
Development of Web 2.0 Applications using WebComposition/Data Grid Service

Olexiy Chudnovskyy, Martin Gaedke
Faculty of Computer Science

Chemnitz University of Technology
Chemnitz, Germany

olexiy.chudnovskyy@s2004.tu-chemnitz.de
martin.gaedke@informatik.tu-chemnitz.de

Abstract—Data integration and content publishing in terms
of Linked Data is a complex and time-consuming task while
developing Web 2.0 applications. Considering this problem
separately from architecture design increases application main-
tenance effort and causes additional overhead to provide public
access functions. In this paper, we present the WebComposi-
tion/Data Grid Service and its data management capabilities
to meet demands of modern Web 2.0 applications. We show
how to facilitate the application implementation and shorten
development time by applying the Data Grid Service as Web
Service-based storage solution.

Keywords-REST; Linked Data; Web 2.0.

I. INTRODUCTION

The classical approach while developing Web 2.0 applica-
tions foresees many steps beginning with problem analysis
over data modeling, architecture design and ending with
implementation and maintenance [1]. Consider the develop-
ment process of a small Web 2.0 application. As an example,
we create a small online-tool to support Scrum software de-
velopment method [2]. In Scrum a product owner separates
the project into stories, which are functionalities a client
wishes from the application. Stories are implemented by the
Scrum team during sprints - fixed periods of time, usually 2
or 4 weeks. The team divides the stories into small tasks and
solves them by implementing the specified functionality. If
problems occur, so called impediment requests are posted to
the scrum master, who tries to solve them and cares about
the smooth development process.

First we define entities and relationships using the UML
class diagram from Fig. 1. Following the classical approach
we use one of the Object-Relational-Mapping libraries (like
Hibernate [3] or Microsoft Entity Framework [4]) to map the
described classes and associations onto tables of a relational
database. This way the application deal only with conceptual
scheme and concentrates on business logic, abstracting from
database read/write operations and communication details.
With the help of a Model-View-Controller (MVC) Frame-
work we develop the presentation level and implement
navigation functions. Due to the simplicity of our example
application it doesn’t take much time to implement the
business logic. The creation, edition and retrieval functions

Project
● Id
● Title
● Description

Story
● Id
● Name
● Description
● Estimation

User
● Id
● Username
● Password
● Group

Task
● Id
● Description
● Estimation

Sprint
● Id
● Description
● Start Date 0..n

Belongs To Project

Has Story

1

0..n

Belongs To Story

Has Task

1

0..n

Belongs To Project

Has Sprint

1 0..n
Belongs To Sprint Has Story

1 0..n

Belongs To User

Has Task

0..m

0..n

Belongs To Project

Has User

Impediment

● Id
● Description
● Date
● State

1

Created By

Creates
Impediment

0..n

1

Figure 1. UML class diagram of scrum tool.

are usually automatically generated by modern MVC frame-
works.

The created application works fine as a standalone tool,
but still doesn’t collaborate with other services or exchange
any data. Assuming we would like to provide a Really
Simple Syndication (RSS) feed [5] with newly added imped-
iment requests, additional programming effort in implemen-
tation of a web-service is needed making this simple feature
costs- and time-consuming. Publishing the information about
ongoing projects in Resource Description Framework (RDF)
format [6] requires new work again, transforming internal
data into new representation and exposing it by imple-
menting new web service methods. Further functionalities
like public or new data representations become even more
expensive due to the implementation and maintenance costs.

As we see, application development time and project
costs could be decreased if collaboration with other services
as well as publishing of content in terms of Linked Data
would be considered in the planning phase. Addressing these
problems after essential application functions are imple-
mented, data is strictly modeled and manipulation methods
are defined makes the further development inefficient and
increases maintenance costs. Our solution acts as a web-
based storage solution targeting common integration and
data exchange needs of modern Web 2.0 applications and
supporting the developer in implementation and maintenance
of web-based applications. We show how schema-free data

55

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

can be modeled using Data Grid Service (DGS) and ma-
nipulated in the RESTful way [7] (Section II). We illustrate
the application of Data Grid Service as underlying storage
engine (Section III) and discuss it respecting complexity and
performance aspects (Section IV). We also present some
related approaches in Section V.

II. WEBCOMPOSITION/DATA GRID SERVICE

In this section, we discuss the fundamentals of the
WebComposition/Data Grid Service, present data modeling
possibilities, access methods and internal architecture of the
service.

