more end-to-end personalised service scenario.
Currently, services computing suffers from localisation and
adaptability issues for multiple users in different regions. These
issues could be overcome if a multi-lingual and multi-regional
solution was developed [15], [22]. The different localisation
issues of a service can be illustrated. The scenarios described
below are used to illustrate benefits to service localisation:

• End-User Services: Some software-as-a-Service
providers only support one region with one specific
language. There is a possibility to perform localisation
both statically (compile-time) and dynamically (run-
time), which typically involves localising service
values and interacting messages.

• Business Services: Various business centric applica-
tions including applications for documentation and
analysis could be localised to support various legal and
regional locales. Business services typically require
more customisation than end-user consumers.

• Public Sector Services: As governments outsource
their computing infrastructure to external providers,
it is becoming more important for the providers to
supply solutions which take into account various
regulatory governance aspects such as currency and
taxation and also lingual localisation.

Another scenario which provides a detailed view of the
benefits of service localisation could be a service provider,
used to manage company accounts for its customers. This
could be a company which has offices in different global
locations and would like to provide localisation based on
customer region and localisation for its individual offices.

• Regulatory: Conversion of data between standards
and their variants, e.g., based on different units of
measurement Metric→ Imperial.

• Currency: Conversion of between currencies, e.g.,
Euro→ Dollar.

• Lingual: Translation of service related data between
languages. This could include free text, but also
specific vocabularies based on business product and
process standards such as GS1 or EANCOM.

• Taxation: Different customers have different taxation
requirements, e.g., VAT rates. Localisation of accounts
software can take this into account for each locale.

A. Use Cases and Requirements

In order to demonstrate the need for localisation of Web
services, we chose to demonstrate the issue using a concrete
case of an environment which utilises service-level access to
a stock exchange interface. Imagine an Irish user who wishes
to access data from the New York Stock Exchange, which is
provided in an English format with the currency in dollars. A
user in France may also wish to access data from the New
York Stock Exchange using a French interface where local
regulations require French to be used for data and/or service
operations. Therefore, there must be a mechanism to convert
the currency to Euro or to another currency which the requester
specifies. There must also be a mechanism to convert the
language to that of the requester.

At application level, two sample calls of a stock exchange
data retrieval service for the two different locales (IE-locale
with English as the language and EUR as the currency and FR-
locale with French as the language and EUR as the currency)
retrieve the average stock price for a particular sector - in this
case the financial sector as follows:

• Retrieve(20/08/2012, F inancial)→ 30.50 EUR

• Récupérer(20.08.2012, F inancier)→ 30, 50 EUR

In the US-locale with English as the language and USD as the
currency, the same API call could be the following:

• Retrieve(08/20/2012, F inancial)→ 38.20 USD

The following elements in this case are localisable:

• Date: in order to preserve regulatory governance, the
date format requires to be changed depending on the
requester locale.

• Language: names of functions from the API are trans-
lated between languages.

• Currency: values are converted as normal and this
would apply to any other units.

This list can vary depending on the environment where dif-
ferent regulatory constraints might apply. In general, it can
be expected that there is always a linguistic element to the
localisation of any product, but elements may also include
taxation and units of measurement. If it was the case that the
requesters were trying to access weather forecasts for their

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Fig. 2: Architecture of the Localisation Platform.

own region and formatted in their own locale, then it would
be necessary to utilise a conversion for units of measurement:

• Prévision(20.08.2012)→ 30◦Celsius

• Forecast(20/08/2012)→ 15◦Celsius

In the US-locale with English and imperial units, the same API
call could be Forecast(08/20/2012)→ 87◦Fahrenheit.

III. PLATFORM ARCHITECTURE

Localisation of services requires a framework to be im-
plemented to facilitate various localisation methods. These
various methods, implemented as services in our proposed
localisation platform, are used to facilitate the localisation of
localisable elements or artefacts. This paper focuses on the
dynamic localisation of service level descriptions.

With every service there are various elements which may
be localised. These elements include:

• Service specifications/descriptions (APIs)

• Models (structural/behavioural)

• Documentation (for human consumption)

• Messages exchanged between services

Services are normally written to be independent of locales,
however localisation is often needed. A localisation platform
should be based on attributes which vary from locale to locale,
like time or date format.

