
Deriving Interface Contracts for Distributed Services

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de

Abstract—Software components should be equipped with
well-defined interfaces. With design by contract, there is a
prominent principle for specifying preconditions and postcon-
ditions for methods as well as invariants for classes. Although
design by contract has been recognized as a powerful vehicle for
improving software quality, modern programming languages
such as Java and C# did not support it from the beginning. In
the meanwhile, several language extensions have been proposed
such as Contracts for Java, Java Modeling Language, as well as
Code Contracts for .NET. In this paper, we present an approach
that brings design by contract to distributed services. To be
precise, contracts included in the implementation of a Web
service will be automatically extracted and translated into a so-
called contract policy, which will be part of the service’s WSDL.
Our solution also covers the generation of contract-aware proxy
objects to enforce the contract policy already on client side.
The feasibility of our approach has been demonstrated for
.NET/WCF services and for Java based Web Services.

Keywords-Interface Contracts for distributed services; De-
sign by contract; WCF; Web services; WS-Policy.

I. INTRODUCTION

Two decades ago, Bertrand Meyer [1] introduced the
design by contract principle for the programming language
Eiffel. It allows the definition of expressions specifying
preconditions and postconditions for methods as well as
invariants for classes. These expressions impose constraints
on the states of the software system (e.g., class instances,
parameter and return values) which must be fulfilled during
execution time.

Although the quality of software components can be
increased by applying design by contract, widely used
programming languages such as Java and C# did not support
contracts from the beginning. Recently, several language
extensions have been proposed such as Code Contracts for
.NET [2], Contracts for Java [3] as well as Java Modeling
Language [4] targeting at Java. Common characteristics of
these technologies are i) specific language constructs for
encoding contracts, and ii) extended runtime environments
for enforcing the specified contracts. Approaches such as
Code Contracts also provide support for static code analysis
and documentation generation.

In this work, we will show how distributed services such
as Web services can profit from the just mentioned language
extensions. The solution presented tackles the following

problem: Contracts contained in the implementation of a
Web service are currently completely ignored when deriving
its WSDL interface. As a consequence, constraints such as
preconditions are not visible for a Web service consumer.

Key features of our solution for bringing contracts to
distributed services are:

• simplicity
• automation
• interoperability
• client side support
• feasibility
• usage of standard technologies.
Simplicity expresses the fact that our solution is transpar-

ent for the service developer—no special activities must be
performed by her/him. Due to a high degree of automation,
the constraints (i.e., preconditions, postconditions, and in-
variants) specified in the Web service implementation are
automatically translated into equivalent contract expressions
at WSDL interface level.

As these expressions will be represented in a program-
ming language independent format, our approach supports
interoperability between different Web services frameworks.
For example, Code Contracts contained in a WCF service
implementation will be translated into a WSDL contract
policy, which can be mapped to expressions of the Contracts
for Java technology used on service consumer side. This
client side support is achieved by generating contract-aware
proxy objects. The feasibility of the approach has been
demonstrated by proof of concept implementation including
tool support.

In order to represent contract expressions in a Web
service’s WSDL, we will employ standard technologies: i)
WS-Policy [5] as the most prominent and widely supported
policy language for Web services, ii) WS-PolicyAttachment
[6] for embedding a contract policy into a WSDL descrip-
tion, and iii) the Object Constraint Language (OCL) [7]
as a standard of the Object Management Group (OMG)
for representing constraints in a programming language
independent manner.

Before we explain our solution in the following sections,
we observe that several multi-purpose as well as domain-
specific constraint languages have already been proposed
for Web services (see, e.g., [8], [9], [10]). However, these

69

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

papers have their own specialty and do not address important
features of our approach:

• Contract expressions are automatically extracted from
the service implementation and mapped to a corre-
sponding contract policy.

• Our approach does not require an additional runtime
environment. Instead, it is the responsibility of the
underlying contract technology to enforce the specified
contracts.

• Usage of well-known specifications and widely sup-
ported technologies. Only the notions “contract asser-
tion” and “contract policy” have been coined in this
work.

To the best of our knowledge, the strategy presented in this
paper has not been elaborated yet elsewhere.

The paper is structured as follows. Next we will recall the
problem description followed by the elaboration of the ar-
chitecture and an implementation strategy on abstract level.
So-called contract policies will be defined in Section IV.
Then we will apply our strategy to Code Contracts for WCF
services (Section V) and Contracts for Java for JAX Web
services (Section VI). Limitations of the approach will be
discussed in Section VII. The paper will conclude with a
summary and directions for future work.

