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Abstract—ScienceWeb is a system that provides answers to
qualitative and quantitative queries of a large knowledge base
covering science research. The system will support the com-
munity joining together, sharing the insights of its members, to
evolve the large knowledge base. ScienceWeb will need to scale
to accommodate the substantial corpus of information about
researchers, their projects and their publications. It will need to
accommodate the inherent heterogeneity of both its information
sources and of its user community. A reasoning system supports
the queries and scalability becomes a serious challenge. In this
paper we describe experiments and the resulting reasoning
architecture and services whose scalability and efficiency are
able to meet the requirements of query and answering in
ScienceWeb. One key element of the services is an adaptive
combination of both Query-invoked Inference and Materializa-
tion Inference together with incremental inferencing for more
efficient query and answering. Second, we introduce new ways
of storing, grouping and indexing objects in the knowledge
base for faster searching and reasoning as the size of the
triple set scales to the millions and the complexity of the Abox
increases. The adaptive reasoning architecture and resulting
adaptive reasoning service should provide efficient reasoning
based on a scalable knowledge base.
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I. INTRODUCTION

Consider a potential chemistry Ph.D. student who is trying
to find out what the emerging areas are that have good
academic job prospects. What are the schools and who
are the professors doing groundbreaking research in this
area? What are the good funded research projects in this
area? Consider a faculty member who might ask, “Is my
record good enough to be tenured at my school? At another
school?” Similarly consider a National Science Founda-
tion (NSF) program manager who would like to identify
emerging research areas in mathematics that are not being
currently supported by NSF. It is possible for these people
each to mine this information from the Web. However, it
may take a considerable effort and time, and even then the
information may not be complete, may be partially incorrect,
and would reflect an individual perspective for qualitative
judgements. Thus, the efforts of the individuals neither take
advantage of nor contribute to others’ efforts to reuse the
data, the queries, and the methods used to find the data.

A number of projects (e.g., Arnetminer [1]) have built
systems to capture limited aspects of community knowledge
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and to respond to semantic queries. However, these lack the
level of community collaboration support that is required to
build a knowledge base system that can evolve over time,
both in terms of the knowledge it represents as well as the
semantics involved in responding to qualitative questions.
These systems are also homogeneous, in the sense that
they harvest data from one type of resources. A team at
ODU is working on ScienceWeb [2] [3], which will combine
diverse resources such as digital libraries for published
papers, curricula vitae from the web, and agency data bases
such as NSF’s research grant data base and that will use
collaboration as the fundamental approach to evolve its
knowledge base.

Collaboration is at the heart of the approach to build
ScienceWeb. Such collaboration includes building and evolv-
ing the knowledge base, building, evolving and reusing
queries and identifying, specifying methods and harvesting
raw information. The interaction between the system and
people must be effective enough to allow for collaborative
development.

Reasoning over the knowledge base provides support for
answering qualitative questions and quantitative questions,
whose scalability and efficiency influence greatly the re-
sponse time of the system. ScienceWeb is a system that
collects various research related information. The more
complete the knowledge base is, the more helpful answers
the system will provide. As the size of knowledge base
increases, scalability becomes a challenge for the reasoning
system. It may handle millions units of reasoning items in
the knowledge base. As users make changes to the basic
descriptors of the knowledge base, fast enough response
time (ranges from seconds to a few minutes) in the face
of changes is one of the core challenges for the reasoning
system.

In this paper, we describe an adaptive reasoning archi-
tecture and an adaptive reasoning service whose scalability
and efficiency are able to meet the interaction requirements
in ScienceWeb system when facing a large and evolving
knowledge base. The remainder of this paper is organized
as follows: Section II describes the prior research relevant
to this paper. Section III describes the work already done
to implement parts of the ScienceWeb system. Section IV
describes the adaptive reasoning service for ScienceWeb.
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Section V presents the conclusions.

II. BACKGROUND

There are a large number of knowledge bases for a variety
of domains.

An example of a sophisticated knowledge base in Com-
puter Science is Arnetminer [1], which provides profiles of
researchers, associations between researchers, publications,
co-author relationships, courses, and topic browsing. It has
the capability to rank research and papers. It is a centrally
developed system with fixed queries and schemas for data,
but the knowledge base is continually growing as new data
become available.