A. Basic Principles

The Data Grid Service acts as a flexible and easy to inte-
grate component providing wide information exchange and
sharing possibilities. Focusing on the management of XML
lists and corresponding metadata in a RESTful way, the
service can be applied in a variety of scenarios with different
requirements on discovery, presentation and integration of
data. The concept of URI plays a decisive role in data
access and manipulation methods, the variety of supported
representation formats makes it easy to share the information
and integrate it into existing applications. Though the service
focuses on the maintenance of data in form of XML lists,
further functionality such as content transformation using
XSLT stylesheets, binary content or gateways to other data
sources may be managed through extensions.

The logical view on the resources managed by Data
Grid Service is described by a set of so called information
stores (Figure 2). The information stores provide access
to the resources inside and corresponding metadata. For
example an information store may act as a single XML list,
containing XML representation of people or publications and
providing Create/Read/Update/Delete (CRUD) methods for
item manipulation. The information stores, metadata and sin-
gle items are references through URIs, service architecture
allows items to contain further information stores or act as
a gateway to other services or data sources. To create infor-
mation stores within the Data Grid Service a corresponding
HTTP request is made with descriptive information about
the newly created information store. Configuring the stores
using metadata allows not only the definition of functionality
but also affects performance issues, e.g., XML lists may
be internally stored either directly in separate files or in
the database to maintain larger amounts of data. Moreover
relationships between information stores can be configured
to merge the contents and process the combined data.

B. Data Model

The WebComposition/Data Grid Service manages struc-
tured data in form of XML lists. Additionally service can
handle lists of binary arrays, providing a fast and flexible
storage solution for web application resources. Resource

Figure 2. WebComposition/Data Grid Service. Logical view.

metadata in form of RDF statements can be created to
annotate the stored information, connect it with related
resources or configure access and manipulation methods.
XSLT stylesheets are used to transform the content into
another representation formats, such as RDF or JSON, or
to organize the data as Atom or RSS Feeds.

Resources in DGS may be created via HTTP in the
RESTful way and configured for the future use by provided
descriptive metadata. Depending on the type of the created
resource its behavior and access methods are defined. In
case of XML lists, single XML blocks may be added,
retrieved or deleted. To validate the incoming data a XSD
schema can be defined, specifying either the overall list
structure or making restrictions on the incoming elements.
The approach simplifies the maintenance of objects used by
web applications and allows making changes into data struc-
ture without reorganizing dependencies or affecting other
contents. In order to support the development of applications
with focus on relationships between objects foreign keys
and connections may be specified between lists providing a
flexible access to subordinate items. The relationships are
defined using RDF statements so that external services may
consume this information to optimize their own discovery
and integration functions.

C. Data Manipulation

The WebComposition/Data Grid Service is a web com-
ponent designed in a RESTful architectural style, providing
a number of resource discovery and maintenance functions.
With a HTTP GET request on service metadata (/meta) the
RDF description of existing information stores and current
service configuration is retrieved

New information stores are added with a POST request
on Data Grid Service URL providing description of the
resource to be created. The type of the resource (list of XML
elements, XSLT transformation, gateway to other services

56

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

etc.) defines the allowed operations both on the resource
itself but also on the subordinate items. Single list items are
created with a POST request on the corresponding parent
list URL:

POST / a u t h o r s HTTP / 1 . 1
H o s t : dgs . example . o rg
Conten t−L e n g t h : 89
Conten t−Type: t e x t / xml

<a u t h o r>
<fname>Ol ex iy< / fname>
<sname>Chudnovskyy< / sname>
<c i t y>Chemnitz< / c i t y>

< / a u t h o r>

HTTP / 1 . x 201 C r e a t e d
L o c a t i o n : h t t p : / / dgs . example . o rg / a u t h o r s / 5

Unique id’s are assigned to the newly created store items
so these can be later retrieved, updated or deleted with
corresponding GET, PUT or DELETE methods. To make the
item URI even more descriptive a URI Template [8] may be
defined to map the incoming request onto predefined XPath
expression selecting the appropriate items from the list:

POST / a u t h o r s / meta HTTP / 1 . 1
H o s t : dgs . example . o rg
Conten t−L e n g t h : 89
Conten t−Type: t e x t / n3

@pref ix m e t a : <h t t p : / /www. webcompos i t ion . n e t
/ 2 0 0 8 / 0 2 / dgs / meta /> .

