
ESARC - Enterprise Services Architecture Reference Cube
for Capability Assessments of Service-oriented Systems

Alfred Zimmermann
Reutlingen University

Software Architecture Research Group
Reutlingen, Germany

alfred.zimmermann@reutlingen-university.de

Gertrud Zimmermann
ZIMMERMANN UND PARTNER

Enterprise Software Architecture Research
Pfullingen, Germany

gertrud.zimmermann@online.de

Abstract – An original ESARC-Enterprise Services
Architecture Reference Cube for supporting evaluation and
optimization of service-oriented architectures is introduced.
Current approaches for assessing architecture quality and
maturity of service-oriented enterprise software architectures
are rarely validated and were intuitively developed, having
sparse reference model, metamodel or pattern foundation.
Cyclic assessments of complex service-oriented systems and
architectures should produce convergent and comparable
evaluation results. Today architecture evaluation findings are
hardly comparable. This is a real problem in cyclic evaluations
of advanced architecture quality concepts to get a stable
foundation for introducing service-oriented enterprise
architectures for adaptive systems. Our idea and contribution
is to extend existing enterprise and software architecture
reference models and maturity frameworks to accord with an
integral enterprise architecture reference model approach. We
have applied our service-oriented ESARC in several
assessment workshops with global vendors of service-oriented
platforms. This experience provides the base for further
investigations and improvements of our approach. ESARC
provides for both cyclic architecture quality assessments and
for the architecture construction and optimization a
standardized and normative classification scheme of important
architecture artifacts for service-oriented enterprise systems.

Keywords – Service-oriented Architecture; Enterprise
Architecture; ESARC; Reference Architecture; Architecture
Patterns; Architecture Capability and Maturity Assessments.

I. INTRODUCTION
Since recent years innovation oriented companies have

introduced service-oriented computing paradigms and
combine this with traditional information systems. Typical
service-oriented technologies include systems following a
service-oriented architecture (SOA). Service-oriented
systems close the business - IT gap by delivering efficiently
appropriate business functionality and integrating legacy
systems with standard application platforms. Our approach is
to investigate the practical use of the SOA ability of standard
platforms in commercial use [1] for members of the SOA
Innovation Lab, which is a major innovation and research
network in Germany and Europe.

In assessing the quality of implemented SOA vendor
platforms and the integral architecture of service-oriented

enterprise systems, we were faced with the problem of not
real comparable evaluation findings from consecutive
(cyclic) assessments of heterogeneous systems. Our previous
assessment findings were done without an architecture
reference model. This causes that multiple evaluations of
enterprise systems with service-oriented architectures were
blurry and hardly comparable within a series of consecutive
architectural tests and therefore produced less meaningful
assessment results. The aim of our research is to enhance
analytical instruments for cyclic evaluations of business and
system capabilities of different service-oriented platforms
and enterprise systems.

The hypothesis in our current research paper for the
ESARC is:
1. ESARC - Enterprise Services Architecture Reference

Cube is an effective concretization of the TOGAF [2]
framework and other seminal work on enterprise
architectures [3], service-oriented reference models and
software architectures [4], [5], [6], and defines useful
architecture artifacts with their main relationships.

2. ESARC provides a useful foundation of a reference
structure for metamodel-based capability assessments
of service-oriented systems and their architecture [1],
[7], as well as for architecture assessment patterns [8]
from previous work.

We are reporting about a novel holistic approach of the
ESARC – the Enterprise Services Architecture Reference
Cube, which helps enterprise and software architects to
define and structure their evaluation object - the service-
oriented enterprise and software architecture - in a standard
way. In order to specify our innovative enterprise and
software architecture assessment method, we used a
metamodel-based approach for capability evaluations of
architecture elements and their main relationships. For this
purpose we have extended, integrated and adapted elements
from convergent architecture methods, patterns, related
standards and reference models from the state of art.