A. Ontologies

There has been increasing effort in organizing web infor-
mation within knowledge bases using ontologies. Ontologies
can model real world situations, can incorporate semantics
that can be used to detect conflicts and resolve inconsisten-
cies, and can be used together with a reasoning engine to
infer new relations or proof statements. For example, the
DBpedia [4] project focuses on converting Wikipedia [5]
content into structured knowledge.

A number of tools exist for collaboratively designing and
developing ontologies: for example, CO-Protégé [6], and
Kaon2 [7].

Research in the field of knowledge representation and
reasoning usually focused on methods for providing high-
level descriptions of the world that can be effectively used
to build knowledge-based systems. These knowledge-based
systems are able to get implicit consequences of its explic-
itly represented knowledge. Thus, approaches to knowledge
representation are crucial to the ability of finding inferred
consequences [8]. Early knowledge representation methods
such as frames [9] and semantic networks [10] lack well-
defined syntax and a formal, unambiguous semantics, which
are elements of qualified knowledge representation. Descrip-
tion Logic (DL) was therefore introduced into knowledge
representation systems to improve the expressive power.
Description Logic [11] is a family of logic-based knowledge
representation formalisms, which is designed to represent the
terminological knowledge from an application domain [12].

A DL knowledge base analogously consists of two parts:
intentional knowledge (TBox), which represents general
knowledge regarding a domain, and extensional knowledge
(ABox), which represents a specific state of affairs. The
“T” in the term “TBox” denotes terminology or taxonomy,
which is built based on the properties of concepts and
the subsumption relationships among the concepts in the
knowledge. The “A” in the term “ABox” denotes assertional
knowledge that includes individuals of the specific domain.
[8]1[13]
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B. Inference Methods

The main reasoning tasks for DL reasoners are verify-
ing KB consistency, checking concept satisfiability, concept
subsumption and concept instances [12]. Algorithms for
reasoning in DLs are: structural subsumption algorithms
[14], the resolution-based approach [15], the automata-based
approach [16][17], and the tableau-based approach [18],
which is currently the most widely used reasoning algorithm
for DLs. There are three kinds of inference methods for First
Order Logic (FOL): Forward chaining, Backward chaining
and Resolution [19].

Materialization and Query-rewriting are the most popular
inference strategies adopted by almost all of the state of the
art ontology reasoning systems. Materialization means pre-
computation and storage of inferred truths in a knowledge
base, which is always executed during loading the data
and combined with forward-chaining techniques. Query-
rewriting means expanding the queries, which is always
executed during answering the queries and combine with
backward-chaining techniques.

Materialization and forward-chaining are suitable for fre-
quent, expensive computation of answers with data that are
relatively static. Owlim [20] [21], Oracle 11g [22], Minerva
[23] and DLDB-OWL [24] all implement materialization
during loading of the data. Materialization permits rapid an-
swer to queries because all possible inferences have already
been carried out. But any change in the ontology, instances,
or custom rules requires complete re-processing before re-
sponding to any new queries. Furthermore, a large amount
of redundant data may be produced by materialization of
a large knowledge base, which may slow the subsequent
loading and querying.

Query-rewriting and backward-chaining are suitable for
efficient computation of answers with data that are dy-
namic and infrequent queries. Virtuoso [25] is one system
that implements dynamical reasoning when it is necessary.
This approach improves the performance of answering new
queries after data changes and simplifies the maintenance
of storage. But frequent repeated queries in query-rewriting
will require repeated reasoning, which is time-consuming
compared to pure search in materialization. Hstar [26]
attempts to improve performance by adopting a strategy of
partially materializing inference data instead of complete
materializing.

A hybrid approach may give the best of both worlds. Jena
[27] supports three ways of inferencing: forward-chaining,
backward-chaining and a hybrid of these two methods. An
adaptive hybrid approach would combine the strong points
of both patterns for better performance under changing
circumstances.

C. Storage Scheme

Semantic web applications can contain large amounts of
data conformed to the ontology. How to store these large
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amounts of data and how to reason with them becomes a
challenging.

Generally, there are two main kinds of ontology stores,
native stores (disk-based stores) and database-based stores.
Native stores are built on the file system, while database-
based stores use relational or object relational databases as
the back-end store.

Examples of native stores are OWLIM [20] [21], Allegro-
Graph [28], Sesame Native [29], Jena TDB [27], Hstar [26]
and Virtuoso [25].

Representative database-based stores are: Jena SDB [27],
Oracle 11g R2 [22], Minerva [23], (Sesame + MySQL) [29],
DLDB-OWL [24] and (Sesame+ PostgreSQL) [29]. They all
take advantage of existing mature database technologies for
persistent storage.