II. PROBLEM DESCRIPTION

We start with considering a simple Web service that
returns the square root for a given number. We apply Code
Contracts [2] and Contracts for Java [3], respectively, to
formulate the precondition that the input parameter value
must be non negative.

The following code fragment shows a realization as a
WCF service. According to the Code Contracts program-
ming model, the static method Requires (resp. Ensures)
of the Contract class is used to specify a precondition
(resp. postcondition).� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
return Math.Sqrt(d);

}
}� �

WCF service with Code Contracts.

The next code fragment shows an implementation of the
square root service in a Java environment. In this example,
we use Contracts for Java. In contrast to Code Contracts,

Contract for Java uses annotations to impose constraints on
the parameter values: @requires indicates a precondition
and @ensures a postcondition.� �
import javax.jws.WebMethod;
import javax.jws.WebService;
import com.google.java.contract.Requires;

@WebService()
public class Calculator {
@WebMethod
@Requires("d >= 0")
public double squareRoot(double d) {

return Math.sqrt(d);
}

}� �
Java based Web service with Contracts for Java.

Though the preconditions are part of the Web service
definition, they will not be part of the service’s WSDL
interface. This is due to the fact that during the deploying of
the service its preconditions, postconditions, and invariants
are completely ignored and hence are not considered when
generating the WSDL. This is not only true for a WCF
environment as already pointed out in [11], but also for Java
Web services environments such Glassfish/Metro [12] and
Axis2 [13].

As contracts defined in the service implementation are
not part of the WSDL, they are not visible to the Web
service consumer—unless the client side developer consults
additional resources such as an up to date documentation of
the service. But even if there would exist a valid documen-
tation, the generated client side proxy objects will not be
aware of the constraints imposed on the Web service. Thus,
if the contracts should already be enforced on client side,
the client developer has to manually encode the constraints
in the client application or the proxy objects. Obviously, this
approach would limit the acceptance of applying contracts
to Web services.

Our solution architecture overcomes these limitations by
automating the following activities:

• Contracts are extracted from the service implementation
and will be transformed into corresponding OCL ex-
pressions, which are packaged as WS-Policy assertions
(so-called contract assertions).

• A contract policy (i.e., a set of contract assertions) will
be included into the service’s WSDL.

• Generation of contract-aware proxy objects—proxy ob-
jects that are equipped with contract expressions de-
rived from the contract policy.

• Usage of static analysis and runtime checking on both
client and server side as provided by the underlying
contract technologies.

An important requirement from a Web service develop-
ment point of view is not only the automation of these
activities, but also a seamless integration into widely used

70

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Integrated Development Environments (IDEs) such as Visual
Studio, Eclipse, and NetBeans. For example, when deploy-
ing a Web service project no additional user interaction
should be required to create and attach contract policies.

III. ARCHITECTURE

The following figure shows the main components of our
solution.

Figure 1. Solution architecture.

In short, our approach adopts the code first strategy for
developing Web services. One starts with implementing the
Web service’s functionality in some programming language
such as C# or Java. We assume that some contract technol-
ogy is used to enhance the service under development by
preconditions, postconditions, and invariants. In Figure 1,
this activity is indicated by contract enrichment. At this
point, one ends up with a contract-aware Web service such as
the sample square root service at the beginning of Section II.
In order to properly evaluate the contracts during service
execution, a contract-aware runtime environment is required.
Such an environment is part of the employed contract
technology.

The standard deployment of the Web service will be
adapted such that a contract policy is created and attached to
the WSDL. The exporter component performs the following
actions:

1) Extraction of contract expressions by inspecting the
Web service implementation.

2) Construction of contract assertions and contract poli-
cies.

3) Creation of the service’s WSDL and attachment of the
contract policy.

4) Upload of the WSDL on a Web server.
Note that the contract policy will be part of the service’s

WSDL and is therefore accessible for the service consumer.
Both the WSDL and the contract policy is used by the

importer component to generate and enhance the proxy
objects on service consumer side. The importer component
fulfills the following tasks:

1) Generation of the “standard” proxy objects.
2) Translation of the contract assertions contained in

the contract policy into equivalent expressions of the
contract technology used on service consumer side.

3) Enhancement of the proxy objects with the contract
expressions created in the previous step.