In the following Section II, we introduce base and
seminal related work on reference models, reference
architectures and architecture patterns, as well as open
architecture standards, frameworks, and service-oriented
architecture maturity models. In Section III, we present the
main view of our original developed ESARC architecture

63

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

reference model. Section IV mentions results from our
method validation of ESARC from assessments of four
major SOA vendor platforms. Finally, Section V summarizes
our conclusions and mentions some ideas from current
research and for future work.

II. RELATED WORK
Our research is based on following formal architecture

concepts from [9] and their relationships: software
architecture, reference architecture, reference model, and
architecture patterns. A reference model for SOA [4] is a
generic fundamental model as in [9] that embodies the basic
idea and provides a decomposition of functionality of a given
problem, together with the data flow between elements. The
reference model contains an abstract technology agnostic
representation of the elements and their relationships,
showing the interactions between basic concepts. The
concept of reference architecture [9] and [5], [6] is the result
of a mapping of an architecture reference model to software
elements and contains the related data flow between them.

Architecture patterns are representations of a set of
architectural constraints for architecture elements and their
relation types. Architecture patterns [9], and [10], [11] show
quality attributes and represent known solutions for a given
problem. An architecture pattern records the architecture
decisions taken by many architects in order to resolve a
particular architecture problem. Patterns are human readable
structures of text and graphics showing a standardized and
repeatable way to derive a solution from a specified problem
in a specific context. Our developed and practically validated
pattern catalog [8] for quality patterns of enterprise software
architectures relies originally on our previous developed
service-oriented architecture maturity framework [7] for
assessing architecture capabilities and maturity of service-
oriented enterprise systems.

The Architecture Tradeoff Analysis Method (ATAM)
[15] is a foundation method for our specific architecture
evaluations of service-oriented enterprise systems. A seminal
work used in the preparation of our service-oriented
architecture assessments is [16], which provides concrete
guidelines for the design of our questionnaire as in [1].

Service-oriented architecture SOA [12] is the computing
paradigm that utilizes services as fundamental flexible and
interoperable building blocks for both structuring the
business and for developing applications. SOA promotes a
business oriented architecture style, based on best of breed
technology of context agnostic business services that are
delivered by applications in a business focused granularity.
To provide agile composition of services within a worldwide
environment and to enable flexible integration of published
and discovered components, SOA uses a set of XML-based
standards like WSDL, SOAP, UDDI, and others. A main
innovation introduced by SOA is that business processes are
not only modeled. Business process models are used in a
more mature way consistently within a Model Driven
Architecture (MDA) approach to generate new and agile
orchestrations or compositions of web services based on
process diagrams. Early definitions of SOA were technology
focused and the differences between SOA and web services

were often blurred. SOA technologies emerged due to the
expansion of the Internet technology during the last years
and produced abundance specifications and standards as in
[4], [5], [6], and [13], which are developed by open standard
organizations like W3C, OMG, OASIS, and The Open
Group. The perspective of a service development process is
offered by [14] and [11].

Our architecture reference model ESARC relates closely
to SOAMMI, which is our previous designed maturity
framework for evaluation of enterprise and service-oriented
product architectures. Unfortunately most of existing SOA
and EA maturity models lack a clear metamodel base.
Therefore we have extended CMMI [17] in our previous
research, which is a framework for assessments of software
processes, and transformed it into a specific framework for
the assessment of the maturity of service-oriented enterprise
and software architectures [1] and [7]. Therefore we have
combined and extended CMMI with architecture quality
criteria from current architecture frameworks and
architecture maturity models. In particular we use TOGAF
[2] as a basic structure for enterprise architecture, spanning
all relevant levels. In addition, we have cross checked and –
if appropriate - extended our metamodel with supporting
elements from known maturity models.