The advantage of native stores is that they reduce the
time for loading and updating data. However, a disadvantage
of native stores is they are not able to make direct use of
the query optimization features in database systems. Native
stores need to implement the functionality of a relational
database from the beginning, such as indexing, query opti-
mization, and access control. As for database-based stores,
the advantage is that they are able to make full use of mature
database technologies, especially query optimization while
the disadvantage is that they may be slower in loading and
updating data,

D. Reasoning over Large ABoxes

Due to the large size of instance data conformed to
corresponding ontology in many knowledge bases, reasoning
over large ABoxes has become an issue in the fields of
Semantic Web and Description Logics. There are two main
kinds of approaches to dealing with this issue. The first
approach includes designing novel algorithms, schemes and
mechanisms that enhance the reasoning ability on large
and expressive knowledge bases. Compared with some used
state-of-the-art DL reasoners such as Racer, FaCT++, and
Pellet, Kaon2 has been shown to have better performance on
knowledge bases with large ABoxes but with simple TBoxes
[30]. The second approach adopts simplification by reducing
the expressive power of TBoxes describing large ABoxes.
Calvanese et al. [31] have proposed a new Description Logic,
called DL-Lite, which is not only rich enough to capture
basic ontology languages, but also requires low complexity
of reasoning.

We summarize the different ontology based reasoning
systems along with the features they support in Table I.

III. SCIENCEWEB

This section describes the work we have already done to
implement parts of the ScienceWeb system that includes the
design of the architecture of ScienceWeb, the ontology in
ScienceWeb and a synthetic data generator, the comparison
of ontology reasoning systems, the study on a selected
benchmarks and a formative study in Virginia.
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Figure 1.  Architecture of ScienceWeb

A. Architecture

ScienceWeb is a platform where researchers including
faculty, Ph.D. students and program managers can collabo-
ratively work together to get answers of their queries from a
consensus point of view or from their specific point of view.
The collaborative aspect is not only in the construction of
queries but in the construction of the underlying ontology,
rules and instance data. The proposed architecture of the
ScienceWeb is shown in Figure 1.

A traditional data mining architecture involves harvesting
from data sources to populate a knowledge base, which in
turn can then answer queries about the harvested content.
We propose to enhance this architecture by adding a layer
of collaborative clients for construction of queries, rules,
ontological concepts, and harvesting methods, mediated by
a layer of server functions that oversee and support the
evolution of each of those functional groups within the
knowledge base.

The system is built, developed and evolved based upon
users’ collaborative contributions. Users contribute during
querying & answering, harvesting and ontology evolution.
Querying is not an ordinary job of posting, parsing and
retrieving as in a conventional database. Instead, it becomes
an interactive, collaborative process. Harvesting and ontol-
ogy evolution also benefit from the information provided by
the users. Thus, collaboration is critical and widely spread
throughout the system.

B. Performance of Existing Reasoning Systems

As described in Section II, there have been a number of
studies on reasoning systems using only their native logic. To
provide credibility for our context, we used benchmark data
from these studies, replicate their results with native logic,
and then extend them by adding customized rules. We used
LUBM [32] for comparing our results with earlier studies.
The second set of data will emulate a future ScienceWeb.
Figure 2 shows the limited ontology class tree we deem
sufficient to explore the scalability issues.

Both the LUBM and the ScienceWeb ontologies are about
concepts and relationships in a research community. For
instance, concepts such as Faculty, Publication, and
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Table T
GENERAL COMPARISON AMONG ONTOLOGY REASONING SYSTEMS

Supports | Supports Rule Supports Repository:
RDF(S)? OWL? Language | SPARQL Persistent(P)/
Queries? | In-Memory (M)
Jena yes yes Jena Rules yes M
Pellet yes yes SWRL no M
Kaon2 yes yes SWRL yes M
Oracle 11g yes yes Owl Prime no P
OWLIM yes yes Owl Horst yes P
IResearcherI IDepartmentI Project IPuincationI IResearchFieldI IUniversityI
m IFunded Proj.l IUnfunded Proj.I
A
Faculty
% |Ms student| |PhD Student|
| |
|Adjunct Prof.l |Asst. Prof.l |Assoc. Prof.l |Fu|| Prof.l
|Patent| |ComputerProgram| [Thesis]
IPuinshedVqumeI

I MastersThesisI I PhDThesisl

IjournalArticIeI I bookChapterI IconferencePaperI

Figure 2.

