
Goal Refinement for Automated Service Discovery
Tomas Olsson, May Yee Chong, Björn Bjurling

Swedish Institute of Computer Science
164 29 Kista, Sweden

Email: {tol, may, bgb}@sics.se

Börje Ohlman
Ericsson Research AB

Färögatan 6, 164 80 Kista, Sweden
Email: borje.ohlman@ericsson.com

Abstract—An important prerequisite for service composition
is a versatile and efficient service discovery mechanism. The
trends in service computing currently point toward a veritable
explosion in the number of services that are or will become
available as components in compositions of new services—Cloud
Computing and the ’Internet of Things’ are just two examples
of such new trends. We hypothesize that it will become critical
to be able to filter the discovered services with respect to pre-
and postconditions, as well as other semantic aspects such as
relevance. We have studied the use of goals as a means for
describing semantic aspects of services (e.g., their effects). By
using goals, services can be described on any arbitrary and useful
level of abstraction. By a goal refinement algorithm, goals can be
used not only for describing services, but also for improving the
performance of service discovery. In this paper, we describe the
goal refinement algorithm and our approach to incorporating it
into our service discovery machinery.

Keywords-Service Discovery; Service Composition; Semantic
Web Service; Goal Refinement.

I. INTRODUCTION

One major trend of today is to transition old and new soft-
ware into a service-oriented environment for reusing and shar-
ing services across organizational boundaries. Key enabling
technologies for this transition are web service technologies
such as WSDL [1] and SOAP [2]. As the number of services
placed online increases, methods for simplified and intelligent
service discovery have become an important area of research
[3][4]. Service discovery is an essential prerequisite of service
composition, and it is paramount that the service discovery
mechanism can determine whether a service is relevant to the
requirements in a service composition specification.

One avenue of approach to finding a solution to the discov-
ery and composition problem is to use semantic web services
where the services are described using ontologies [5][6].
A step toward this is the Web Service Modeling Ontology
(WSMO) [5] and the corresponding Web Service Modeling
eXecution (WSMX) framework [7]. Another similar ontology
for modeling web services is OWL-S [6]. In particular interest
for our work is the Web Service Modeling Language (WSML)
based on WSMO for semantically describing ontologies, goals,
and web services.

The idea of using goals, as, e.g., in WSMO, is appealing
in that goals allow us to express the desired outcome of a
service, i.e., as a description of the resulting system state. Note
that goals thus can be formulated without reference to APIs
of specific services, where merely a desired behavior can be

expressed. Following Kavakli et al. [8], we say informally that
a goal is a “...a desired condition potentially attained at the
end of an action (or a process)”.

This paper is a continuation of our previous work [9][10]
where we presented an approach for facilitating the setting-up
and management of new multi-organizational services using
goals. We have in this paper also used ideas and concepts from
the WSMO conceptual framework. In contrast to WSMO and
OWLS-S, we propose a bottom-up approach where semantic
annotations are added to the operations of each web service
along the lines suggested by SAWSDL [11], and similarly to
[12]. An operation annotation is a description of input/output
variables, assumptions, and effects. The assumptions and ef-
fects are also expressed as goals.

We define a goal formally as a logical expression in the
WSML language [13]. Note that the notion of a goal in
WSML is more complex. Our aim is to let the discovery
mechanism search for combinations of services that can fulfill
a user-provided goal. For that purpose, we have developed a
goal-refinement algorithm and incorporated it into our service
discovery algorithm. Goal refinement breaks down a goal
into more specific goals with which we can obtain improved
matching results. Goal refinement also determines the set of
operations needed for fulfilling the goal.

The contribution of this work is the combination of: (1) a
goal-driven discovery mechanism for finding services, and (2)
a refinement algorithm that decomposes a goal to subgoals
and test whether a goal is fulfilled, and (3) a bottom up
approach for semantic web service modeling with annotation
at operation level. These three components make a powerful
combination by extending discovery of web services by also
telling exactly which operations of the discovered services that
should be used in a composition.

This report is structured as follows. In Section II, we
present related work. Section III, describes WSML. Section IV
presents the goal-driven automated service composition frame-
work including semantic modeling of web services. Section V
explains the refinement process and provides an example. The
use of refinement in the service discovery process is explained
in Section VI. Section VII concludes with a summary and a
discussion of the current limitations of our approach.