Note that service consumer and service provider may use
different contract technologies.

IV. CONTRACT POLICIES

A. Contract Assertions

This section defines contract assertions and contract poli-
cies. An important feature is their representation in some
neutral, programming language independent format. We
apply the well-known WS-Policy standard for the following
reasons: WS-Policy is supported by almost all Web services
frameworks and is the standard formalism for enriching
WSDL interfaces. With WS-PolicyAttachment [6], the prin-
ciples for including policies into WSDL descriptions are
specified.

WS-Policy defines the structure of so-called assertions
and their compositions, but does not define the “content” of
assertions. To represent preconditions, postconditions, and
invariants, we need some adequate language. We decided
to use the Object Constraint Language (OCL) due to its
high degree of standardization and support by existing OCL
libraries such as the Kent OCL Library, the Dresden OCL
Toolkit, and the Open Source Library for OCL (OSLO).

To formally represent constraints with WS-Policy, we
introduce so-called contract assertions. The XML schema
as follows:� �
<xsd:schema ...>
<xsd:element name = "ContractAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "Precondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Postcondition"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "Invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "Name"

type = "xs:string"/>
<xsd:attribute name = "Context"

type = "xs:anyURI"
use = "required"/>

</xsd:complexType>
</xsd:schema>� �

XML schema for contract assertions.

71

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

A ContractAssertion has two attributes: a manda-
tory context and an optional name for an identifier. The
context attribute specifies the Web service to which the
constraint applies. To be precise, the value of the context
attribute is the name of the operation as specified in the
portType section of the WSDL. In case of an invariant,
the context attribute refers to the type defined in the types
section.

The body of an contract assertion consists of a set OCL
expressions. Depending on the surrounding element type the
expression represents a precondition, a postcondition, or an
invariant. The expressions may refer to the parameter and
return values of an operation as well as to the attributes of
a type.

B. OCL Expressions

OCL is a formal language for specifying particular aspects
of an application system is a declarative manner. Typically,
OCL is used in combination with the Unified Modeling
Language (UML) to further constrain UML models. In OCL,
“a constraint is a restriction on one or more values of (part
of) an object-oriented model or system” [14]. In our context,
OCL expressions will be used to specify constraints for Web
services.

We use the following features of OCL in contract asser-
tions:

• The basic types Boolean, Integer, Real, and
String.

• Operations such as and, or, and implies for the
Boolean type.

• Arithmetic (e.g., +, *) and relational operators (e.g., =,
<) for the types Integer and Real.

• Operations such as concat, size, and substring
for the String type.

In order to impose restrictions on collections of objects,
OCL defines operations for collection types. Well-known
operations are:

• size(): returns the number of elements in a collection
to which the method applies.

• count(object): returns the number of occurrences
of object in a collection.

• includes(object): yields true if object is an
element in a collection.

• forAll(expr): yields true if expr is true for all
elements in the collection.

• select(expr): returns a subcollection containing
all objects for which expr is true.

These operations may be used to constrain admissible
values for collections occurring in the service’s WSDL.

Before we give some examples, we introduce the key-
words @pre and result, which can be used in post-
conditions. To impose restrictions on the return value of a
service, the latter keyword can be used. In a postcondition,

the parameters may have different values at invocation and
termination, respectively, of the service. To access the orig-
inal value upon completion of the operation, the parameter
must be equipped with the prefix @pre.

C. Examples

The first example considers the square root service from
Section II, extended by a postcondition. The following XML
fragment shows a formulation as a contract assertion:� �
<ContractAssertion context="SquareRootService">
<Precondition>
d >= 0

</Precondition>
<Postcondition>

return >= 0
</Postcondition>

</ContractAssertion>� �
Contract assertion for square root service.

The identifier d in the precondition refers to the parameter
name of the service as specified in the WSDL.

The next example illustrates two features: i) the definition
of an invariant and ii) the usage of a path notation to
navigate to members and associated data values. Consider
the type CustomerData with members name, first name
and address. If address is represented by another complex
data type with members such as street, zip and city, we can
apply the path expression customer.address.zip to
access the value of the zip attribute for a particular customer
instance.

Whenever an instance of CustomerData is exchanged
between service provider and consumer, consistency checks
can be performed as shown in the following figure:� �
<ContractAssertion context="CustomerDataService">
<Invariant>
this.name.size() > 0

</Invariant>
<Invariant>
this.age >= 0

</Invariant>
<Invariant>
this.address.zip.size() >= 0

</Invariant>
</ContractAssertion>� �

An invariant constraint.