Organization are included in both ontologies, as are
properties such as advisor, publicationAuthor, and
worksFor. All the concepts of LUBM can be found in
the ScienceWeb ontology, albeit the exact name for classes
and properties may not be same. ScienceWeb will provide
more detail for some classes. For example, the ScienceWeb
ontology has a finer granularity when it describes the classi-
fication and properties of Publication. The ontology shown
in Figure 2 represents only a small subset of the one to
be used for ScienceWeb. It was derived to be a minimal
subset that is sufficient to answer a few select qualitative
queries. The queries were selected to test the full capabilities
of a reasoning system and to necessitate the addition of
customized rules.

In support of the performance analysis described above, a
flexible system for generating benchmark knowledge base
instances of varying sizes has been developed [3]. The
major challenge for this generator was to not only produce
ontology-conformant data sets of the desired size, but to
guarantee a plausible distribution for the many properties
that relate objects across the knowledge base.
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We performed a study to compare the scalability of
existing reasoning systems when answering queries with
customized rules in addition to native logic. We selected
both LUBM and our own UnivGenerator [3] to provide
the sample data and defined 5 custom rule sets for this
experiment. Based on the comparison among these state-
of-the-art ontology reasoning systems on full rule sets and
transitive rule, we found [2] that OWLIM and Oracle offer
the best scalability for the kinds of datasets anticipated for
ScienceWeb, but they both have heavy loading and negative
implications for evolving systems.

C. The Need for Agile Reasoning

The authors conducted a survey of faculty and PhD stu-
dents at several universities in Virginia, aimed at determining
both the demand for a ScienceWeb-like facility and the
demands likely to be placed upon such a system [33]. Due to
the similar faculty and student structure among universities
in the USA, we believe this survey is likely representative
of university communities in the USA. We have not yet
explored differences likely to arise in a more international
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context. Notable results include:

o The perceived utility of a knowledge base with the
proposed scope of ScienceWeb is high. Respondents
indicated an interest in use of such information for
both research and hiring/promotion purposes (includ-
ing, apparently, job hunting by those expecting to
acquire new PhDs). More than 90% of respondents
indicated that they would have used such a system, had
it been available, in the past year, to find information
regarding hiring and promotion, with more than half
believing they would have used such a system multiple
times. Information on publications and projects had
even higher perceived value, with 100% of respondents
indicating that they would have used such a system
multiple times in the past year.

o There is rather lower willingness to invest time in
collaborative construction of such a system than might
have been expected. Slightly over 40% of respondents
would want to devote no more than a few minutes at
a time to such activities, with another 30% willing to
spend more than a few minutes but less than an hour.
A notable exception to that rule is in updating and
making corrections to one’s own personal information
in such a knowledge base, where more than 25% of
respondents indicated they would likely devote multiple
hours to validating and correcting information. This
suggests that identification of low-effort collaborative
techniques will be essential to the success of a Sci-
enceWeb.

o Respondents generally believed themselves to share a
consensus with both research peers and departmental
colleagues on quality judgments pertaining to research.
For example, more than 70% agreed with the statement
“I share a consensus with my research peers on the
criteria that define a groundbreaking researcher in my
field.”

By contrast, they did not believe that they shared
such a consensus on questions such as who might
be good candidates for hiring or awarding of tenure,
even with their Departmental colleagues. Less than 20%
agreed with the statement “I share a consensus with the
majority of my Departmental colleagues on the criteria
for hiring a new assistant professor”.

This is an interesting distinction because one of the
original motivations for ScienceWeb came from a desire
for a trusted source of information to address disputes
in the latter area.

One implication of these results is a system such as Sci-
enceWeb must place a high premium on quick exploration
of potential results. Users appear to be far more willing to
wait for results to a “final” query than to engage in multiple
iterations of time-consuming steps while composing a new

query.
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IV. ADAPTIVE REASONING SERVICE FOR SCIENCEWEB

Although the technology for storing large knowledge
bases is reasonably mature, the introduction of reasoning
components into the query process poses a significant chal-
lenge. Our own preliminary study has shown that extant
systems can provide fast responses to queries with substan-
tial reasoning components, but only at a cost of extensive
pre-processing, that is required to integrate new knowledge
instances and new rules. In essence, there is a trade-off
between scalability of query processing and the agility of
the system in responding to changes in the supporting rules
and evolution of the data.