II. RELATED WORK

The Universal Description, Discovery, and Integration pro-
tocol (UDDI) [14] is an industrial initiative for enabling the

46

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

discovery and publishing of web services in a distributed
way. The keyword based discovery mechanism in UDDI does
not support discovery based on semantic descriptions of a
service. It is thus not possible to locate a service based on
what problem it solves. As a complement to UDDI, semantic
matching between web services was proposed by Paolucci et
al. [15]. The authors describes a model for creating semantic
service profiles in DAML-S.

The Web Service Modeling Ontology (WSMO) [5] is a con-
ceptual framework for modeling discovery and composition of
web services. In WSMO, web services and goals are modeled
using semantic information in the form of preconditions,
postconditions, assumptions, and effects. The interaction pro-
tocol of services are described by choreographies. For service
discovery, goals are matched against web service descriptions.
A similar top-down approach is OWL-S [6] where a service is
modeled using four ontologies: an upper Service ontology that
links a Service Profile ontology, used for service discovery,
a Service Model ontology, used for modeling client-service
interaction and lastly a Service Grounding ontology, used
for binding the service description into corresponding WSDL
entities. A difference between OWLS-S and WSMO is that
WSMO makes a distinction between goals and web services
while OWL-S uses the service profile for both.

The approach of modeling services and then grounding them
in WSDL files, can result in fairly large service descriptions.
WSMO-lite [12] addresses this limitations of WSMO by
providing a bottom-up approach where operations of a WSDL
file are semantically annotated using SAWSDL [11]. This
makes the service models smaller in that the service chore-
ography automatically can be inferred from the annotations.
In [16], the authors extends SAWSDL with the definition of
pre- and postconditions using SPARQL query language and
OWL-S Schema. The SPARQL query language is also used
to formulate goals by users.

Another approach is presented in [17] where the authors
introduce a goal template to precompute potential web services
and goal instances that correspond to concrete client requests.
Both goals and web services are modeled semantically using
first-order logic as state transitions from an initial state. A
similar work was presented in [18] but without goal templates.
Goals are considered only as final states, as in this paper. Nei-
ther of these two papers consider annotations on operations.

The goal-based approach presented by Bandara et al. [19]
uses goal elaboration based on the KAOS method [20] com-
bined with abductive reasoning to infer the mechanisms by
which a given system can achieve a particular goal. This
provides for partial automation of the, possibly inconsistent
and incomplete, manual KAOS approach [20]. The Goal-
Based Service Framework for dynamic service discovery and
composition is described in [21]. The framework allows mod-
eling and inference between high-level goals and other parts
of the system, such as a domain model, services, clients, and
high-level tasks.

Table I
MESSAGING SERVICE ONTOLOGY

concept sendEntity
addresses ofType (1 *) IRI
sender ofType (0 1) string
messageIdentifier ofType string
deliveryResult ofType (0 *) DeliveryInformation
dateTime ofType (0 1) dateTime

concept SMSEntity subConceptOf sendEntity
message ofType string

concept MMessageEntity subConceptOf sendEntity
subject ofType (0 1) string
priority ofType (0 1) MessagePriority

III. THE WEB SERVICE MODELING LANGUAGE

WSML is defined with syntax and semantics closely fol-
lowing WSMO [13]. The two basic components of the WSML
syntax are the conceptual syntax and logical expression syntax.
The conceptual syntax is used for modeling Ontologies, Web
services, Goals, and Mediators, while the logical expression
syntax is used for making logical inference over these def-
initions. In our work, we use only a subset of the syntax:
ontologies and logical expressions.

An ontology in WSML consists of concepts, their attributes
and the relations between instances of the concepts. An
example of a ontology for describing Messaging services is
shown in Table I. A generic Message concept is encapsulated
in the sendEntity item with the attributes, cardinality, and
their value type. A more concrete instance of this messaging
concept is the SMSEntity and the MMessageEntity entities,
both of which inherit the attributes of their superconcept in
addition to specific attributes.

The vocabulary of the logical expression syntax consists
of identifiers, object constructors, function symbols, datatype
wrappers, data values that includes all string, integer and
decimal values, anonymous identifiers, relation identifiers and
variable identifiers of the form ?alphanum*. In the pro-
posed work, we allow a subset of WSML’s logical con-
nectives: and, implies, impliedBy, equivalent, and the aux-
iliary symbols: ‘(’, ‘)’, ‘[’, ‘]’, ‘,’, ‘=’, ‘!=’, memberOf,
hasValue, subConceptOf, ofType, and impliesType. For in-
stance, “?msg memberOf MMessageEntity implies
?msg memberOf sendEntity” (where ?msg is a variable
identifier) is a valid logical expression in the Ontology in
Table I. It says that an instance of the concept MMessageEntity
is also an instance of the concept sendEntity.