The Architecture Capability Maturity Model (ACMM)
[18] framework, which is included in TOGAF, was
originally developed by the US Department of Commerce.
The main scope of ACMM is the evaluation of enterprise
architectures in internal enterprise architecture assessments.
The goal of ACMM assessments is to enhance enterprise
architectures by identifying quantitative weak areas and to
show an improvement path for the identified gaps of the
assessed architecture. The ACMM spans six maturity levels
and defines nine specific architecture elements.
The SOA Maturity Model in [19] considers the following
multidimensional aspects of a SOA: scope of SOA
adoption, SOA maturity levels - to express architecture
capabilities, SOA expansion stages, SOA return on
investment, as well as SOA cost effectiveness and
feasibility. The scope of SOA adoption in an enterprise is
differentiated by following levels: intra-department or ad
hoc adoption, inter-departmental adoption on business unit
level, cross business unit adoption, and the enterprise level,
including the SOA adoption within the entire supply chain.

The SOA Maturity Model from Sonic [20] distinguishes
five maturity levels of a SOA, and associates them - in
analogy to a simplified metamodel of CMMI - with key
goals and key practice. Key goals and key practices are
reference points in SOA maturity assessments.

The SOA Maturity Model of ORACLE in [21]
characterizes in a loose correlation with CMMI five different
maturity levels and associates them with strategic goals and
tactical plans for implementing SOA. Additional capabilities
of a SOA are referenced with each maturity level:
Infrastructure, Architecture, Information & Analytics,
Operations, Project Execution, Finance & Portfolios, People
& Organization, and Governance.

64

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

III. ESARC – ENTERPRISE SERVICES ARCHITECTURE
REFERENCE CUBE

ESARC is an original abstract architecture reference
model which defines an integral view for main interweaved
architecture types. ESARC was derived primarily from state
of art architecture frameworks like TOGAF [2], essential [3],
the service model of ITIL, and from resources for service-
oriented computing [11], [12], [5]. The aim of the ESARC
architecture reference model is to be universally applicable
in different cyclic repeatable architecture evaluations and
structural optimizations of enterprise and software
architectures. ESARC abstracts from a concrete business
scenario or technologies.

The Open Group Architecture Framework (TOGAF) [2]
is the current standard for enterprise architecture and
provides the basic blueprint and structure for the service-
oriented enterprise software architecture domains of
ESARC: Architecture Governance, Architecture
Management, Business & Information Architecture,
Information Systems Architecture, Technology Architecture,
Operation Architecture, and Service Architecture.

The formal foundation for ESARC, as detailed in [4], [5],
and [6], is an abstract representation of standardized
architecture building blocks in a layered acyclic relationship.
The layer semantics implies that the basic layers are
prerequisites for higher architecture layers. At a higher
granularity, all architecture domains are parts of the holistic
architecture composition framework of ESARC.

The ESARC – Enterprise Services Architecture
Reference Cube unifies orthogonal architecture domains into
aligned architecture views, which yield an aid for
examination, comparison, classification and quality rating of
different architecture aspects. ESARC is our holistic
definition of a full service-oriented architecture used both for
assessing and optimization of service-oriented product lines
and for families of application systems. Our unifying
perspective of service-oriented enterprise systems integrates
and helps to align business and the technology aspects.

Figure 1. ESARC – Architecture Governance and Management.

The main types of enterprise software architectures like
Business & Information Architecture, the Information
Systems Architecture, and the Technology Architecture are
organized by the Architecture Governance and Management
framework. Architecture Governance as in Figure 1

conforms to the SOA Governance Framework in [13] and
defines and maintains the Architecture Governance cycle.

The Architecture Governance cycle sets the abstract
governance frame for concrete architecture activities within
the enterprise software or a product line development. The
Architecture Governance cycle specifies the following
management activities: plan, define, enable, measure, and
control. The second aim of Architecture Governance is to set
rules for architecture compliance with internal and external
standards. Policies for governance and decision definition are
set, to allow a standardized and efficient process for
architecture decisions within the enterprise architecture
organization. Because enterprise and software architects are
acting on a sophisticated connection path coming from
business and IT strategy to the architecture landscape
realization of interrelated business domains, applications and
technologies, Architecture Governance has to set rules for
empowerment of software people, define the structures and
procedures of an Architecture Governance Board, and set
rules for communication.