A service localisation platform requires a number of ele-
ments. These elements can be pre-translated fragments in static
form or can be dynamic translation systems. Figure 2 aims
to demonstrate the concept of a policy and mappings based
system, which can be scaled when additional processes are
attached to the mediation process. In the platform architecture,
user-specific locale policies are applied to service endpoints.
For example, in a WSDL file we may localise messages and
operation names. Rules for each type of translation would
be stored in a rules database (General Rules Repository).
Similarly, mappings between common translations would be
stored in a mappings database (Translation Memory).

A mediator operates between users (with different locales)
and several service providers (with different locales) by provid-
ing core localisation services, such as currency conversion and
language translation. The architecture supports the following:

• Static Mappings: these could be the mapping of one
language to another or one unit to another, pre-
translated in translation memories.

• Dynamic Localisation: when translation mappings are
not stored, dynamic localisation is required in order
to obtain a correct translation and store the mapping.

• Policy Configuration: in order to configure the various
locale policies, we must generate particular translation
rules, supported by a logical reasoning component.

• Negotiation: this is the exchange of locale policies
through the form of XML and SOAP from a web
services point of view.

• Localisation of Services: the mappings between the
remote service and the localised service description
must be stored in a mappings database (Translation
Memory) so the localised service has a direct rela-
tionship with the remote service.

The workflow is concequently Negotiation →
PolicyConfiguration→ Localisation→ Execution.

Some examples shall illustrate the functionality of the
platform. Table I defines two different locales in XML profiles.
A mismatch between the requester locale and the provider
locale needs to be bridged by the mediator localisation service.
The language as a lingual aspect and country, currency and unit
codes are regulatory concerns.

TABLE I: Sample Environment Setup

<SLContext>
<Loca le s>

<R e q u e s t e r L o c a l e>
<LanguageCode>e f r </LanguageCode>
<CountryCode>FR</CountryCode>
<CurrencyCode>EUR</CurrencyCode>
<UnitCode>M</UnitCode>

</ R e q u e s t e r L o c a l e>

<P r o v i d e r L o c a l e>
<LanguageCode>en</LanguageCode>
<CountryCode>IE</CountryCode>
<CurrencyCode>EUR</CurrencyCode>
<UnitCode>M</UnitCode>

</ P r o v i d e r L o c a l e>

</ Loca le s>
</SLContext>

The locale definitions decide how a given service API (in
WSDL) is localised. Results from a sample execution of the
localisation service (the mediator) is displayed in Tables II and
III based on the XML locale definitions of the environment in
Table I. Table II shows excerpts from an original WSDL file.
Table III shows the localised WSDL after the application of
lingual localisation in this case (translation from English (IE
locale) into French (FR locale) – for simplicity of the example,
we have focused on this single aspect only), compliant with
the two locale definitions from the first listing.

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

TABLE II: Sample Input - Provider Locale

<wsdl : message name=” quo teResponse”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” quo t eResponse ”/>
</wsdl : message>
<wsdl : message name=” q u o t e R e q u e s t”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” q u o t e ”/>
</wsdl : message>
<wsdl : p o r t T y p e name=” Quote”>
<wsdl : o p e r a t i o n name=” g e t Q u o t e”>
<wsdl : i n p u t name=” q u o t e R e q u e s t ”

message =” q u o t e R e q u e s t ”/>
<wsdl : o u t p u t name=” quo teResponse ”

message =” quo t eResponse ”/>
</wsdl : o p e r a t i o n>

</wsdl : por tType>

TABLE III: Sample Output - Localised WSDL

<wsdl : message name=” quo teReponse”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” quo teReponse ”/>
</wsdl : message>
<wsdl : message name=” c i t e rDemande”>
<wsdl : p a r t name=” p a r a m e t e r s ”

e l e m e n t =” c i t e r ”/>
</wsdl : message>
<wsdl : p o r t T y p e name=” C i t e r ”>
<wsdl : o p e r a t i o n name=” g e t C i t e r ”>
<wsdl : i n p u t name=” c i t e rDemande ”

message =” c i t e r R e q u e s t ”/>
<wsdl : o u t p u t name=” c i t e rDemande ”

message =” c i t e rDemande ”/>
</wsdl : o p e r a t i o n>

</wsdl : por tType>

IV. LOCALISATION PLATFORM – RULES AND SERVICES

We have outlined the core platform architecture in the
previous section with the central services. In order to provide
the localisation platform services, we need to implement a
number of classes to enable a modular service localisation
platform. Their interaction is summarised in Figure 3. Details
of underlying concepts of their operation are explained now.