IV. GOAL-DRIVEN AUTOMATED SERVICE COMPOSITION

The long term vision of this work is to provide a framework
where new services can easily be created. A user should be
able to specify high-level business goals, in terms of QoS pa-
rameters, Key Performance Indicators and, of course, specific
functionality. Then, the framework would automatically refine
it into a running, self-managing service. In this context, we
define a goal g to be a WSML-expression describing a desired

47

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

state of a system. Thus the framework should create a service
that will, when run, achieve the goal.

We have implemented a prototype of the framework con-
sisting of three components: service discovery engine, service
creation engine, and service execution component. Given a
high-level goal, the service discovery engine tries to find a set
of web service operations that fulfills the goal. The service
creation engine uses the service discovery engine recursively
to find all required dependencies and then composes the
operations into an executable service. The service execution
component then runs the composite service. In this paper, we
present details of the service discovery implementation.

A. Semantic Modeling

The framework uses a bottom-up approach to semantic
modeling where we annotate WSDL files with semantic in-
formation per operation. Thus we represent a web service as a
set of semantically annotated operations. Each operation of a
web service is modeled as a set of input variables I , a set of
output variables O and a set of state transitions T . A transition
consists of an assumption a and an effect e, where a and e
are WSML-expressions. The assumption describes the state in
which the operation can be applied and the effect describes
the resulting state from applying the operation.

By modeling on the operation level, we can automatically
generate the interaction protocol from the annotations and thus
we do not need the choreography of WSMO or the Service
Model of OWL-S. In addition, a goal can be much smaller than
in WSMO since there is no correspondence between a goal and
a web service. Instead, goals are matched to operation effects,
and the assumptions can then in turn be seen as additional
goals that infer dependencies between operations.

B. Semantic Matching

In line with previous work in semantic matching of web
services, we define a set of categories of matching between
a goal g and an operation effect e: plugin, subsume, exact
and no match [15][22][7]. We use match(g, e) to denote
the type of matching, such that match(g, e) = Subsume,
match(g, e) = Plugin, match(g, e) = Exact and match(g,
e) = NoMatch denotes the corresponding matches. In a
subsume match, the g is more generic than e. For instance,
g subsumes e whenever g = ?user memberOf User
while e = ?user memberOf RootUser given that
RootUser subConceptOf User . In case of a plu-
gin match, the situation is the opposite; the e is
more generic than g. For instance, if g = ?user
memberOf User and ?user memberOf Police while
e = ?user memberOf User , then e subsumes g and thus, it
is a plugin match. In case that there are both a plugin match
and a subsume match for two expressions, it is an exact match.
If there is neither subsume nor plugin matches, then it is said
to be a no match.

For implementing the matching operator, we use the al-
gorithm implemented for checking query containment in the

WSML2Reasoner framework [23]. As inference engine, we
use the “IRIS well grounded” engine.

V. GOAL REFINEMENT

The discovery process starts off by the specification of a
goal for a new service and proceeds by searching for sets of
operations that can implement the new service by matching
the goal with the effect of the operations in the annotated
web services. This process is implemented using our goal
refinement algorithm. The rest of the paper describes the
implementation of goal refinement and the incorporation of
it into the service discovery process.

Goal refinement requires domain knowledge of services and
their components. This is described semantically by using one
or more ontologies written in WSML. Algorithm 1 describes
the refinement process of a goal and outputs a set of goals
where each item is a refined expression of the original.

Given an input goal, the refinement algorithm decomposes
the input expression into a set of atomic expressions before
performing refinement on each atomic goal. Goal Decompo-
sition, the first step of goal refinement, is the simplification
of complex goals by the removal of logical connectives.
This is performed using the Lloyd Topor Normalizer in the
WSML2Reasoner framework [23].

Refinement of each atomic element is performed using the
process described in Algorithm 1. In each atomic expression,
the concept is identified (3.2) and its list of subconcepts is
retrieved from knowledge represented by the ontology (3.3).