Benefits from well organized architecture governance
(adapted from [2]) are: transparency of accountability,
informed delegation of authority, controlled risk
management, protection of the existing asset base through
maximizing reuse of existing architectural components,
proactive control, monitoring, and management mechanisms,
value creation through monitoring, measuring, evaluation,
and feedback, increased visibility of decision-making in
supporting internal processes and external requirements, and
greater shareholder value. The enterprise architecture
increasingly represents the core intellectual property of the
enterprise systems. It is a precondition for an effective
business and system integration with existing processes and
methodologies and adds control capabilities.

With specifications from Architecture Governance we
define our main Architecture Management procedures for
service-oriented enterprise software architectures: service
strategy and life cycle management of software and system
architecture artifact’s state, service security, service testing
and monitoring, service contracts, registries, service reuse,
service ownership, definition, and versioning.

Figure 2. ESARC – Business & Information Reference Architecture.

The ESARC - Business & Information Reference
Architecture in Figure 2 defines the link between the

65

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

enterprise business strategy and the resulting business and
information design for supporting strategic initiatives. The
Business & Information Reference Architecture provides a
single source and comprehensive repository of knowledge
from which corporate initiatives will evolve and link. This
knowledge is model-based and is an integrated enterprise
model of the business, which includes the organization and
the business processes. The Business & Information
Reference Architecture opens a connection to IT
infrastructures, systems, as well as to software and security
architectures. It provides integration capabilities for IT
management, software engineering, service & operations
management, and process improvement initiatives. The
Business & Information Reference Architecture defines and
models the business and information strategy, the
organization, and main business requirements for
information systems: key business processes, business rules,
business products, and business control information.

The ESARC – Information Systems Reference
Architecture in Figure 3 provides an abstract blueprint for
the individual application architecture to be deployed. It adds
specific interactions and specifies relationships to the core
business processes of the organization. The OASIS
Reference Model for Service Oriented Architecture [4] is an
abstract framework which guides our ESARC reference
architecture. The ESARC defines the abstract model for
specific applications architectures and implementations.

Figure 3. ESARC - Information Systems Reference Architecture.

In our ESARC – Information Systems Reference
Architecture we have differentiated layered service types.
The information services for enterprise data can be thought
of as data centric components [14], providing access to the
persistent entities of the business process. The capabilities of
information services combine both elementary access to
CRUD (create, read, update, delete) operations and complex
functionality for finding/searching of data or complex data
structures, like data composites or other complex-typed
information. Close to the access of enterprise data are
context management capabilities, provided by the technology
architecture: error compensation or exception handling,
seeking for alternative information, transaction processing of
both atomic and long running and prevalent distributed
transactions. Information services [14] and their related data
architecture [2] are core company assets and should be close

and centrally managed for reuse. Task services implement
business capabilities related to specific actions of the
business process. Task services could be own or third-party
services. Usually task services don’t manage state
information directly, but work in cooperation with
information services. The access to information services
follows an acyclic graph - from top to down layers.

From [11] and [5], [6], [12] result important design rules
for task services. Operations of task and entity services
shouldn’t have any knowledge about their process or
interactive usage context. Task service operations [14]
should be independent from users and sessions and should
only implement business functionality. Authorization checks
should be done outside of the business operations. Task and
information services should use a transactional context, but
their operations shouldn’t implement by their own
transactions. Task service operations should be usable both
in batch and in online system transactions. Task services are
used in process services - as multiple composites of services
and should therefore be centrally managed high reusable
assets. Rule services provide knowledge representation and
processing capabilities for adaptable business product and
business services. Rule services provide in addition flexible
controls for agile business processes.