A. Rule-based Locale Definition and Conversion

At the core of our service localisation platform is a
language to specify the rules in relation to localisations. In
most cases, languages like WSDL and other XML languages
provide information regarding the services that are provided
via an API. However, in order to encapsulate localisation
information, there is a necessity to provide a language which
will contain details in relation to the locales of the requester
and the provider. For the purpose of our localisation platform,
we use a policy language based on the Semantic Web Rule
Language SWRL, which is based on the propositional calculus.

A localisation layer encapsulates the various forms of
translations. It describes the relationships between localis-
able elements. For example, it contains the details of items
which can be translated. For our localisation model these are
documentation and descriptions, but also API messages and
operations. The rule language is used to define policies of
two types: firstly, locale definitions and, secondly, conversion
(translation) rules. We motivate the rule set through examples.

Firstly, there are a number of locale definition rules
provided, like Loc or hasCur, by which locales for specific

Fig. 3: A UML Sequence Diagram of the Platform.

regions are described. A locale can also be described by other
rules such as hasTax, hasLang and hasUnit. Examples of
three region’s locales - IE, US, and FR - are:

IELoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
?z = en∧ ?c = EUR∧ ?u = metric

USLoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
?z = en∧ ?c = USD∧ ?u = imperial

FRLoc(?l)← Loc(?l) ∧
hasLang(?l, ?z) ∧ hasCur(?l, ?c) ∧ hasUnit(?l, ?u) ∧
:?z = fr∧ ?c = EUR∧ ?u = metric

The benefit of a formal framework for the rules is that
other rules can be inferred by from partial information. For
example, if we knew that a locale had USD as its currency
we may be able to infer its country from it:

?c = USD →?l = USLocale.

These inferred rules do not apply in general - this may not
work if we know a currency is Euro in which case it could
be one of many locales in Europe. The purpose of these rules
could be to determine inconsistencies, however. Preconditions
can clarify the remit of these rules.

Secondly, a generalised conversion between locales, e.g.,
Locale A → Locale B, is given by the following general
conversion rule:

IELoc2USLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2) ∧
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2) ∧
?z2 = convertLang(en, en, ?z1) ∧

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

?c2 = convertCur(EUR,USD, ?c1) ∧
?u2 = convertCur(metric, imperial, ?u1)

IELoc2FRLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2) ∧
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2) ∧
?z2 = convertLang(en, fr, ?z1) ∧
?c2 = convertCur(EUR,USD, ?c1) ∧
?u2 = convertCur(metric,metric, ?u1)

Depending on requester and provider locale any combi-
nation of mappings/translations can be generated by the core
rules.

B. Localisation Mediator

Based on these local definition and conversion rules, a
number of services operate. In order to provide a transparent
localisation system, one class acts as a mediator, as visualised
in Figure 4, which could use individual services for: Lingual
Conversion, Currency Conversion, Regulatory Governance,
Units Conversion, and WSDL Parsing & Generation. Within
this mediator, implemented as a Java class, we have various
methods which call the other localisation services of the
platform.

During execution of the localisation platform, an XML file
is first passed to the mediator. The Mediator Service then
sets up a localisation environment using the locale details
provided in LocaleConfig.xml, the class performs this via the
use of Java Interfaces. Once the locale is set up, the service
Web Service Description Language (WSDL) file is parsed and
various elements are localised resulting in a localised WSDL
file which can be used to access localised operation mappings.
This class is the work horse of the platform and can be
extended with the introduction of other localisation classes.

Fig. 4: A Component Diagram Displaying Extensibility.