Algorithm 1 Simple Goal Refinement
1: procedure REFINESIMPLEGOAL(g - a goal)
2: G′ ← decompose(g) . - {3.1}
3: SG← ∅ . - a set of subgoals
4: for all g′ ∈ G′ do
5: c← findConcept(g′) . - {3.2}
6: SC ← listSubConcepts(c) . - {3.3}
7: if SC is not empty then
8: for all sc ∈ SC do
9: g′′ ← g′

10: replace c in g′′ with sc
11: insert g′′ into SG
12: end for
13: end if
14: end for
15: return SG
16: end procedure

We illustrate the algorithm by refining a simple goal. The
ontology in Table I provides the context for the goal, and a
messaging concept is represented using an entity sendEntity
which consists of two smaller entities, SMSEntity and MM-
SEntity. The former represents a simple text message and the
latter a multimedia message. Assume that we are given a goal
requesting a generic messaging service. This could be the
case when the requester doesn’t know or doesn’t care how
a message should be forwarded. Since the goal is generic we
may assume that there is no service available matching the

48

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Table II
INPUT AND REFINED OUTPUT EXPRESSIONS

Input Expression:
?x memberOf msgOnt#sendEntity.

Output Expression Set:
?x memberOf msgOnt#MMSEntity.
?x memberOf msgOnt#SMSEntity.

goal, and that we thus need to refine it into more specific
goals which in turn may be matched by existing services.

The goal expresses a requirement for a generic messaging
service, described as the input expression in Table II. The
generic messaging ontology given above, with its two sub-
concepts is used for refining the goal. The goal is refined into
two subgoals containing the two subconcepts. Table II shows
the original (input) and refined (output) expressions from the
algorithm. Each subgoal may be satisfied by different service
providers: a text messaging service provider and a multimedia
messaging service provider. Provision of both services will
fulfill each of the subgoals and in turn the original goal.

This example illustrated that a single provider may not
possess all the resources necessary to fulfil a goal and that
refinement into more specific subgoals may help aggregating
providers whose services may fully match the given goal.

In the discovery process (see Section VI), refinement is
performed when a plugin or subsume match has been obtained
during the matching of a goal and a web service operation. In
the case of a plugin match between a service provider and a
goal consumer, the goal is more specific than the web service.
A refinement of the web service is then performed and each
refined web service is matched with the goal. With a subsume
match, the web service is more specific than the goal, in which
case the goal is refined and for each refined subgoal a matching
with the web service is performed.

VI. GOAL REFINEMENT IN SERVICE DISCOVERY

Service discovery is achieved by matching a goal provided
by a user against the operations of all web services using goal
refinement. By integrating goal refinement into the discovery
process, we improve match results by being able to combine
subsume and plugin type matches. In addition, we extract
common and differing parts of expressions when matching
a goal to a web service operation. This information is used to
modify the goal if necessary and in further matching processes.

We produce three sets of expressions in this extraction
process. The common expressions, CO, represent the resources
required by the consumer to be fulfilled by the provider. Goals
required by consumer that cannot be fulfilled by the provider,
GO, form a new goal and is used to match against services
by other providers. Providers who offer resources that are
not needed by the consumer, WO, can be offered to other
consumers, thus optimizing resource usage. We demonstrate in
Algorithm 2 the process of comparing a goal and a web service
with the refinement and extraction processes introduced.

By comparing all the operations in a web service against a
goal, as implemented in Algorithm 2, we select the operation
that best fulfills a goal. This is done by selecting the operation
that has the most in common with the goal, while keeping the
unfulfilled goal size to a minimum and using as much of the
web service operation as possible.

For each web service operation and goal, we use Algo-
rithm 2 to obtain the matching result, rank these results and
select the most suitable web service operation. The goals
left unfulfilled by the selected web service operation are
formulated as a new goal which is to be matched against other
web services in the next iteration of the refinement. In the
current version of our implementation, only one operation is
selected from each matching web service.

