
Adaptive Trust Management Protocol Based on Fault Detection
for Wireless Sensor Networks

Laura Gheorghe, Răzvan Rughiniş, Răzvan Deaconescu, Nicolae Ţăpuş
Politehnica University of Bucharest

Bucharest, Romania
{laura.gheorghe, razvan.rughinis, razvan.deaconescu, ntapus}@cs.pub.ro

Abstract—Trust management is an important issue in self-
configurable and autonomous networks such as Wireless
Sensor Networks. Sensor nodes need to determine if other
nodes are trustworthy, in order to decide whether to cooperate
with them in completing the sensing and communication tasks.
Therefore, adaptive trust management assures an appropriate
level of security to the critical services provided by Wireless
Sensor Networks. In this paper, we present the Adaptive Trust
Management Protocol for Wireless Sensor Networks, which is
able to compute data trust based on fault detection. The
adaptive trust management protocol operates cycles in which
reputation values are computed and penalty values are
exchanged periodically. A spanning tree is generated for the
sensor network, after which nodes evaluate their children
using the fault detection mechanism and then exchange penalty
values with their neighbors. The protocol has been
implemented in TinyOS and evaluated in a test scenario using
TOSSIM.

Keywords-reputation, trust, fault detection, wireless sensor
networks

I. INTRODUCTION
Wireless Sensor Networks are an emerging technology,

becoming a fundamental method in monitoring various
environments [1]. A sensor network consists of a large
number of sensor nodes that are able to perform sensing,
processing and communicating tasks in a collaborative
manner, in order to detect specific events that take place in
the monitored environment [2].

The sensor network can be seen as a service provider for
user applications. The services provided by the WSN are
data collection and data delivery. A service-oriented
approach fills the semantic gap between high level
application requirements and the low level operations
provided by the sensor network [3] [4].

Because sensor networks are used in critical applications
such as battlefield surveillance, homeland security and
medical monitoring, a critical task when designing a
Wireless Sensor Network is to ensure security against
malicious attacks and faulty nodes [5].

A sensor network can be protected against external
malicious nodes through the use of authentication methods
[6]. However, for internal faulty nodes, another method must
be used to ensure protection against false reports. A solution
against false reports relies on using a trust management

scheme and enforcing a trust policy that sensor nodes must
respect [7].

While the aspects presented in this paper are general and
can be applied to any kind of wireless network, the special
aspect specific to Wireless Sensor Network considered is the
need to minimize the consumption of energy. Therefore, we
aim to reduce the number of packets being sent and received
and we use simple algorithms to compute the trust values.

We propose an Adaptive Trust Management Protocol
(ATMP) that determines trust by computing reputation
values based on fault detection techniques. The protocol
operates in three phases: setup, learning and exchange phase.
In the setup phase, a spanning tree is built, while in the
learning phase, the local penalty value is modified on the
basis of the fault detection techniques. In the exchange
phase, nodes exchange reputation values, re-compute them
and determine trust. The protocol is adaptive because the
reputation values are modified on each cycle, according to
the detected faults and to the penalty values received from
neighboring nodes. The protocol is collaborative because
sensor nodes interact on every cycle in order to update
reputation values.

The rest of this paper is organized as follows: Section II
presents the problem of false reports and the proposed
solution. Section III contains definitions of “trust” and
“reputation” and introduces “trust management”. Section IV
describes related work. Section V introduces the Adaptive
Trust Management Protocol. Section VI presents
implementation details of the protocol in TinyOS. Section
VII describes the test scenario and simulation results. Section
VIII discusses advantages and potential problems. Section
IX concludes this paper.

II. FALSE REPORTS
The main application of Wireless Sensor Networks

consists in environment monitoring and event detection.
However, malicious or faulty nodes can generate and send
incorrect data to the base station. Incorrect data can disrupt
normal data fusion, and event detection. It can trigger false
alerts by generating false alert data, or it can hide important
events by generating false normal data instead of alert data
[8].