Linguistic artefacts are one of the most broadly localised
elements of software today. We propose machine translation
(MT) to achieve automation. While further research into
a tailored MT solution is required to specifically address

limited textual context and controlled vocabularies for APIs,
language translation within the proposed platform is provided
by the Google Translate API. In the interest of performance,
our platform tries to make as few API calls to Google
as possible. Instead it stores translations of popular words
and glossaries within a local language mapping database
(Translation Memory) for later retrieval. A local machine
translation system may also reduce this latency, as it would
no longer have to depend on TCP/IP performance. The
conversion rule for language translation is given by:

IELoc2FRLoc(?l1, ?l2)←
hasLang(?l1, ?z1) ∧ hasLang(?l2, ?z2) ∧
?z2 = convertLang(en, fr, ?z1)

Regulatory localisation through adaptation to other
regulatory standards is based on localising regulatory
concerns. These concerns include, but are not limited to the
following: Taxation, Currency, and Units of Measurement.
We have chosen to localise a subset of these concerns. For
the purpose of units localisation, we developed an interface
to a repository of unit conversion formulae. These formulae
provided conversions between the metric and imperial units
of measure. The conversion rule for units is given by:

IELoc2USLoc(?l1, ?l2)←
hasUnit(?l1, ?u1) ∧ hasUnit(?l2, ?u2)
∧ ?c2 = convertUnits(metric, imperial, ?u1)

Due to a large number of currencies used globally, it
was necessary to develop a class which dealt with currency
conversion. For the purpose of currency localisation, we
use exchange rates from the European Central Bank. This
is in our case supported by a MySQL database. Currencies
are manipulated based on their rate compared to Euro as
the base currency. The conversion rule for currency is given by:

IELoc2USLoc(?l1, ?l2)←
hasCur(?l1, ?c1) ∧ hasCur(?l2, ?c2)
∧ ?c2 = convertCur(EUR,USD, ?c1)

In order to parse the input in the form of WSDL files, a
WDSL service class is used. This class contains the methods
required to manipulate both incoming WSDL files of the
service provider and has the ability to generate a localised
WSDL file. The class can be considered as an I/O Manager.
XLIFF is an XML standard for translation that proved useful
when it comes to the localisation of WSDL file.

V. IMPLEMENTATION AND EVALUATION

The localisation platform presented here was fully im-
plemented in a Java prototype that aims at studying the
feasibility of the conceptual solution. It shall be assessed on the
following criteria here: Performance and Extensibility. These
criteria have different effects on the end-user experience of the
product. These criteria are key performance indicators (KPI)
and critical success factors (CSF) of the localisation platform
described.

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

Poor performance often tends to affect software exponen-
tially as multiples of users consume a service at the same
time. The core question here is the overhead created by
adding localisation dynamically to service provisioning. Our
results show an acceptable overhead of 10-15 % additional
execution time for fully localised services (i.e., localisation
involving different localisation aspects). The overhead is still
low compared to network latency and the average service
execution time [22]. As the application deals with multiple
users, the latency would increase due to extra loads placed on
the platforms services. This makes latency one of the KPIs of
the project. Latency, is also an area to be assessed as adding
the localisation platform to the workflow of an existing process
has the potential to add lag-time. This lag-time exists due
to time required to compute and also the time to initialise
the various variables. The propagation latency is displayed in
Table IV below. It should be noted that figures can be affected
by environmental changes or the locale we are transforming
from and the locale we are transforming to.

TABLE IV: Latency Table - Localisation of Service

Service Prior (µs) Post (µs) ∆t (µs)
NASDAQ 132 182 50

FTSE 110 152 42

As a general strategy, we have aimed to improve perfor-
mance by using pre-translated aspects (through stored map-
pings). A related concern is scalability of software becomes
more important when a service may have large multiples of
users. Scalability has not been empirically addressed for this
phase of research and will be evaluated in later prototypes.

• Some components of the platform would require
modification to effectively allow the infrastructure to
vertically scale-up or scale-out efficiently. Solutions
here are stateless programming and data external-
isation. Through our rule base, and the suggested
pre-translation repositories some suitable architectural
decision in this direction have already been made.

• Horizontal scalability - i.e., the addition of more lo-
calisation concerns - is conceptually easily supported
by the modular mediator architecture, which we will
address further below in the extensibility context from
an implementation view.

An interesting model to investigate the scalability is a tuple
space-based coordination approach [6], [7], [11], which would
allow a flexible and elastic assignment of localisation services
to multiple requests.

Extensibility becomes important when dealing with com-
plete platforms like a localisation platform. During an initial
development, it is often the case that features need to be in-
cluded due to various constraints. In the case of the localisation
platform described here, some localisation services where not
developed, some of which include a service to handle taxation.
However, the platform was designed to be extendable. At a
platform level, this allows for the addition of further services
and the support for more locales.