Process services [14] are long running services which
compose task services and information services into
workflows, to implement the procedural logic of business
processes. Process services can activate rule services, to
swap out a part of the potentially unstable gateway-related
causal decision logic. Process services are frontend by
interaction services or by specific diagnostic service and
process monitoring services. Often process services manage
distributed data and application state indirectly, by activating
task and information services. Process services participate in
atomic transactions only when they are activated from batch
services. When processes services participate in human
interaction workflows, they have to support long-running
transactions where compensation of possible errors or
exceptions happens in the business logic.

Figure 4. ESARC - Technology Reference Architecture.

The ESARC – Technology Reference Architecture in
Figure 4 describes the logical software and hardware
capabilities that are required to support the deployment of
business, data, and application services. This includes IT

66

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

infrastructure, middleware, networks, communications,
processing, and standards. The layers of the ESARC –
Technology Reference Architecture and the layers of the
ESARC – Information Systems Reference Architecture
correspond to each other. The database system is the vendor
supported database management system for handling
enterprise data. We have included in our architecture stack
the TP-Monitor system and have associated it with the
database system. Optionally we have integrated a messaging
system. The application server is the container environment
architecture for objects and enterprise components. The
enterprise service bus uses a flexible and standard-based
messaging mechanism to interconnect services on a process
and service execution platform. On top of the service bus we
have placed the rule server, which is able to represent
business rules and operate rule processing by building
dynamic inference chains. The process orchestration server
executes process services by calling suitable services of
earlier mentioned types. For running interaction and
collaboration services additional infrastructures are included
in our stack of the technology reference architecture model:
interaction frameworks, portal servers, workflow engines,
and nowadays collaboration frameworks. Security services
are part of an integral framework-based security system of
standards and components and are impacted by mentioned
services and distributed service technologies.

IV. VALIDATION AND RESULTS
Architecture assessments need to address the key

challenges for companies during the built-up and
management of service-oriented architectures in
heterogeneous IT environments. Assessments of the SOA
ability of standard software packages can be viewed
additionally as a mean to engage with vendors on relevant
challenges of SOA in practical use.

The basic structure of a working example is our
questionnaire [1], which was based on our currently reported
ESARC for the assessment and optimization of architecture
artifacts. Our questionnaire is also close associated with our
previous developed SOAMMI – a service-oriented enterprise
architecture maturity framework [7], [1] and on adapted
elements from [16]. Detailed working examples of the
ESARC Reference Model, the SOAMMI Maturity Model
and our Architecture Capability Patterns in action can be
found in our current research paper [22].

We have synthesized the following key findings that
highlight our view on the actual SOA ability of a standard
platform across vendors:
SOA experiences: Even though SOA has been a topic for
vendors for years now, there are no major SOA
implementations that include standard software systems.
Most cases have the quality of a proof of concept, often
focusing on GUI integration, instead of deep functional
integration. There seems to be a gap between those SOA
capabilities that are offered and those which can be actually
used in a SOA.
Architecture strategy management: SOA is seen as an
important part of overall strategy with no alternative in the

long term. All vendors have developed SOA strategies and
have integrated it into their product roadmap. In most cases,
SOA enablement is a mandatory requirement for the
development of new functionality.
Business Services: Vendors offer solution maps that
describe the functionality in terms of services and have
developed methods to find existing services to a given
requirement. In addition, vendors are developing solution
scenarios, which offer not just the individual service but a
complete set of processes that implement a business
solution.
Business product dependencies: Vendors have invested
substantially in SOA, but in many cases, SOA has been only
applied as wrapping of existing systems, without changing
the core of the application. This means that business
services are tightly coupled and therefore inflexible. Often
dependencies between services were complex and could be
ambiguous for the service composition.
SOA deployment units: No vendor offers licenses that allow
the usage of individual services instead of the whole system.
This means that users still have to purchase the whole
application, which hinders a best of breed approach for
composite applications.
SOA methods: There is a rich offering for methods for
governance, implementation guidelines, etc. for SOA
available. SOA is not just seen as the technical
implementation, but rather as an engineering discipline that
goes beyond service interfaces.
Security, ESB, ESR, service monitoring: Industry standards
are implemented within the standard software, but standards
like SAML leave room for interpretation. This makes it
difficult to integrate solutions across several standard
platforms, which is a requirement for most users.