Attackers could physically capture and compromise a
sensor node. They could maliciously inject invalid data into
the network in order to disrupt normal functionality,
especially event detection. Authentication and cryptographic

215

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

methods are not a solution to this problem, because once
they have captured a sensor node, the attackers can have
access to the cryptographic information stored on the sensor
and they can successfully authenticate themselves [7].

Besides malicious attacks, hardware and software faults
can also cause incorrect data to be generated and sent to the
base station. For example, the sensing unit or the radio can
malfunction, altering packets and generating inaccurate
sensor readings. This problem, also, cannot be solved by
using authentication and cryptographic mechanisms.

A possible solution relies on the fact that, when an event
takes place in a specific area of the sensor network, sensor
nodes that are in the proximity should have similar collected
data [9]. However, if a node is malicious or faulty, it can
generate data sets that do not match its neighbors’ data.
Therefore, an incorrect data reading can be detected by
comparing the data collected by sensor nodes from the same
area.

In the data aggregation process, the values received from
the children nodes are combined and one single value is
forwarded toward the base station [7]. In order to prevent the
transmission of faulty information, before the aggregation
operation takes place, the node waits for all the children to
send data, and after that, it checks whether proximal nodes
send similar data. The incorrect values will be detected and
they will not be forwarded, while the source nodes will be
penalized.

III. TRUST MANAGEMENT
Trust can be defined as the level of confidence a decident

has in the performance of a person or object. Trust has
always played an important role in social environments, and
recently it started to be considered in various kinds of
networks, such as peer-to-peer, ad-hoc and sensor networks.

Trust is associated with the ability to provide the
expected service. In sensor networks, trust is associated with
the accuracy of event detection and undisturbed network and
protocol functionality.

From a networking perspective, a node can evaluate and
use trust in order to decide whether another node is
uncooperative, malicious or faulty.

Trust is especially critical in networks that rely on
collaborative event detection and environmental monitoring,
where nodes cooperate permanently in order to provide
accurate data collection that characterizes the monitored
environment.

Trust management was first defined by Blaze et al. in [9].
They propose a framework for security policy, credentials
and trust relationships.

In Wireless Sensor Networks, trust management is a
challenging task because they are autonomous and self-
configurable, without any central point of management. In
such networks, trust management is a cooperative process,
rather than a local node oriented process.

Three types of trust evaluation have been defined in
Wireless Sensor Networks: communication trust, data trust
and energy trust [10]. Communication trust consists in
computing reputation values based on successful and failed
transactions. Data trust is the assurance of fault tolerance and

data consistency. Energy trust depends on the level of
existing energy and on the threshold level needed in order to
perform sensing and communication tasks.

In this paper, we focus on data trust, and we present a
data management protocol that is able to enforce trust on the
basis of fault detection methods, and to provide data
consistency for Wireless Sensor Networks.

Adaptive Trust Management Protocol (ATMP) uses
cooperative trust management and has a hierarchical view
over the network. The parent nodes obtain information about
their children and then exchange penalty values with their
neighbors in order to compute reputation values.

IV. RELATED WORK

The most important trust management schemes suited for

Wireless Sensor Networks are: Reputation-based Framework
for Sensor Networks (RFSN), Agent-based Trust and
Reputation Management (ATRM), Parameterized and
Localized trUst management Scheme (PLUS), Group-based
Trust Management Scheme (GTMS) and Trust-aware Query
Processing.

A. RFSN
Reputation-based Framework for Sensor Networks

(RFSN) is a trust management framework in which each
node maintains a trust value for each neighbor node [12].
RFSN uses statistical and decision theory methods in order
to predict the future behavior of nodes and to identify
misbehaving nodes.

Trust values are computed based on reputation. Bayesian
formulation is used to represent the reputation of a node, but
also for updates, integration and trust evolution. A level of
confidence is computed for each data reading, through
consensus-based outlier detection schemes.

RFSN is not suited for sensor networks with high
mobility, because in this case, the reputation values will not
converge. A node must have constant neighbor interactions
in order for the reputation to stabilize.