VI. RELATED WORK

We provide a different view and perspective on the subject
compared to other publications [9], [15], [18]. The area of
localisation in its wider adaptivity and customisation sense
has been worked on in various EU-supported research projects,
such as SOA4ALL [17] and 4Caast [?]. These projects address
end-user adaptation through the use of generic semantic mod-
els. Areas such as software coordination are also covered. The
mOSAIC project adds multi-cloud provision to the discussion.
Our framework however is modular and extensible and aims
to provide a one-stop shop for all localisation methods.

The platform which is described here addresses the need for
dynamic localisation of various artefacts by use of a translation
memory and a set of logical rules. Software Localisation refers
to human consumption of data which are produced by the
software - namely messages and dialogues. Our focus is on
the localisation of the service level. Service internationalisation
is supported by the W3C Service Internationalisation activity
[16], [20]. Adaptation and Integration of services based on lo-
cales and using a translation memory with rules and mappings
is new [18]. The problem of multi-tenancy is a widespread
issue in the area of cloud computing [22]. This is an area
where a lot of research is being invested in order to provide
a platform for different users with different business needs to
be kept separate and their data to be kept private. Semantics
involves the matching of services with various locales using
mappings and rule-based system [2], [4], [9].

There are implementations which can perform localisation
operations on web services [10]. The use of some of these
however is restricted due to the nature of them. Some of the
other implementations require a specific Integrated Develop-
ment Environment or specific proprietary libraries. They also
typically enable localisation at compile time - the proposed
implementation in this paper is to enable service localisation
at run time. IBM has presented a static localisation solution
suitable for web services using its WebSphere platform [10],
which requires the WSDL files to be generated within the In-
tegrated Development Environment prior to deployment. This
differs from our proposed localisation platform as our solution
aims to perform transformations between locales dynamically.

VII. CONCLUSION AND FUTURE WORK

Service localisation falls into the service personalisation
and adaptation context. There are particular engineering meth-
ods and tools which can be employed to allow services
to be adapted to different locales. A Service Localisation
implementation should allow for automatically adjusting and
adapting services to the requesters’ own locales. We have
presented a modular implementation which can enable services
to be introduced into emerging markets which have localisation
issues. Localisation hence provides a mechanism to widen
a service provider’s target market by enabling multi-locale
solutions. The easiest solution is for a service provider to
provide a ’mediator’ service which could act as middleware
between a requester and the service provider.

By allowing services to be localised, we are enabling
the provision of multi-locale services to create interoperable
service ecosystems (such as clouds). Due to the nature of
third-party services, it is more intuitive for service localisation

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

to be performed dynamically through the use of a mediator
service. Service localisation thus enables higher availability of
services through its use of innovative interfacing. This type of
localisation would be value-add for a company which may not
have the resources to perform localisation in-house.

The objectives of Service Localisation have been presented
in two forms. Firstly, presented was a conceptual framework
which demonstrated key motivational reasons for developing
a multi-locale support framework. The second part presented
a modular platform, which is extensible to allow the support
of further localisable artefacts. The platform which was imple-
mented was using Java libraries was discussed as this program-
ming solution copes well with the problem of extensibility.

The proposed service localisation fills a gap. Software
adaptation has looked into adapting for instances services
in terms of their user’s interface needs such as data types
and formats. The two focal localisation concerns lingual and
regulatory add new perspectives to this area of research. A
different activity is the Web services internationalisation effort,
which looks into basic localisation concerns such as units,
currency or the format of dates. Our localisation solution
includes these (as we have demonstrated with the currency
aspect), but expands these into a comprehensive framework.

The context of adaptation and translations/mappings used
to facilitate this is a broad field. Our aim here was to integrate
difference concerns into a coherent localisation framework.
This relies on individual mappings. As part of our future
work, we aim to add a semantic layer, which would support
to concerns. Firstly, it would allow more reliable translations
for non-trivial concerns if overarching ontologies were present.
Secondly, the different concerns themselves could be integrated
by determining interdependencies. Another direction of future
research is to look into composition and, specifically, the
behaviour of individual service localisation in for instance
service orchestrations or other coordination models (e.g., tuple
spaces as suggested above).