<h t t p : / / dgs . example . o rg / a u t h o r s>
m e t a : u r l T e m p l a t e
[

m e t a : u r l ” a u t h o r s /{ v a l u e }” ;
m e t a : x P a t h ” / a u t h o r s / s t u d e n t [sname = ’{ v a l u e } ’] ”

] .

The newly created item would be then
alternatively available under the URI:
http://dgs.example.org/authors/chudnovskyy.

The metadata of XML list items may provide further
information in RDF format about the resource e.g., its
creation date or list creator.

The described approach simplifies the fast development of
many Web 2.0 applications, e.g., blogs, online presentations
or information sharing portals by providing a flexible and
intelligent storage solution. Satisfying the needs of devel-
opers to model structured data, Data Grid Service exposes
its content in a RESTful way, so the content may be
immediately consumed by other applications and services.

To support applications based on the domains with many
connections between items, the pre-configured relationships
are used by the Data Grid Service to aggregate subordinate
items. The relationship is defined through 4 obligatory and
3 optional attributes:

• Source: A URI of the information store within the
Data Grid Service to act as a primary list, e.g.,
http://dgs.example.org/authors/

• Target: A URI of the information store within the
Data Grid Service to act as a subordinate list, e.g.,
http://dgs.example.org/publications

• Predicate: A URI of RDF predicate to act
as a foreign key, defining a connection
between primary and secondary list items, e.g.,
http://www.webcomposition.net/2008/02/dgs/meta/has-
Published. Predicates are automatically stored in the
metadata of the parent item.

• URI: The unique identifier for the relationship. In
particular an URL within Data Grid Service domain
is used to retrieve the relationship details, to modify or
to delete it. The URL is provided by the service and is
sent in the Location header to the client after creation.

A relationship defined through the obligatory attributes
allows the service to process URIs after the following
pattern:
h t t p : / / { s e r v i c e h o s t } /{ s o u r c e l i s t n a m e } /
{ s o u r c e i t e m i d } /{ t a r g e t l i s t n a m e }

and as such, filtering only those items from target list that
have a relationship to the parent list item source item id
over the RDF property defined in Predicate-attribute. A
POST request on the same URI is used to add new items
to the subordinate list connecting it simultaneously with the
given parent list item. An inverse operation to remove the
relationship between items is performed using a DELETE
request on the URI
h t t p : / / { s e r v i c e h o s t } /{ s o u r c e l i s t n a m e } /
{ s o u r c e i t e m i d } /{ t a r g e t l i s t n a m e } /
{ t a r g e t i t e m i d }

An optional Inverse-Predicate-attribute can be specified to
define a reverse relationship from the target list to the source
list. A corresponding RDF statement is then automatically
assigned to the child item metadata, acting as a foreign
key to the parent list item. The approach improves both
performance processing n:m relationships and lets the Data
Grid Service process the URIs after the reverse pattern:
h t t p : / / { s e r v i c e h o s t } /{ t a r g e t l i s t n a m e } /
{ t a r g e t i t e m i d } /{ s o u r c e l i s t n a m e }

In example above both publication(s) of some fixed author
and also author(s) of some fixed publication can be retrieved
with simple GET requests on the corresponding URIs. If
many relationships between the same source and target list
should be modeled, optional Source and Target Aliases are
specified to resolve conflicts with already existing relation-
ship definitions. The predicate of the relationship is then
used to perform aggregation of target list items and response
to the requests URIs like
h t t p : / / { s e r v i c e h o s t } /{ s o u r c e l i s t n a m e } /
{ s o u r c e i t e m i d } /{ t a r g e t l i s t a l i a s }

or
h t t p : / / { s e r v i c e h o s t } /{ t a r g e t l i s t n a m e } /
{ t a r g e t i t e m i d } /{ s o u r c e l i s t a l i a s }

57

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Http Request
REST/HTTP

Http Response

SOAP Request
SOAP

SOAP Response

XML/RPC Request
XML/RPC

XML/RPC Response

DataSpaceEngine

DataSpaceEngine

DataSpaceEngine

...