B. ATRM
Agent-based Trust and Reputation Management (ATRM)

is based on mobile agents that are generated by a single
trusted authority [13]. It assumes that the information carried
by the agents will not be accessed or modified by the
malicious nodes present in the sensor network.

The major advantage of this trust management scheme is
that it takes into consideration the power and bandwidth
constrains and tries to reduce communication overhead and
delay.

C. PLUS
Parameterized and Localized trUst management Scheme

(PLUS) is built on top of the PLUS_R routing scheme. It
uses a localized distributed algorithm in which trust is
computed using direct and indirect observations [14].

In PLUS, the control messages generated by the BS
contains a hashed sequence number (HSN). When a judge
node receives a packet from another node, it uses the HSN to

216

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

check the integrity of the received packet. If the integrity has
been compromised, the trust in node i is decreased.
However, if node i had just forwarded the packet and it is not
a malicious node, it is penalized without being guilty.

D. T-RGR
Trust management scheme for Resilient Geographic

Routing (T-RGR) is a non-adaptive scheme in which sensor
nodes observe the behavior of their one-hop neighbors [15].
T-RGR is vulnerable to collaborative attacks because it uses
direct observations in order to compute trust values.

E. Group-based Trust Management Scheme (GTMS)
Group-based Trust Management Scheme (GTMS) is a

method for clustered Wireless Sensor Networks that
evaluates the trust of a group of sensor nodes [16]. This
approach reduces the memory used to store trust values for
each observed entity.

F. Trust-aware Query Processing
Trust-aware Query Processing is a new approach to

efficient trust-aware routing in data intensive WSNs [17].
The trust metric is based on subjective logic that includes
properties of deployment area, sensor design, and properties
of the transmission channels. The approach optimizes energy
consumption and provides reliability to data intensive sensor
networks.

V. ADAPTIVE TRUST MANAGEMENT PROTOCOL

Wireless Sensor Networks are used to collect data about

the environment in which they are placed. This data may
refer to temperature, humidity, pressure, light, sound, and
advanced properties such as air or water quality, or other
specific object attributes.

We assume that nodes in the same range will gather
similar measurement data regarding a given environmental
property. The optimal range will be determined
experimentally because it depends on the deployed network
and application.

We also assume that nodes have the capability to
determine the distance between them by using ranging
techniques such as TOA-based or RSS-based ranging. This
topic goes beyond the purpose of this paper. We assume that
data packets contain the localization of the source packet.

We define the reputation of a node as a measure of
confidence in ability of that node to correctly collect and
transmit sensor readings.

Every node computes the penalty values for neighbor
nodes on the basis of the packets it has to forward to the base
station. After that, the nodes exchange penalty values, and
the final reputation for a specific node is computed using the
local penalty values and the received ones.

Each sensor node uses reputation values to determine
whether it can trust a certain node or not. The trust is
represented as a binary value. The trust values are used in
order to select which messages will not be forwarded or
aggregated.

The Adaptive Trust Management Protocol for Wireless
Sensor Networks consists in the following three phases:

A. The setup phase
1) The base station broadcasts a Hello packet.
2) The nodes that receive a Hello packet re-broadcast it

in order to reach the whole network.
3) Every node stores the address of the node from which

it has received the first Hello packet. This node will be
called the parent. This way, a spanning tree overlay will be
contructed.

B. The learning phase
1) The learned trust for each neighbor is set to the

default value.
2) The nodes start collecting data and sending it to the

base station. Every node will forward data towards the base
station by using the parent node.

3) The nodes perform error detection using the
following algorithm:

a) Leaf nodes just transmit the raw collected data
b) Every other node within the spanning tree waits to

receive data from children nodes for a specific period of
time. The packets are stored in a list.

c) After the waiting period, based on the location of
each source of data, the nodes are grouped in clusters, so
that the distance between nodes within a cluster is less that a
constant ε.

d) Each cluster of nodes is represented by a list of
measurement values generated by member nodes. Each list
of nodes is sorted in an ascending manner.

e) For each list of values, the median value is
computed. For error detection purposes, the median is a
better measure of the central tendency than the average,
because it is less sensitive to outliers.

f) For each list, the values are compared with the
median value. If the difference between the considered
value and the median is greater than a constant deviation γ,
the value will be considered erroneous. The constant
deviation γ is defined as a percent of the median value. The
actual value depends on the application.