To demonstrate the usage of constraints on collections
we slightly extend the example. Instead of passing a single
customerData instance, assume that the service now
requires a collection of those instances. Further assume
that the parameter name is cds. In order to state that
the collection must contain at least one instance, we can
apply the expression cds->size() >= 1. With the help
of the forAll operator one can for instance impose the
constraint that the zip attribute must have a certain value:
cds->forAll(age = 78120).

72

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

V. CODE CONTRACTS AND WCF

Having defined the solution architecture in Section III and
contract policies in the previous section, we will now instan-
tiate our approach. This section investigates Code Contracts
for WCF and the following section applies Contracts for
Java to JAX Web services.

A. Exporting Contract Policies

In WCF, additional WS-Policy descriptions can be at-
tached to a WSDL via a so-called custom binding. Such
a binding uses the PolicyExporter mechanism also
provided by WCF. To export a contract policy as described in
Section III, a class derived from BindingElement must
be implemented. The inherited method ExportPolicy
contains the specific logic for creating contract policies.
Details for defining custom bindings and applying the WCF
exporter mechanism are described elsewhere (e.g., [11]) and
hence are not elaborated here.

B. Creating Contract Assertions

Code Contracts expressions are mapped to corresponding
contract assertions. Thereby we distinguish between the
creation of i) the embedding context and ii) OCL expressions
for preconditions, postconditions, and invariants.

In Code Contracts, a precondition (resp. postcondition)
is specified by a Contract.Requires statement (resp.
Contract.Ensures). Thus, for each Requires and
Ensures statement contained in the Web service imple-
mentation, a corresponding element (i.e., Precondition
or Postcondition) will be generated. The context at-
tribute of the contract assertion is the Web service to which
the constraint applies.

According to the Code Contracts programming model, a
class invariant is realized by a method that is annotated with
the attribute ContractInvariantMethod. For such a
method, the element Invariant will be created; its con-
text is the type that contains the method.

Let us now consider the mapping from Code Contracts
expressions to corresponding ones of OCL. We first observe
that Code Contracts expressions may not only be composed
of standard operators (such as boolean, arithmetic and re-
lational operators), but can also invoke pure methods, i.e.,
methods that are side-effect free and hence do not update
any pre-existing state. While the standard operators can be
mapped to OCL in a straightforward manner, user defined
functions (e.g., prime number predicate) typically do not
have counterparts in OCL and hence will not be translated
to OCL. For a complete enumeration of available OCL
functions see [7], [14].

Due to lack of space we cannot discuss details of the
mapping. The following table focuses on selected features:

Code Contracts OCL

0 <= x && x <= 10 0 <= x and

x <= 10

x != null not x.isType

(OclVoid)

Contract.OldValue(param) @pre param

Contract.Result<T>() return

Contract.ForAll cds.forAll

(cds, cd => cd.age >= 0) (age >= 0)

In the first two examples x denotes a name of an operation
parameter. They illustrate that there are minor differences
regarding the concrete syntax of operators in both languages.
The third example shows the construction how to access
the value of a parameter at method invocation. While Code
Contracts provide a Result method to impose restrictions
on the return value of an operation, OCL introduces the
keyword return. In the final example, cds represents a
collection; the expressions impose restrictions which must
be fulfilled by all instances contained in the collection.

C. Importing Contract Assertions

As shown in Figure 1, the role of the importer com-
ponent is to construct contract-aware proxy objects. WCF
comes with the tool svcutil.exe that takes a WSDL
description and produces the classes for the proxy objects.
Note that svcutil.exe does not process custom policies,
which means that the proxy objects do not contain contract
assertions.

WCF provides a mechanism for evaluating custom poli-
cies by creating a class that implements the IPolicy-
ImporterExtension interface. In our approach, we
create such a class that realizes the specific logic for parsing
contract assertions and for generating corresponding Code
Contracts assertions. As the standard proxy class is a partial
class, the created Code Contracts assertions can be simply
included by creating a new file.

VI. CONTRACTS FOR JAVA FOR JAX WEB SERVICES

In this section, we consider a contract technology for Java.
These principles of this description can be carried over to
other Java based contracts technologies.