A. Architecture

There are two competing strategies that can be used by
this reasoning system: materialized inference, where all the
rules in the system are fired at once and all inferred triples
are generated, and query-invoked inference where relevant
rules (TBox inference) in the system are fired after a query
is accepted and partial inferencing (ABox inference) is done.
To achieve the goal of improving the performance and
scalability of reasoning, we propose an adaptive reasoning
architecture that exploits both of these strategies. So far
Jena is the only one system we found that contains both
of these two strategies, but Jena’s approach does not scale
well to the size of knowledge base expected for ScienceWeb.
The adaptive mechanism needs to determine what part of
TBox inferencing is stable and what part of inferred in-
stances should be temporary for incremental inferencing. For
query-invoked inference the mechanism needs to determine
what part of Tbox inferences should be pre-computed. As
appropriate, the adaptive mechanism will switch between
query-invoked inference and materialized inference. In ad-
dition, we introduce a long-term storage that will contain
stable inferred instances from an incremental inference in
materialized inference and pre-computed TBox inferences
for a query-invoked inference. Any Abox results of a query-
invoked inference will be saved in short-term storage. A
query unaffected by changes to ontology, custom rules or
instances can be answered by searching in the long-term
storage. A query affected by changes to ontology, custom
rules or instances can be answered by performing a query-
invoked inference and searching the short-term storage.

The resulting architecture of an adaptive reasoning system
is presented in Figure 3. The major modules comprising this
architecture are as follows:

1) Input from users: A query is the basic way for users
to search and retrieve information that they are interested.
For example, “Who are the ground breaking researchers in
Digital Libraries?” Here “ground breaking” is a qualitative
descriptor that has been evolved by one (or more) user(s) by
developing custom rules and researcher and digital library
are classes in the ontology.
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Figure 3. Architecture of an Adaptive Reasoning System

Changes refer to changes of ontology, custom rule set
and instances as originally defined by users or harvested
from the web. Generally, people might not agree on the
ontology as it originally was designed and they will make
changes according to their own beliefs. Similarly, custom
rules represent a personal understanding of qualitative de-
scriptors and as more people add their own opinion, they will
change and, it is to be hoped, these qualitative descriptors
will evolve to a consensus. The collection of instances will
be enriched gradually with the discovery of new sources
of information by individuals and the subsequent update of
the methods of harvesting the information. Thus, changes of
ontology, custom rule set and instances may occur at random
or periodic times with varying degree of frequency. Changes
have a significant influence on the process of storage and
performance of query no matter whether the query involves
inferencing or not.

2) Query & Inference Management: Query & Inference
Management is the component that makes the choice be-
tween materialized inference and query-invoked inference.
After a user submits a query, this component will determine
if the query has been affected by the changes to the ontology,
custom rules or instances by communicating with component
of Change Management.

3) Change Management: Change Management maintains
all the changes and arrangements in the Storage and records
the change history after changes to the ontology, custom
rules or instances. It not only provides change records to
Query & Inference Management for the adaptive reasoning
mechanism, but also communicates with the Storage Man-
agement module to realize the actual changes and operations
in the storage.

4) Hybrid Reasoner: As a central component in the adap-
tive reasoning system, the Hybrid reasoner is a combination
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of Materialization Inference and Query-invoked Inference,
and is responsible for the reasoning task with the assistance
of a DL reasoner and a Rule-based reasoner.

Materialization Inference is one component that fires all
of the rules in the system and generates all inferred triples at
once. It implements all of the inference in advance following
by various queries about the knowledge base from users.
After Materialization Inference, answering query does not
involve any reasoning but simple parsing and searching.

Query-invoked Inference is another component that in-
vokes partial inference (ABox inference) when query is
accepted after firing part of the rules (TBox inference) in
the system in advance. Pre-computed TBox Inference is
responsible for the TBox inference before queries while
Query-invoked ABox Inference is responsible for the ABox
inference during the query and answering.

5) Storage Management: The Storage Management mod-
ule aims to update and to arrange the storage in an organized
way to improve the scalability and performance of infer-
encing, especially the ABox inferencing. This component
provides mechanisms to group and index base triples ob-
tained from the users and the harvester module and triples
that have been inferred such that search and updates can be
done efficiently.