4) For each node that is the source of an erroneous data
value, the local penalty value will be increased with a
specific value. This values depends directly on the diference
between the analized and the median values.

5) Each non-leaf node will have a list of associations
between nodes and penalty values, called penalty
associations.

C. The exchange phase
1) Each node sends the list of penalty associations using

a broadcast message.

217

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

2) Each node waits to receive the lists of associations
from their neighbors for a predefined period of time.

3) After the period of time has expired, the reputation
value is recomputed using the current local penalty obtained
through the learning phase, the previous reputation value
and the penalty values received from the neighbours using
the following formula:
Reputation(X)=Previous_reputation(X)-Local_penalty(X)-
ΣY(WY*Received_penaltyY(X)). The received penalty from
node Y is weighted with WY, which represents the trust
value that the current node has in node Y. The trust value is
either 1 for trusted nodes or 0 for un-trusted nodes.

4) The trust value is recomputed using the following
conditions:

Trust(X)=1 if Reputation(X)>=TRUST_LIMIT
Trust(X)=0 if Reputation(X)<TRUST_LIMIT
This computed trust value can be used by parent nodes in

order to forward or aggregate data packets received from
children that are trustworthy, and ignore packets from
children in which they do not trust.

A complete trust management cycle consists in a learning
phase and an exchange phase. At the end of a cycle, each
node has updated their trust in other nodes, even if they are
not reachable within one single hop.

The setup phase is repeated after a specific number of
trust management cycles. This phase must be repeated
because the topology may change and nodes could lose their
parents, and therefore they would not be able to send data to
the base station. The number of cycles after which a setup
phase must take place depends on the duration of a cycle and
on the dynamic of the network. The dynamic of the network
depends on the frequency of the topology changes that may
be caused by energy depletion and node mobility.

After a topology change, two nodes that were not
neighbors in the previous cycle can become parent and child
after a setup phase. The parent is now able to use the
information it has previously obtained about the new child
node.

VI. PROTOCOL IMPLEMENTATION
The protocol has been implemented in TinyOS, an open-

source, component-oriented operating system designed
especially for Wireless Sensor Networks [18].

A single component was used to implement the protocol
and a wiring component is used to place the protocol
component on top of the TinyOS Active Message Stack.

The messages used in our implementation of the protocol
rely on the following Layer 2 header which corresponds to
the TinyOS Active Message header. The real AM header
contains other additional fields that are not relevant for the
understanding of the Adaptive Trust Management Protocol.
The Layer 2 header is represented in Figure 1. The source
and destination addressed are AM addresses used for the
hop-by-hop communication between nodes.

Hop_src Hop_dest Upper Layer data

Figure 1. Layer 2 header

In Figure 2, we present the Layer 3 header, which is
specific to our protocol. The source and destination
addresses are AM addresses that are used for the end-to-end
communication between nodes. The Type field represents
the type of message being sent: hello, data or penalty
exchange message. The fields X and Y represent the
coordinates of the source node used to compute the distance
between the nodes in order to form clusters.

End_src End_dest Type X Y Upper Layer Data

Figure 2. Layer 3 header

The component contains nine events implemented, from
which the most important are the receive event that is used to
manage received messages and the fired events for each of
the four timers that are used to perform specific actions.

The component uses four timers in order to assure the
proper functionality of the protocol: Hello timer, Collect
timer, TrustAnalyse timer and TrustExchange timer.

The Hello timer is used only by the base station in order
to periodically broadcast Hello messages that are used to
build the spanning tree overlay, which corresponds to the
Setup phase, step 1.

The Hello_timer.fired event is used to periodically send
messages containing: the Hop_src and End_src equal to the
base station identifier, the Hop_dest and End_dest equal to
AM_BROADCAST_ADDR, the broadcast address, the type
equal to 1 which represents Hello messages. Fields X and Y
are not filled. The Application data contains a sequence
number in order to keep track of the Setup phases.