Algorithm 2 Refinement in Matching
1: procedure (g - a goal, e - an effect)
2: C ← ∅ . : In both goal and effect.
3: GO ← ∅ . :Found only in goal.
4: WO ← ∅ . :Found only in effect.
5: G′ ← decompose(g); E′ ← decompose(e)
6: for all g′ ∈ G′ do
7: for all e′ ∈ E′ do
8: type← match(g′, e′)
9: if type = Exact then

10: insert g′ into C; remove e′ from E′

11: matched ← true
12: else if type = Subsume then
13: Handle subsume . :See Algorithm 3.
14: remove e′ from E′; matched ← true
15: else if type = Plugin then
16: Handle Plugin . :See Algorithm 4.
17: remove e′ from E′; matched ← true
18: end if
19: if matched = true then
20: break loop
21: end if
22: end for
23: if matched = false then
24: insert g′ into GO
25: end if
26: end for
27: WO ← E′

28: return 〈C,GO,WO〉
29: end procedure

Algorithm 3 Handle Subsume Matches
1: SG← refine(g) . : Refine Goal into Subgoals.
2: for all sg ∈ SG do
3: subtype← match(sg, e)
4: if subtype = NoMatch then
5: insert sg into GO
6: else if subtype = Exact then
7: insert sg into C
8: else
9: Compare attributes between sg and e

10: Return common, onlyGoal and onlyWS attributes
11: end if
12: end for

49

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Algorithm 4 Handle Plugin Matches
1: E′ ← refine(e) . : Refine web service effects.
2: for all e′ ∈ E′ do
3: subtype← match(g, e′)
4: if subtype = NoMatch then
5: insert e′ into WO
6: else if subtype = Exact then
7: insert e′ into C
8: else
9: Compare attributes between g and e’

10: Return common, onlyGoal and onlyWS attributes
11: end if
12: end for

A. An Example

We provide an example on service discovery performed
together with refinement and extraction methods. Our user-
provided goal is to create a service that is able to deliver a
message to a registered user. A number of ontologies are used
to describe this goal and a number of web service providers
have services available for the automated composition process.
In our tests, we have modeled an Information service, SMS
service and MMS service among others. Table III shows the
user-provided goal, G0 and some operations (OP1, OP2, and
OP3) in available web services. Table IV shows the results
from attempting to match G0 with each of the web services.

As implemented in Algorithm 2, the goal is first decom-
posed into a set of atomic (with respect to the refinement
algorithm) goals and each component is compared against
the web service operations. The original goal expression, G0
is compared to the first service (information service) and
obtains the best match against the operation createUser (OP1).
The createUser web service operation partially fulfills the
goal. The results obtained with the matching of each atomic
expression are either exact matches or no match. In this step,
no plugin or subsume matches have been obtained to warrant
refinement. F1 of the goal is fulfilled while the remaining
unfulfilled goal is formulated into a new goal G1 and used in
subsequent matches with other web services.

G1 is matched with the operations in the next web ser-
vice, an SMS web service. F2 shows the goals that can
be fulfilled by the sendSMS (OP2) operation in the web
service and the remaining unfulfillable goals G2 are used in
subsequent matches. In this comparison, the atomic expression
in G1, ?msg[msgOnt#deliveryResult hasValue ?x] memberOf
msgOnt#sendEntity, is a subsume match to the atomic ex-
pression of ?msg[msgOnt#deliveryResult hasValue ?x] mem-
berOf msgOnt#SMSEntity. Refinement of the G1 yields two
subgoals: ?msg[msgOnt#deliveryResult hasValue ?x] mem-
berOf msgOnt#SMSEntity and ?msg[msgOnt#deliveryResult
hasValue ?x] memberOf msgOnt#MMSEntity. The former is
an exact match and the latter, G2, is added to the list of goals
that need to be fulfilled by other providers.

G2 is matched against the operations in the next web
service, an MMS web service. F3 shows the goals that can
be fulfilled by the sendMMS operation in the web service and

Table III
COMPARING GOAL AND WEB SERVICE EXPRESSIONS

Goal Expression, G0 :
?user[ug#name hasValue ”Tomas Olsson”,

ug#mobilePhone hasValue ?mp
] memberOf ug#User and
my#isRegisteredByInfoService(?user) and
?msg[msgOnt#deliveryResult hasValue ?x
] memberOf msgOnt#sendEntity
and msgOnt#forDelivery(?msg).

Create User Operation from Information Service, 0P1:
?newUser[ug#name hasValue ?userName
] memberOf ug#User and
my#isRegisteredByInfoService(?newUser).

Send SMS Operation from SMS Service, 0P2:
?x[msgOnt#address hasValue ?address
] memberOf msgOnt#DeliveryInformation and
?msg[msgOnt#deliveryResult hasValue ?x
] memberOf msgOnt#SMSEntity and
msgOnt#forDelivery(?msg).