SOA tools: All standard platform providers have added
tool suites to their portfolio that support SOA development.
The integration of these tools within development layers and
across platforms is still not completely solved.

In summary, there are still obstacles to apply standard
software in a heterogeneous SOA environment. Often, a
vendor’s SOA approach is specific to the vendor. For
example, each vendor has structured business functionality -
a business domain map – defined and described in an
individual way. However these business domain maps are
vendor specific and often do not correlate with company
specific domain maps. Vendors also often use specific
semantics and data models and have incompatible
technologies (ESB, repository) that do not integrate
seamlessly into overall heterogeneous landscapes.

For most vendors, products are only SOA enabled. This
means that SOA is implemented as wrapper around existing
interfaces, and the internal structure is still monolithic. This
typically results in a very granular and technical view (e.g.,
over 3.000 services) that is difficult for the user to identify
and comprehend, and therefore to implement. In addition,
there are many dependencies between services that often
require certain modules to be implemented and populated
with data, before services from other domains can be used.

67

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

V. CONCLUSION AND FUTURE WORK
Our original approach for architecture evaluation and

optimization of service-oriented enterprise software
architectures is based on ESARC - a special architecture
reference model, an associated architecture metamodel and
on architecture patterns. In our research we have motivated
the necessity to extend both existing architecture reference
models and service-oriented maturity models to accord to a
clear metamodel approach due to the well understood and
verified CMMI model. Our approach provides a sound basis
from theory for practical evaluations of service oriented
standard platforms in heterogeneous environments with four
major global acting technology vendors. Future work has to
consider conceptual work on both static and dynamic
architecture complexity, and in connecting architecture
quality procedures with prognostic processes on architecture
maturity with simulations of enterprise and software
architectures. Additional improvement idea deals with
patterns for visualization of architecture artifacts and
architecture control information to be operable on an
architecture management cockpit. To improve semantic-
based navigation within the complex space of EAM-
visualization and service-oriented enterprise software
architecture management and we are working on ontology
models for the ESARC – The Enterprise Software
Architecture Reference Cube.

ACKNOWLEDGEMENT
Many thanks to the SOA Innovation Lab initiative from

Germany and Europe, a research and innovation network of
information technology applicators, the technology vendors
IBM, SAP, ORACLE, Microsoft, the associated consulting
firms and scientific network for providing us the context for
our research.

REFERENCES
[1] H. Buckow, H.-J. Groß, G. Piller, K. Prott, J. Willkomm, and

A. Zimmermann, “Analyzing the SOA-ability of Standard
Software Packages with a dedicated Architecture Maturity
Framework”, EMISA 2010: October 7– 8, 2010 - Karlsruhe,
Germany, GI-Edition - Lecture Notes in Informatics (LNI), P-
172, 2010, pp. 131-143.

[2] TOGAF “The Open Group Architecture Framework”
Version-9, The Open Group, 2009.

[3] Essential Architecture Project, http://www.enterprise-
architecture.org, last access: June, 19th, 2011.

[4] C. M. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, and
R. Metz, OASIS “Reference Model for Service Oriented
Architecture” 1.0, OASIS Standard, 12 October 2006.

[5] J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton,
OASIS “Reference Architecture for Service Oriented
Architecture” Version 1.0, OASIS Public Review Draft 1, 23
April 2008.