The Collect timer is used by the nodes in the network to
periodically collect data from the environment and send it
towards the base station, which is the implementation of
Learning phase, step 2.

The Collect_timer.fired event sends messages with the
following fields: Hop_src and End_src equal to the node
identifier that is generating the message, End_dest equal to
the identifier of the base station, Hop_dest equal to the
parent node identified in the Setup phase, Type equal to 2
which represents Data messages, and fields X and Y
containing the coordinates of the source node. The data
packet is sent to the parent of the source node.

The TrustAnalyse timer is used in Learning phase, step 3,
to model the waiting period in which non-leaf nodes receive
data packets from their children and forward them towards
the base station.

The TrustAnalyse_timer.fired event implements the
algorithm presented in Learning phase, step 3, in which
clusters are formed, messages are sorted in lists for each
cluster and data errors are detected using the median method.
The local penalty values are modified according to the data
errors detected and broadcasted to the neighbor messages.
The packets used to broadcast the penalty associations
contain the following fields: Hop_src and End_src is equal to
the node identifier, Hop_dest and End_dest equal to
AM_BROADCAST_ADDR, type is set to 3, representing a
penalty exchange packet. Fields X and Y will not be filled.
The payload contains only the penalty associations modified
in the Learning phase.

218

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

The TrustExchange timer is used in the Exchange phase,
step3, to represent the waiting period in which nodes receive
penalty associations from their neighbors.

The TrustExchange_timer.fired event is used to re-
compute reputation lists according to the local penalty values
and the penalty associations received from the neighbor
nodes. The trust binary values are determined by comparing
the reputation values obtained with the threshold limit of the
accepted reputation.

The Receive.receive event is used to react to every
message received by the current node:

1. If the node receiving the message is the base station
and the message has type equal to 2, the message contains
collected data that reached destination.

2. If the message type is 1 and the node receiving the
message has no parent, the Hop_src node becomes its parent.
The message is re-broadcasted in order to reach other nodes
from the network.

3. If the message type is 2 but the current node does not
have a parent yet, the following message is generated: "No
route to base station, packet from X with value Y is
dropped".

4. If the message type is 2 and the current node has a
parent, the Hop-by-hop addresses are changed to reflect the
current Hop source (Hop_src) and destination (Hop_dest)
and the message is forwarded towards the base station,
through the Hop_dest. The message is stored until analyzed
in the TrustAnalyse_timer.fired event.

5. If the message type is 3, the received penalty
associations are stored locally.

VII. TEST SCENARIO
The Adaptive Trust Management Protocol has been

tested using TOSSIM, a simulator for TinyOS applications
[19], which is particularly adequate for testing WSN
protocols [20], [21].

We use a test scenario based on a simple topology in
order to prove the functionality of the protocol. The topology
is represented in Figure 3, and it contains ten nodes placed at
the coordinates specified in the figure. The line between two
nodes indicates that they are in the broadcast range of each
other, and therefore they can directly communicate with each
other. The three circles observed in the figure represent the
clusters identified by the nodes using a specialized
algorithm.

We present the output of TOSSIM for every step in the
protocol. We choose to display only receive events in order
to eliminate redundant data from the figure. Even for
broadcast messages, the Hop_dest field in the received
packet is the unicast AM address of the receiving node. This
behavior is specific to TinyOS implementation. The
broadcast address is equal to 65535, as the AM address is
represented on 16 bits.

Figure 3. Simple topology

The Setup phase consists in flooding the network with
Hello messages and building the spanning tree overlay. As it
can be seen in Figure 4, each node learns its parent node
when it first receives a Hello packet. For example, node 1
receives Hello messages from node 0, 8, 9 and 2, but it stores
as parent, the node from which it has received the first Hello
message.

After all nodes have learned their parent, the spanning
tree is ready and the sensor nodes can start collecting data
and send it towards the base station.