Send MMS Operation from MMS Service, 0P3:
?x[msgOnt#address hasValue ?address
] memberOf msgOnt#DeliveryInformation and
?msg[msgOnt#deliveryResult hasValue ?x
] memberOf msgOnt#MMSEntity and
msgOnt#forDelivery(?msg).

the remaining G3 remains unfulfilled.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have described a goal-driven service
discovery mechanism and an approach to annotating oper-
ations in semantic web services. We have described how
our goal refinement algorithm can be used to refine a user
provided goal into subgoals with which we can perform a
fine-grained service matching in the service discovery process.
Moreover, we have illustrated how non-matched subgoals can
be extracted to form new goals for subsequent matching.

Our discovery process has not been optimised to reduce the
time required to search for the best matching web service to the
goal. Currently, the larger the number of web services in the
repository, the more time is required to complete a matching.
The complexity of the algorithms needs further investigation,
and the algorithms should be improved accordingly. In our
implementation, the order in which web services are matched
affects the results. The resulting composition may be improved
(e.g., with respect to the number of implementing services)
by investigating methods for finding optimal orderings of the
services prior to matching.

Using goals for modeling and finding services seems to be a
promising approach. By specifying high-level goals it is possi-
ble to manage services at macro level and derive management
of specific services at micro level using goal-refinement. In
this work, we have used implicit goal-decomposition and goal-
composition rules. However, to make the approach more flex-
ible we need an explicit goal-translation modeling language,
where a domain expert can explicitly model what high-level
goals can be translated into what low-level goals.

50

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

Table IV
SERVICE DISCOVERY RESULTS

Results of Comparison Against Information Service
Goal Fulfilled, F1:
?user[ug#name hasValue ”Tomas Olsson”] memberOf ug#User and
my#isRegisteredByInfoService(?user).

Remaining Goal, G1:
?user[ug#mobilePhone hasValue ?mp] memberOf ug#User and
?msg[msgOnt#deliveryResult hasValue ?x] memberOf
msgOnt#sendEntity and msgOnt#forDelivery(?msg).

Best Operation Match:
http://www.sics.se/gops/webservices/InfoService/createUser

Results of Comparison Against SMS Service
Goal Fulfilled, F2:
?msg[msgOnt#deliveryResult hasValue ?x] memberOf
msgOnt#SMSEntity and msgOnt#forDelivery(?msg).

Remaining Goal, G2:
?user[ug#mobilePhone” hasValue ?mp] memberOf ug#User and
?msg[msgOnt#deliveryResult hasValue ?x] memberOf
msgOnt#MMSEntity.

Best Operation Match:
http://www.sics.se/gops/webservices/SMSService/sendSMS

Results of Comparison Against MMS Service
Goal Fulfilled, F3:
?msg[msgOnt#deliveryResult” hasValue ?x] memberOf
msgOnt#MMSEntity”.

Remaining Goal, G3:
?user[ug#mobilePhone hasValue ?mp] memberOf ug#User.

Best Operation Match:
http://www.sics.se/gops/webservices/MMSService/sendMMS

Final Results
Final Set of Operations:
http://www.sics.se/gops/webservices/InfoService/createUser
http://www.sics.se/gops/webservices/SMSService/sendSMS
http://www.sics.se/gops/webservices/MMSService/sendMMS

Goal not fulfillable by any service:
?user[ug#mobilePhone hasValue ?mp] memberOf ug#User.

ACKNOWLEDGEMENT

The present work was funded by the GOPS project. GOPS
is sponsored by Vinnova.

REFERENCES

[1] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (wsdl) 1.1,” World Wide Web Consortium,
W3C Note 15, March 2001.

[2] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen,
A. Karmarkar, and Y. Lafon, “Soap version 1.2 part 1: Messaging
framework (second edition),” World Wide Web Consortium, W3C Rec-
ommendation 27, April 2007.

[3] J. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. Tsakalidis, “Web
service discovery mechanisms: Looking for a needle in a haystack?” in
International Workshop on Web Engineering, August 2004.

[4] N. Steinmetz, H. Lausen, and M. Brunner, “Web service search on
large scale,” in Proceedings of the 7th International Joint Conference
on Service-Oriented Computing, ser. ICSOC-ServiceWave ’09. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 437–444.

[5] D. Roman and H. Lausen, “D2v1.3. web service modeling ontology
(wsmo) - wsmo final draft 21 october 2006,” [Online]. Available: http:
//www.wsmo.org/TR/d2/v1.3/ 29-06-2011.