A. Exporting Contract Policies

In Contracts for Java [3], the preconditions, postcon-
ditions, and invariants are expressed with the annotations
Requires, Ensures, and Invariant, respectively. An
example has been given in Section II.

The reflection API of Java SE allows the inspection of
meta-data. In order to access the annotations of methods we
apply these API functions. Given a method (which can be
obtained by applying getMethods() on a class or an in-
terface), one can invoke the method getAnnotations()
to get its annotations. Such an annotation object represents

73

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

the contract expression to be transformed into an OCL
expression.

Before we consider in more detail this transformation,
we discuss how to create and embed contract policies into
WSDL descriptions. A Web services framework provides
API functions for these tasks; these functions are not stan-
dardized, though. As a consequence, we need to apply
the specific mechanisms provided by the underlying Web
services frameworks.

Basically, the developer has to create a WS-Policy with
the assigned assertions. To include the policy file into the
service’s WSDL, one can use the annotation @Policy,
which takes the name of the WS-Policy file and embeds
it into the WSDL. Other frameworks create an “empty”
default policy, which can be afterwards replaced by the full
policy file. During deployment, the updated policy will be
embedded into the service’s WSDL.

B. Creating Contracts Assertions

In Contracts for Java, the expressions contained in the
@requires, @ensures, and @invariant annotations
are either simple conditions (e.g., d >= 0) or complex
terms with operators such as && and ||. As in Code
Contracts, the expressions may refer to parameter values
and may contain side-effect free methods with return type
boolean. Similar to the mapping of Code Contracts ex-
pressions, these methods will not be mapped to contract
assertions (see Section V-B).

The following table gives some hints how to map expres-
sions from Contracts for Java to OCL.

Contracts for Java OCL

0 <= x && x <= 10 0 <= x and

x <= 10

x != null not x.isType

(OclVoid)

Contract.OldValue(param) old(param)

Contract.Result<T>() result

Note that Contracts for Java currently does not provide
special support for collections (such as a ForAll operator).
Thus, a special predicate needs to be defined by the “contract
developer”.

C. Importing Contract Assertions

To obtain the (standard) proxy objects, tools such as
WSDL2Java are provided by Java Web services frame-
works. Given a WSDL file, such a tool generates Java
classes for the proxy objects. In order to bring the contract
constraints to the proxy class, we apply the following
strategy:

1) Import of the contract policy contained in the WSDL.
2) Enhancement of the proxy classes by Contracts for

Java expressions obtained from the contract policy.

There is no standardized API to perform these tasks.
However, Java based Web services infrastructures have their
own mechanisms. A well-known approach for accessing the
assertions contained in a WS-Policy is the usage of specific
importer functionality. To achieve this, one can implement
and register a customized policy importer, which in our case
generates @requires, @ensures, and @invariant
annotations as required for the contract assertions contained
in the WS-Policy.

The second steps interleaves the generated expressions
with the standard proxy classes. A minimal invasive ap-
proach is as follows: Instead of directly enhancing the
methods in the proxy class, we create a new interface which
contains the required Contracts for Java expressions. The
proxy objects must only slightly be extended by adding
an “implements” relationship to the interface created. This
extension can be easily achieved during a simple post-
processing activity after WSDL2Java has been called.

VII. LIMITATIONS AND OPEN ISSUES

We have already mentioned that contract languages are
more expressive that OCL. They in particular allow the usage
of user-defined predicates implemented, e.g., in Java or C#.
As OCL it not a full-fledged programming language, not
every predicate can be mapped to OCL. In other words,
only a subset of the constraints will be available at interface
level. At first sight, this seems to be a significant limitation.
However, the role of preconditions and postconditions is
usually restricted to perform (simple) plausibility checks on
parameter and return values. OCL has been designed in this
direction and hence supports such kinds of functions.

When specifying contracts for a class, one may impose
constraints on private members, which are not visible at
interface level. As a consequence, it is not helpful to map
these constraints to contract policies for WSDL. Thus, the
generated contract policies should only impose constraints
which are meaningful to service consumers. To be precise,
the generated contract assertions should only constrain the
parameter and return values of Web services as well as
the public members of complex data types contained in the
types section of a WSDL.

Although WS-Policy [5] and WS-PolicyAttachment [6]
are widely used standards, there is no common API to export
and import WS-Policy descriptions. As mentioned before,
Web services infrastructures have their specific mechanisms
and interfaces how to attach and access policies. Thus, the
solutions presented in this paper must be adapted if another
Web services framework should be used. For instance,
the exporter and importer classes for processing contract
policies must be derived from different interfaces; also the
deployment of these classes must be adapted.