Figure 4. Setup phase

The nodes receiving a data packet will forward it using
the parent node. A four-hop data routing process is presented
in Figure 5.

Figure 5. Collect and route data packets

The data packet is generated by node 6, which has the
parent node 5. The Layer 2 AM addresses are changes at
every hop as it can be observed in Figure 5. Each node on the
path forwards the packet to its parent. Node 0 displays a
message with the data received and the source node.

(1): Packet received (Hop_src=0 Hop_dest=1 End_src=0 End_dest=65535 type=1)
(1): Parent 0
(9): Packet received (Hop_src=1 Hop_dest=9 End_src=0 End_dest=65535 type=1)
(9): Parent 1
[…]
(3): Packet received (Hop_src=2 Hop_dest=3 End_src=0 End_dest=65535 type=1)
(3): Parent 2
(1): Packet received (Hop_src=2 Hop_dest=1 End_src=0 End_dest=65535 type=1)
(7): Packet received (Hop_src=5 Hop_dest=7 End_src=0 End_dest=65535 type=1)
(7): Parent 5
(6): Packet received (Hop_src=5 Hop_dest=6 End_src=0 End_dest=65535 type=1)
(6): Parent 5

 (5): Packet received (Hop_src=6 Hop_dest=5 End_src=6 End_dest=0 type=2
msg=14)
 (2): Packet received (Hop_src=5 Hop_dest=2 End_src=6 End_dest=0 type=2
msg=14)
 (1): Packet received (Hop_src=2 Hop_dest=1 End_src=6 End_dest=0 type=2
msg=14)
 (0): Packet received (Hop_src=1 Hop_dest=0 End_src=6 End_dest=0 type=2
msg=14)
(0): Received from End_src=6 collected data=14

219

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 6. Collected data

Figure 6 presents all data received by the base station in a
round. Node 2 has received and stored the messages from
nodes 3, 4, 5, 6, 7. Two clusters are identified, cluster1
containing nodes 2, 3, 4 and cluster 2 containing the nodes 5,
6, 7, as they are represented in Figure 3. Two sorted lists are
built containing the measurement data from nodes within the
two clusters: [8, 9, 12] and [14, 15, 15]. The median values
for the two lists are 9 and 15. The value γ was set to 20%,
therefore the value 12 collected and sent by node 4 is found
to be erroneous.

Initially, the local reputation is set to a default value, for
example 100, and local_penalty[4] is set to 0. After the error
is detected, local_penalty[4]=3, the difference between the
value sent by node 4 and the median value. Node 2 sends a
broadcast message announcing that it has detected an error.
The message contains the accused node identifier and the
error found, as it can be seen in Figure 7. The broadcast
message is received by nodes 5, 4, 1 and 3, and they compute
the final reputation value based on the local penalty and the
received penalty association. The value obtained by all
receiving nodes is 97.

Figure 7. Exchanging penalty associations

Unless the data packet from node 4 is dropped by node 2,
the process is repeated by node 1, which also detects that the
value sent by node 4 is erroneous and announces nodes 0, 8
and 9.

VIII. DISCUSSION
The TRUST_LIMIT value used to compute trust depends

on the application and the behavior of the sensor nodes. If
the reputation of a node continues to drop under a certain
limit, the node should not be trusted anymore and the packets
received from it should not be forwarded or used in the
aggregation process. Therefore, the procedure for computing
the reputation and trust has the advantage of eliminating both
nodes that perform one serious error and nodes that generate
many relatively small errors.

A problem arises if one of the non-leaf nodes that
forwards data towards the base station starts modifying the

data contained in the packets. This behavior could be
determined by a failure in the node or because it is malicious.
We found the solution to integrate a Message Authentication
Code (MAC) into the message that would be computed with
a secret key shared only between the source node and the
base station. This way, if the data packet is modified on the
way, the malicious node does not have the secret key of the
source node, therefore it will not re-compute correctly the
MAC.