REFERENCES

[1] 4CaaSt. ”Building the PaaS Cloud of the Future”. EU FP7 Project.
http://4caast.morfeo-project.org/. 2013.

[2] D. Anastasiou. ”The impact of localisation on semantic web standards.”
European Journal of ePractice, 12:42–52. 2011.

[3] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin and I. Stoica. ”A view of cloud computing.”
Communications of the ACM, 53(4):50–58. 2010.

[4] K.Y. Bandara, M.X. Wang and C. Pahl. ”Dynamic integration of context
model constraints in web service processes.” International Software
Engineering Conference SE’2009. IASTED. 2009.

[5] K. Chen and W. Zheng. ”Cloud computing: System instances and current
research.” Second International Conference on Future Networks, 2010.
ICFN ’10, pp. 88–92. 2010.

[6] G. Creaner and C. Pahl. ”Flexible Coordination Techniques for Dynamic
Cloud Service Collaboration.” In Proceedings Workshop on Adaptive
Services for the Future Internet WAS4FI. ServiceWave 2011. 2011.

[7] E.-E. Doberkat,W. Hasselbring, W. Franke, U. Lammers, U. Gutenbeil,
and C. Pahl. ”ProSet - a language for prototyping with sets.” In
International Workshop on Rapid System Prototyping 1992. pp. 235-248.
IEEE, 1992.

[8] P. Fingar. ”Cloud computing and the promise of on-demand business
inovation.” InformationWeek, July 13, 2009.

[9] K. Fujii and T. Suda. ”Semantics-based context-aware dynamic service
composition.” ACM Transactions on Autonomous and Adaptive Systems
(TAAS), 4(2):12. 2009.

[10] IBM. ”IBM Developer Technical Journal: Developing internationalized
Web services with WebSphere Business Integration Server Foundation
V5.1.” 2010.

[11] C. Pahl. ”Dynamic adaptive service architecturetowards coordinated
service composition.” In European Conference on Software Architecture
ECSA’2010. pp. 472-475. Springer LNCS. 2010.

[12] C. Pahl. ”Layered Ontological Modelling for Web Service-oriented
Model-Driven Architecture.” European Conference on Model-Driven
Architecture - Foundations and Applications ECMDA’05. Springer. 2005.

[13] C. Pahl, S. Giesecke and W. Hasselbring. ”An Ontology-based Ap-
proach for Modelling Architectural Styles.” European Conference on
Software Architecture ECSA’2007. Springer. 2007.

[14] C. Pahl, S. Giesecke and W. Hasselbring. ”Ontology-based Modelling
of Architectural Styles.” Information and Software Technology. 1(12):
1739-1749. 2009.

[15] C. Pahl. ”Cloud Service Localisation.” European Conference on
Service-Oriented and Cloud Computing ESOCC 2012. Springer. 2012.

[16] A. Phillips. ”Web Services and Internationalization.” Whitepaper. 2005.
[17] SOA4All. ”Service Oriented Architectures for All”. EU FP7 Project.

http://www.soa4all.eu/. 2012.
[18] H. Truong and S. Dustdar. ”A survey on context-aware web service

systems.” Intl Journal of Web Information Systems, 5(1):5–31. 2009.
[19] W. Voorsluys, J. Broberg and R. Buyya. ”Cloud Computing: Principles

and Paradigms.” John Wiley and Sons. 2011.
[20] W3C. ”Web Services Internationalization Usage Scenarios.” W3C.

2005.
[21] M.X. Wang, K.Y. Bandara and C. Pahl. ”Integrated constraint violation

handling for dynamic service composition.” IEEE Intl Conf on Services
Computing. 2009. pp. 168-175. 2009.

[22] M.X. Wang, K.Y. Bandara and C. Pahl. ”Process as a service distributed
multi-tenant policy-based process runtime governance.” International
Conference on Services Computing (SCC), pp. 578–585. IEEE. 2010.

[23] H. Weigand, W. van den Heuvel and M. Hiel. ”Rule-based service com-
position and service-oriented business rule management.” Proceedings of
the International Workshop on Regulations Modelling and Deployment
(ReMoD’08), pp. 1–12. 2008.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-270-7

SERVICE COMPUTATION 2013 : The Fifth International Conferences on Advanced Service Computing