DataSpaceEngine
Selector

Storage
Engine

Library

Gateway

Request

Response

Service
Metadata

Figure 3. Data Grid Service architecture

The data modeling possibilities and processing functions
let the developer concentrate on the contents and user
interface of the web application supporting them by flex-
ible and intelligent storage solution. The ease of service
integration and data retrieval shortens both development
of prototypes and real applications. As the content is
immediately available in form of XML for consumption
and integration into existing applications, implementation
of additional web services or API to access the application
data is unnecessary. The variety of representations formats
and target clients is supported through configurable trans-
formation of output content. E.g., author may provide an
RSS Feed of his newly posted publications simply providing
the Data Grid Service a XSLT stylesheet, that should be
applied on the XML document returned to the request
on http://dgs.example.org/authors/chudnovskyy/publications.
The same way one creates RDF graphs or JSON represen-
tation from the data stored in Data Grid Service.

D. Data Grid Service Internals

The flexibility of the service is achieved by integrating
new components, so called Data Space Engines, handling
the incoming requests with predefined URI patterns (Figure
3). The request is first analyzed by the DataSpaceEngine-
Selector component to determine the information store type
of the requested URI.

The processing of the request is done afterwards by a
chain of Data Space Engines, providing the specific behavior
of the information store. The Data Space Engines may
complete different tasks, such as authorization, resource
versioning, data manipulation or gateway functionality. 3rd
party libraries, components, storage engines and services
may be used to accomplish the task. Following Data Space
Engines are currently implemented:

• XmlDataSpaceEngine - main component providing the
basic functionality on XML lists. Both lists and XML
items are created using corresponding HTTP requests.
Metadata is maintained for stored resources, contain-
ing RDF statements describing the contents and rela-

Relationship
● Id: 00acdeb1-7af9-4544-a6e4-8f59ae0e09ad
● Source: projects
● Target: users
● Predicate: http://dgs.example.org/scrumonthology#hasUser
● Inverse-Predicate: http://dgs.example.org/scrumonthology#belongsToProject

Relationship
● Id: 9fdaf3eb-aef9-4c3b-8e13-c6e8371fe204
● Source: users
● Target: tasks
● Predicate: http://dgs.example.org/scrumonthology#hasTask
● Inverse-Predicate: http://dgs.example.org/scrumonthology#belongsToUser

...

Figure 4. Definitions of entity relationships.

tionships to other lists or items. URI Templates and
relationship definitions are resolved and processed by
the component.

• XSLTDataSpaceEngine - transforms the requested
XML resource according to the defined XSLT trans-
formation. XML lists or single items can be used to
create an alternative representation of contents, e.g.,
Atom or RSS feeds, RDF graphs, JSON representation
or HTML pages. The behavior is configured through
the list metadata.

• BinaryDataSpaceEngine - manages lists of binary con-
tent, automatically extracting meta data from known
formats and storing it using common RDF vocabularies.

The well defined interface allows developers to extend the
functionality of the service implementing further function-
ality, e.g., synchronizing the stored contents with other data
sources or restricting access to specific resources.

III. WEBCOMPOSITION/DATA GRID SERVICE IN USE

In this chapter we apply the Data Grid Service as a storage
solution to the example application discussed in Section I.
To represent the entities, we start with defining 6 XML
lists representing the entities (classes) of the UML model,
i.e., their URIs /projects, /stories, /sprints, /users, /tasks and
/impediments and corresponding schemas to perform data
validation. We also describe the associations by submitting
the corresponding information to the Data Grid Service
(Figure 4).

Each relationship is specified in the service’s metadata
through a set of RDF statements, identifying source and
target XML lists as well as connection predicates. The asso-
ciations between entity objects (depending on the direction)
are now represented by URIs as follows:

• /projects/{project id}/users &
/users/{user id}/projects

• /projects/{project id}/stories &
/stories/{story id}/projects

• /users/{user id}/tasks &
/tasks/{task id}/users

• ...

58

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Figure 5. Example application based on Data Grid Service.

The definitions made above are enough to maintain the
application data, to create new entities and to connect them.
The content manipulation is performed using GET, POST,
PUT and DELETE methods. As in the approach from
Section 1 we implement the UI layer and authorization
logic using a MVC Framework (ASP.NET MVC [9]). In
contrast, implicit support for data exchange and integration
is given through the RESTful architecture of Data Grid
Service. Transforming XML lists using XSLT allows other
applications to consume the data in a suitable for them
format. For example we created a simple XSLT transfor-
mation to provide a RSS feed with information about newly
added impediment messages. The same we exposed the RDF
representation about current projects, stories and tasks.