Another problem could appear regarding the formula for
computing the reputation, in which the reputation of a node
can only descrease or stay constant, but can not increase or
return to baseline. In some cases a redemption procedure is
needed. The formula can be adjusted as follows:
Reputation(X)=Previous_reputation(X)+Local_penalty(X)+
ΣY(WY*Received_penaltyY(X)), where the penalty is
negative and proportional to the detected error in the case of
fault detection, and the penalty is positive and equal to a
value determined experimentally if measured values are
detected as normal.

The major advantage of this protocol is that it can detect
data packets generated by faulty or malicious nodes and drop
them before reaching the base station. Therefore, a number
of useless send and receive operations are avoided and
energy consumption is minimized.

The filtering of erroneous data is also very useful for the
data aggregation process. Once aggregated, the base station
would not be able to detect errors in the received data.
Therefore, data values must be verified before being
aggregated.

IX. CONCLUSIONS
Wireless Sensor Networks are deployed in order to

provide a service to the end user. Medical and military
monitoring consists in critical services provided that must be
protected using an efficient security solution.

We developed the Adaptive Trust Management Protocol
for Wireless Sensor Network, a protocol that computes
reputation and trust based on fault detection in three phases
organized in cycles.

One cycle contains a Setup phase and a number of
Learning and Exchange phases. In the Setup phase, the base
station broadcasts Hello messages that reach every node in
the network. A spanning tree overlay is build by learning the
parent of each node from the first Hello message received in
a cycle.

In the Learning phase, the nodes group the messages
received in a predefined period of time by location and
determine the erroneous data based on the assumption that
two nodes that are close to each other should have similar
sensor readings. Based on the errors detected, the local
penalty values are modified.

In the Exchange phase the local penalty values are
exchanged with their neighbors and the reputation and trust
values are recomputed using the local penalty values and the
received penalty associations.

The trust values can be used to filter erroneous data
packets before reaching the base station, in order to minimize

(0): Received from End_src=2 collected data=8
(0): Received from End_src=3 collected data=9
(0): Received from End_src=4 collected data=12
(0): Received from End_src=7 collected data=15
(0): Received from End_src=1 collected data=4
(0): Received from End_src=2 collected data=9
(0): Received from End_src=3 collected data=10
(0): Received from End_src=5 collected data=14
(0): Received from End_src=6 collected data=15
(0): Received from End_src=9 collected data=6

(2): Trust Packet sent (src=2 dest=65535 End_src=2 End_dest=65535 type=3
node=4 penalty=3)
(2): node=4 reputation=97
(5): Received from 2 dif_reputation=3 in node=4
(4): Received from 2 dif_reputation=3 in node=4
(1): Received from 2 dif_reputation=3 in node=4
(3): Received from 2 dif_reputation=3 in node=4
(3): node=4 reputation=97
(4): node=4 reputation=97
(5): node=4 reputation=97

220

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

the energy consumption, and to obtain correct data during the
aggregation process.

The protocol has been implemented in TinyOS and its
functionality has been evaluated in a test scenario using
TOSSIM.

BIBLIOGRAPHY

[1] L. Gomez and C. Ulmer, “Secure Sensor Networks for Critical
Infrastructure Protection”, 2010 Fourth International Conference on
Sensor Technologies and Applications, 2010, pp. 144-150.

[2] K. Kabri and D. Seret, “An evaluation of the cost and energy
consumption of security protocols in WSNs”, 2009 Third
International Conference on Sensor Technologies and Applications,
2009, pp. 49-54.

[3] F. C. Delicato, P. F. Pires, L. Pirmez, and T.V. Batista, “Wireless
Sensor Networks as a Service”, 2010 17th IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems, 2010, pp. 410-417.

[4] E. Avilés-López and J.A.García-Macías, “TinySOA: a service-
oriented architecture for wireless sensor networks”, Service Oriented
Computing and Applications, Vol. 3, No. 2, 2009, pp. 99-108.

[5] D.I. Curiac, M. Plastoi, O. Banias, C. Volosencu, R. Tudoroiu and D.
Pescaru, “Software Development for Malicious Nodes Discovery in
Wireless Sensor Network Security”, 2010 Fourth International
Conference on Sensor Technologies and Applications, 2010, pp. 402-
407.