6) Storage: There are four separate storage areas of data
in the system: Materialized Triples that are generated by Ma-
terialization Inference, Inferred Triples after Query-invoked
Inference that are generated by Query-invoked Inference,
Change History that is generated by Change Management
and base storage including custom rules, ontology and
instances as they were defined at startup of the system.

B. Adaptive Reasoning Mechanism

ScienceWeb is a collaborative platform that integrates
efforts from users to define what data are to be obtained
in what way and how the data are to be organized and what
forms the queries will be. After a bootstrapping process has
generated an initial knowledge base, we expect a period
of frequent changes to all aspects of the knowledge base:
ontology, rule set, harvesting methods, and instance data. It
remains to be seen whether the ontology and rule set will
stabilize over time. Instance data, however, will be continue
to be changed via periodic harvesting.

The Adaptive Reasoning Mechanism is designed to select
the appropriate reasoning method depending partially on the
degree of change. Materialization inference is preferred in
situations with infrequent or no updates. Any update of the
ontology, custom rules or instances, however, would require
re-loading of the data and re-materialization.

Query-invoked inference is preferred, therefore, in situa-
tions of rapid changes. As only related rules and data are
involved, answers can be returned within an acceptable time
period.
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C. Knowledge base

Native storage of the knowledge base may help to improve
the scalability of ABox inferencing. Native storage will
speed up inferencing as well as search since it reducing the
time for loading and updating data. Materialized Triples,
Inferred Triples after Query-invoked Inference are stored
separately from base storage (that including custom rules,
ontology and instances) but we create a correlation index.

When we store triples, we group and index them to
improve the inferencing performance. For example, triples
can be grouped by each property, e.g., “publicationAuthor”
or “advisor”. Triples with the same property can be stored
in the same file. We will use Indexing as a way to store
relationship and enhance the search performance.

D. Combination of DL and Rule-based Reasoners

DL reasoners have sufficient performance on complex
TBox reasoning, but they do not have scalable query an-
swering capabilities that are necessary in applications with
large ABoxes. Rule-based OWL reasoners are based on the
implementation of entailment rules in a rule engine. They
have limited TBox reasoning completeness because they
may not implement each entailment rule or they choose the
performance instead of the completeness. Hybrid reasoners
that integrate a DL reasoner and a rule engine can combine
the strong points of both sides.

ScienceWeb introduces custom rules for description of
qualitative and quantitative descriptors. Thus, besides the
traditional Tbox and Abox reasonings, we introduce an Rbox
reasoner for custom rules inferencing. The DL reasoner
is responsible for TBox reasoning while the Rule-based
Reasoner is responsible for both Rbox reasoning and ABox
reasoning. These three kinds of reasoning are separable in
the reasoning system for independent update of ontology,
custom rules and instances.

These three kinds of reasoning are not independent. The
DL reasoner generates specific entailment rules for the Rule-
based Reasoner and ABox reasoning or Rbox reasoning
is connected with TBox reasoning. We need to maintain
correlations between individual objects.

V. CONCLUSION AND FUTURE WORK

Our contributions in this paper are mainly in designing
an adaptive reasoning architecture whose scalability and
efficiency are able to meet the interaction requirements
in ScienceWeb system, and in introducing the preliminary
study that we have done for ScienceWeb system. With this
architecture we are developing new technologies and an
adaptive reasoning system for ScienceWeb that allows users
to: (a) get answers effectively in real-time after posting
existing qualitative queries, (b) get answers effectively in
real-time after changing the ontology, custom rules, or
instances and posting qualitative queries, and (c) get answers
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effectively in real-time when the size of knowledge base
scales from thousands to millions.

Because reasoning is required for many large-scale se-
mantic applications, we think it plausible that this architec-
ture could be applied to a variety of different domains.

Sufficient reasoning support is a cornerstone for any
realization of ScienceWeb. Our architecture and resulting
system will, it is hoped, provide efficient reasoning based on
a scalable knowledge base. We have completed the design,
have performed a number of formative performance studies
using a novel synthetic data generator, and have identified
major issues we still need to address as:

Materialization inference - When can incremental infer-
ence be invoked? What part of TBox inference and inferred
triples are stable for incremental inference?

Query-invoked inference - When can pre-computed TBox
inferences be invoked? What pre-computed TBox inferences
are? How to optimize query-invoked inference with large
size of ABox?

Adaptive mechanism - When can the system switch be-
tween materialization inference and query-invoked infer-
ence? What are trivial changes and normal changes? Does
the system need to differentiate the trivial changes and
normal changes?
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