IV. EVALUATION

A. Performance

To test the performance of the Data Grid Service regarding
relationship processing functions we evaluated the service
response time while retrieving subordinate XML list items
within a simple relationship. The evaluation was performed
by measuring the service response time on a local machine
after request for all users within a specific project (as
in the example application from the section I) using the
URI http://dgs.example.org/projects/5/users. The number of
items within users list varied from 100 to 5000, which
corresponds to the objects count in the middle-size Web
2.0 application. The measures were performed on a service,
hosted in ASP.NET Development Server on a PC with
Intel Core2 Duo 2.66 GHz CPU 3 GB RAM and WD
Velocity Raptor HDD (10000 rot/min). The results in Figure
6 show the linearity of response time function due to the
straightforward implementation of XML filtering procedures
using XPath. The current implementation gives acceptable
results for smaller amounts of data, but should be revised
for larger XML lists and faster response times. Currently we
consider usage of RDF Tripple Stores, caching techniques
and XML databases to meet the requirements of larger
Web 2.0 applications and to optimize the overall service
performance.

Figure 6. Measurements of service response time.

B. Development Process

We notice that the overall application complexity de-
creases due to the implicit resource oriented architecture and
integration capabilities of Data Grid Service. The implemen-
tation of additional web services in order to expose appli-
cation content or offer public data manipulation functions
becomes redundant due to the RESTful architecture of Data
Grid Service and its loose coupling with the application.
The publishing of content in terms of Linked Data is
implicitly supported through XSLT transformations and may
be anytime reconfigured without changing the application
code.

V. RELATED WORK

During the last years a large number of distributed non-
relational data storage solutions appeared. While meeting
many web-specific requirements, the solutions concentrate
on these main problems:

• High availability. An uninterrupted access to the stored
data is especially important in Web 2.0 (business)
applications to serve the customers around the world
and to any time.

• Scalability. The time delay of read/write functions is
stable even if maintenance routines are running or the
number of clients emerges.

• Simple data modeling. The built-in support for key-
value pairs or schema-free content simplifies the im-
plementation of data driven Web 2.0 applications.

Following we discuss some interesting solutions providing
the mentioned functionality and that are related to our
approach.

• CouchDB - The Apache CouchDB Project [10] is
a document-oriented storage solution accessible over
HTTP in the RESTful style. The documents maintained
by CouchDB are objects containing a variable number
of named fields. The absence of document schemas
makes the solution flexible for often data structure
changes and new document types. Availability and
robustness aspects are greatly solved, the manipulation

59

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

of content requires solid JavaScript skills, the modeling
of relationships between documents requires mixing
objects and their metadata, the retrieval functions must
be manually defined.

• WCF Data Services - The Microsoft WCF Data Ser-
vices [11] is a part of .NET Framework, enabling
developers to expose the data on the Web in a RESTful
way. The contents are addressed through URIs and
may be retrieved in different formats like JSON or
XML. The data is described using Microsoft Entity
Data Model based on the Entity-Relationship-Model.
The service offers an easy traversal of collections,
items and relationships, the underlying storage may
be either a relational database, such as Microsoft SQL
Server or any other data source accessed with custom
implementations of data source provider component.

• Amazon S3 - Amazon Simple Storage Service (S3) [12]
provides essential functionality to maintain data over
the Web being accessed both through SOAP and over
HTTP in the RESTful style. While Amazon S3 is used
to store unstructured data, it is often accompanied by
Amazon Simple DB [13] offering a storage solution
to access structured information and objects metadata.
The data stored in Simple DB is schema-free and is
automatically indexed to optimize query operations.

• Google Data API - The Google Data API provides
access to the data stored in Google products such as
Spreadsheets or Calendar using Google Data Protocol
[14]. Besides client libraries are available for many
programming languages, abstracting the conceptual
schema from the data serialization formats used for
data transport. The second version of protocol used is
fully compliant with AtomPub RFC 5023 [15]. The data
access and management functions are fast and flexible,
additional methods to retrieve or update partial entities
are implemented.

The presented approaches concentrate mainly on scala-
bility and performance issues, but do not provide built-in
functions to annotation the content with metadata as well
as to transform it into alternative representation formats,
e.g., RDF/XML. However these issues are essential for data
exchange and integration in modern Web 2.0 applications.
In contrast, Data Grid Service simplifies the development of
Web 2.0 applications by providing an implicit support for
the mentioned functionalities.