[6] L. Gheorghe, R. Rughiniş, R. Deaconescu, and N. Ţăpuş,
“Authentication and Anti-replay Security Protocol for Wireless
Sensor Networks”, The Fifth International Conference on Systems
and Networks Communications, August 22-27, 2010, pp. 7-13.

[7] J. Zheng and A. Jamalipour, “Wireless Sensor Networks A
Networking Perspective”, John Wiley & Sons, 2009.

[8] F. Ye, H. Luo, S. Lu, and L Zhang, “Statistical en-route filtering of
injected false data in sensor networks”, 23th Annual IEEE Joint
Conference of the IEEE Computer and Communication Societies
(INFOCOM’04), vol. 23, no. 4, March 2004, pp. 839-850.

[9] G.R. Abuaitah, “Trusted Querying over Wireless Sensor Networks
and Network Security Vizualization”, Master of Science Thesis,
2006.

[10] M. Blaze, J. Feigenbaum, and J. Lacy. “Decentralized Trust
Management”. In IEEE Symposium on Security and Privacy, 1996.

[11] Dong Hui-hui, Guo Ya-jun, Yu Zhong-qiang, Chen Hao, "A Wireless
Sensor Networks Based on Multi-angle Trust of Node," ifita, vol. 1,
pp.28-31, 2009 International Forum on Information Technology and
Applications, 2009.

[12] S. Ganeriwal and M.B. Srivastava, “Reputation-Based Framework for
High Integrity Sensor Networks,” Proc. ACM Workshop Security of
Ad Hoc and Sensor Networks (SASN ’04), pp. 66-67, Oct. 2004.

[13] A. Boukerche, X. Li, and K. EL-Khatib, “Trust-Based Security for
Wireless Ad Hoc and Sensor Networks,” Computer Comm., vol. 30,
pp. 2413-2427, Sept. 2007.

[14] Z. Yao, D. Kim, and Y. Doh, “PLUS: Parameterized and Localized
Trust Management Scheme for Sensor Networks Security,” Proc.
Third IEEE Int’l Conf. Mobile Ad-Hoc and Sensor Systems (MASS
’06), pp. 437-446, Oct. 2006.

[15] K. Liu, N. Abu-Ghazaleh, and K.-D. Kang, “Location Verification
and Trust Management for Resilient Geographic Routing,” J. Parallel
and Distributed Computing, vol. 67, no. 2, pp. 215-228, 2007.

[16] R. A. Shaikh, H. Jameel, B. J. d’Auriol, H. Lee, S. Lee, and Y. Song,
“Group-Based Trust Management Scheme for Clustered Wireless
Sensor Networks”, IEEE Transactions on Parallel and Distributed
Systems, vol. 20, no. 11, pp. 1698 - 1712, 2009.

[17] V. Oleshchuk and V.Zadorozhny, “Trust-Aware Query Processing in
Data Intensive Sensor Networks”, 2007 International Conference on
Sensor Technologies and Applications, 2007, pp. 176-180.

[18] P Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A.
Woo, D. Gay, J. Hill, M. Welsh, E. Brewer and D. Culler, “TinyOS:
An Operating System for Sensor Networks”, Ambient Intelligence,
2005, pp. 115-148.

[19] P. Levis, N. Lee, M. Welsh, and D. Culler, “TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications”, In SenSys '03:
Proceedings of the 1st international conference on Embedded
networked sensor systems, 2003, pp. 126-137.

[20] L. Gheorghe, R. Rughiniş, and N. Ţăpuş, “Fault-Tolerant Flooding
Time Synchronization Protocol for Wireless Sensor Networks”, The
Sixth International Conference on Networking and Services, ICNS
2010, March 7-13 – Cancun, Mexico, 2010, pp. 143-149.

[21] R. Rughiniş and L. Gheorghe, “Storm Control Mechanism for
Wireless Sensor Networks”, 9th RoEduNet IEEE International
Conference, June 24-26, 2010, pp. 430-435.

221

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