Finally, we observe that the exception handling must be
changed, if contract policies are used. This is due to the fact
that the contract runtime environment has the responsibility

74

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

to check the constraints. If, e.g., a precondition is violated,
an exception defined by the contract framework will be
raised, that contains a description of the violation (e.g., that
the value of a particular parameter is invalid). This must be
respected by the client developer.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated how contract tech-
nologies designed for programming languages can be lever-
aged for the interface creation for distributed services. Con-
straints imposed on the implementation will now be part of
the WSDL interface and hence visible to the Web service
consumer. This approach is a further step to improve the
quality of distributed software components. This concept is
in particular useful when applying the code-first approach
for developing Web services, since additional properties
of the service implementation (e.g., preconditions) will be
automatically mapped to contract policies.

The developer of a Web service client application ex-
plicitly sees important constraints imposed on the service
implementation and hence can consider this information.
In addition, constraint violations can be detected already
on client side, thus reducing network traffic and server
consumption.

Due to the usage of the standardized, “neutral” language
OCL for expressing constraints, the interoperability between
different contract technologies and Web services infrastruc-
tures is given. For instance, preconditions encoded on server
side with Contracts for Java will be translated to corre-
sponding Code Contracts statements in a .NET consumer
application.

As the contracts can be generated automatically, no addi-
tional effort is required for the service developer. As shown
in our proof of concept, current tool chains can be enhanced
such that the creation of the contract polices are completely
transparent for the developer. Similar tool support is possible
for service consumer side.

In this paper, we have focused on Contracts for Java as
a contracts technology for Java. However, there are other
well-known alternative technologies. A closer look to these
approaches and their usage for generating contract policies
is part of future work.

ACKNOWLEDGMENTS

I would like to thank Ahmed Al-Moayed and the anony-
mous reviewers for giving helpful comments on an earlier
version. This work has been partly supported by the German
Ministry of Education and Research (BMBF) under research
contract 17N0709.

REFERENCES

[1] B. Meyer, “Applying “Design by Contract”,” Computer,
vol. 25, pp. 40–51, October 1992.

[2] Microsoft Corporation, “Code contracts user manual,”
http://research.microsoft.com/en-us/projects/contracts/user-
doc.pdf, last access on 08/15/2011.

[3] N. M. Le, “Contracts for java: A practical framework for
contract programming,” http://code.google.com/p/cofoja/, last
access on 08/15/2011.

[4] Java Modeling Language. http://www.jmlspecs.org/, last ac-
cess on 08/15/2011.

[5] Web Services Policy 1.5 - Framework. http://www.w3.org/-
TR/ws-policy/, last access on 08/15/2011.

[6] Web Services Policy 1.5 - Attachment. http://www.w3.org/-
TR/ws-policy-attach/, last access on 08/15/2011.

[7] OMG, “Object constraint language specification, version 2.2,”
http://www.omg.org/spec/OCL/2.2, last access on 08/15/2011.

[8] A. H. Anderson, “Domain-independent, composable web
services policy assertions,” in POLICY ’06: Proceedings of
the Seventh IEEE International Workshop on Policies for
Distributed Systems and Networks. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 149–152.

[9] WS-SecurityPolicy 1.3. http://docs.oasis-open.org/ws-
sx/wssecuritypolicy/v1.3, last access on 08/15/2011.

[10] A. Erradi, V. Tosic, and P. Maheshwari, “MASC - .NET-
based middleware for adaptive composite web services,” in
IEEE International Conference on Web Services (ICWS’07).
IEEE Computer Society, 2007.

[11] B. Hollunder, “Code contracts for windows communication
foundation (WCF),” in Proceedings of the Second Interna-
tional Conferences on Advanced Service Computing (Service
Computation 2010). Xpert Publishing Services, 2010.

[12] A. Goncalves, Beginning Java EE 6 Platform with Glass-
Fish 3. Apress, 2009.

[13] D. Jayasinghe and A. Afkham, Apache Axis2 Web Services.
Packt Publishing, 2011.

[14] J. Warmer and A. Kleppe, The Object Constraint Language:
Getting Your Models Ready for MDA. Addison Wesley, 2003.

75

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