[6] J. A. Estefan, K. Laskey, F. G. McCabe, and D. Thornton,
OASIS “Reference Architecture Foundation for Service
Oriented Architecture” Version 1.0, OASIS Committee Draft
02, 14 October 2009.

[7] A. Zimmermann, “Method for Maturity Diagnostics of
Enterprise and Software Architectures”, in A. Erkollar (Ed.)
ENTERPRISE & BUSINESS MANAGEMENT, A
Handbook for Educators, Consulters and Practitioners,
Volume 2, Tectum 2010, ISBN 978-3-8288-2306-8, pp. 129-
172, 2010.

[8] A. Zimmermann, E. Ammann, and F. Laux, “Pattern Catalog
for Capability Diagnostics and Maturity Evaluation of
Service-oriented Enterprise Architectures”, PATTERNS 2010
- The Second International Conferences on Pervasive Patterns
and Applications, November 21-26, 2010 - Lisbon, Portugal,
IARIA Proceedings of the PATTERNS 2010 Conference, pp.
13-19, 2010.

[9] L. Bass, P. Clements, and R. Kazman, “Software Architecture
in Practice”, Second Edition, Addison Wesley, 2003.

[10] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, „Pattern-oriented Software Architecture“, Wiley.
1996.

[11] T. Erl, “SOA Design Patterns”, Prentice Hall. 2009.
[12] T. Erl, “Service Oriented Architecture” Prentice Hall, 2005.
[13] The Open Group “SOA Governance Framework”, August

2009.
[14] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.P.

Richter, M. Voß, and J. Willkomm, „Quasar Enterprise“
dpunkt.verlag, 2008.

[15] R. Kazman, M. Klein, and P. Clements, “The Architecture
Tradeoff Analysis Method (ATAM)”, CMU/SEI-2000-TR-
004, Carnegie Mellon University, Software Engineering
Institute, 2000.

[16] P. Bianco, R. Kotermanski, and O. Merson, “Evaluating a
Service-Oriented Architecture”, CMU/SEI-2007-TR-015,
Carnegie Mellon University, Software Engineering Institute,
2007.

[17] CMMI-DEV-1.3 2010 “CMMI for Development, Version 1.3”
Carnegie Mellon University, Software Engineering Institute,
CMU/SEI-2010-TR-033, 2010.

[18] ACMM, “Architecture Capability Maturity Model”, in
TOGAF Version 9, The Open Group Architecture
Framework, The Open Group, 2009, pp. 685-688.

[19] S. Inaganti and S. Aravamudan, “SOA Maturity Model” BP
Trends, April 2007, 2007, pp. 1-23.

[20] Sonic “A new Service-oriented Architecture (SOA) Maturity
Model”
http://soa.omg.org/Uploaded%20Docs/SOA/SOA_Maturity.p
df, last access: June, 19th, 2011.

[21] Oracle “SOA Maturity Model”,
http://www.scribd.com/doc/2890015/oraclesoamaturitymodel
cheatsheet, last access: June, 19th, 2011.

[22] A. Zimmermann, H. Buckow, H.-J. Groß, O.F. Nandico, G.
Piller, and K. Prott, “Capability Diagnostics of Enterprise
Service Architectures using a dedicated Software Architecture
Reference Model”, IEEE-SCC2011: Washington DC – July 5-
10, 2011, to be published.

68

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

http://www.enterprise-architecture.org/
http://www.enterprise-architecture.org/
http://www.bptrends.com/publicationfiles/04-07-ART-The%20SOA%20MaturityModel-Inagantifinal.pdf
http://soa.omg.org/Uploaded%20Docs/SOA/SOA_Maturity.pdf
http://soa.omg.org/Uploaded%20Docs/SOA/SOA_Maturity.pdf
http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatsheet
http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatsheet

	I. Introduction
	II. Related Work
	III. ESARC – Enterprise Services Architecture Reference Cube
	IV. Validation and Results
	V. Conclusion and Future Work
	Acknowledgement
	References