[6] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIl-
raith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin,
N. Srinivasan, and K. Sycara, “Owl-s: Semantic markup for web ser-
vices,” [Online]. Available: http://www.ai.sri.com/daml/services/owl-s/1.
2/overview/ 29-06-2011.

[7] U. Keller, R. Lara, H. Lausen, A. Polleres, L. Predoiu, and I. Toma,
“D10v0.2 semantic web service discovery wsmx working draft,” [On-
line]. Available: http://www.wsmo.org/TR/d10/v0.2/ 29-06-2011.

[8] E. Kavakli and P. Loucopoulos, Information Modelling Methods and
Methodologies, 2005, ch. Goal Modelling in Requirements Engineering:
Analysis and Critique of Current Methods, pp. 102–124.

[9] Å. Berglund, B. Bjurling, R. Dantas, S. Engberg, P. Giambiagi, and
B. Ohlman, “Towards goal-based autonomic networking,” in Third In-
ternational Workshop on Distributed Autonomous Network Management
Systems, Nov 2008.

[10] M. Y. Chong, B. Bjurling, R. Dantas, C. Kamienski, and B. Ohlman,
“Goal-based service creation using autonomic entities,” in MACE ’09:
Proceedings of the 4th IEEE International Workshop on Modelling Au-
tonomic Communications Environments. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 29–43.

[11] J. Farrell and H. Lausen, “Semantic annotations for wsdl and xml
schema,” World Wide Web Consortium, W3C Recommendation 28,
August 2007. [Online]. Available: http://www.w3.org/TR/sawsdl/

[12] T. Vitvar, J. Kopecký, J. Viskova, and D. Fensel, “Wsmo-lite annota-
tions for web services,” in Proceedings of the 5th European semantic
web conference on The semantic web: research and applications, ser.
ESWC’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 674–689.

[13] N. Steinmetz and I. Toma, “D16.1v1.0 wsml language reference - wsml
final draft 2008-08-08,” [Online]. Available: http://www.wsmo.org/TR/
d16/d16.1/v1.0/ 29-06-2011.

[14] “Uddi,” http://uddi.xml.org/ 29-06-2011.
[15] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic

Matching of Web Services Capabilities,” in The Semantic Web - ISWC
2002: First International Semantic Web Conference, Sardinia, Italy, June
9-12, 2002. Proceedings, 2002, pp. 333+.

[16] K. Iqbal, M. L. Sbodio, V. Peristeras, and G. Giuliani, “Semantic
service discovery using sawsdl and sparql,” in Proceedings of the 2008
Fourth International Conference on Semantics, Knowledge and Grid.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 205–212.

[17] M. Stollberg, U. Keller, H. Lausen, and S. Heymans, “Two-phase web
service discovery based on rich functional descriptions,” in Proceedings
of the 4th European conference on The Semantic Web: Research and
Applications, ser. ESWC ’07. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 99–113.

[18] R. Lara, “Two-phased web service discovery,” in AI-Driven Technologies
for Services-Oriented Computing Workshop at AAAI-06, Boston, USA,
2006.

[19] A. K. Bandara, E. Lupu, J. D. Moffett, and A. Russo, “A Goal-based
Approach to Policy Refinement,” in 5th IEEE Int. Workshop on Policies
for Distributed Systems and Networks (POLICY’04), 2004, pp. 229–239.

[20] R. Darimont and A. van Lamsweerde, “Formal Refinement Patterns
for Goal-Driven Requirements Elaboration,” in 4th ACM SIGSOFT
Symposium on Foundations of Software Engineering, vol. 21, no. 6.
ACM Press, Nov 1996, pp. 179–190.

[21] L. O. B. da Silva Santos, G. Guizzardi, L. F. Pires, and M. van Sinderen,
“From user goals to service discovery and composition,” in Advances
in Conceptual Modeling - Challenging Perspectives, ser. Lecture Notes
in Computer Science. Berlin: Springer Verlag, November 2009, vol.
5833, pp. 265–274.

[22] U. Keller, R. Lara, A. Polleres, I. Toma, M. Kifer, and D. Fensel,
“WSMO Web Service Discovery,” DERI, Tech. Rep. D5.1v0.1, Novem-
ber 2004.

[23] S. Grimm, U. Keller, H. Lausen, and G. Nágypál, “A reasoning frame-
work for rule-based wsml,” in In Proceedings of 4th European Semantic
Web Conference (ESWC), 2007.

51

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