VI. CONCLUSION AND OUTLOOK

In this paper, we presented the WebComposition/Data
Grid Service as a web-based storage solution to meet the
needs of modern Web 2.0 applications and to support the
developer in the implementation and maintenance process.
Particularly Data Grid Service facilitates the Web 2.0 appli-
cation development by

• Fast and flexible data management methods

• Content manipulation in RESTful way
• Data annotations in RDF format
• Rich data modeling capabilities and schema-free data

structures
• Support for different data representation formats (XML,

JSON, RDF, N3)
• URI templates and associations handling for easier data

manipulation
• Flexible architecture to extend the functionality

Existing applications take advantage of the built-in sup-
port for resource annotation and sharing capabilities of the
service. In combination with further WebComposition com-
ponents like Data Grid Service List Manager [16] (DGSLM)
user input elements, e.g., XHTML forms can be automat-
ically generated to manipulate the contents directly from
the external web application. To secure single lists or items
within the Data Grid Service WebComposition/ Identity Fed-
eration System (idFS) [17] may be used as identity provider
component. Both DGSLM and idFS have been successfully
tested and are used as embedded modules on the web page of
Distributed and Self-organizing Computer Systems research
group to publish the information about publications, projects
and lectures. In order to improve service performance and
shorten response times we are currently working on indexing
the contents and caching techniques to avoid redundant parse
procedures and accelerate the content delivery process. To
support the collaboration between single service instances
publish/subscribe mechanism is being developed in current
research projects. We are also working to provide iteration
and pagination functions to simplify content discovery and
navigation process.

REFERENCES

[1] T. O’Reilly. (2005, September) What is web 2.0? de-
sign patterns and business models for the next genera-
tion of software. http://oreilly.com/web2/archive/what-is-web-
20.html. Last Access: 04.07.2010.

[2] K. Schwaber and M. Beedle, Agile Software Development
with SCRUM. Prentice Hall, February 2002.

[3] R. F. Beeger, A. Haase, S. Roock, and S. Sanitz, Hibernate:
Persistenz in Java-Systemen mit Hibernate und der Java
Persistence API, 2nd ed. Heidelberg: dpunkt, 2007.

[4] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar,
“Anatomy of the ado.net entity framework,” in SIGMOD
’07: Proceedings of the 2007 ACM SIGMOD international
conference on Management of data. New York, NY, USA:
ACM, 2007, pp. 877–888.

[5] RSS 2.0 Specification, RSS Advisory Board,
http://www.rssboard.org/rss-specification. Last Access:
04.07.2010.

60

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

[6] G. Klyne and J. J. Carroll, “Resource description
framework (rdf): Concepts and abstract syntax,” World
Wide Web Consortium, Recommendation REC-rdf-
concepts-20040210, February 2004. [Online]. Available:
http://www.w3.org/TR/rdf-concepts/

[7] L. Richardson and S. Ruby, RESTful Web Services. O’Reilly
Media, Inc., May 2007.

[8] J. Gregorio and M. Handley, URI Template,
http://tools.ietf.org/id/draft-gregorio-uritemplate-03.txt.
Last Access: 04.07.2010.

[9] J. Galloway, S. Hanselman, P. Haack, S. Guthrie, and R. Con-
ery, Professional ASP.NET MVC 2. Wiley Publishing, Inc,
June 2010.

[10] J. C. Anderson, J. Lehnardt, and N. Slater, CouchDB: The
Definitive Guide Time to Relax. O’Reilly Media, Inc., 2010.

[11] M. Corporation, WCF Data Services,
http://msdn.microsoft.com/en-us/data/bb931106.aspx. Last
Access: 04.07.2010.

[12] Amazon, “Amazon s3 developer guide,” Ama-
zon, Tech. Rep., 2010. [Online]. Available:
http://aws.amazon.com/documentation/s3/

[13] D. Robinson, Amazon Web Services Made Simple: Learn how
Amazon EC2, S3, SimpleDB and SQS Web Services enables
you to reach business goals faster. London, UK, UK: Emereo
Pty Ltd, 2008.

[14] Google, Google Data API, http://code.google.com/intl/de-
DE/apis/gdata/. Last Access: 04.07.2010.

[15] J. Gregoric and B. de hOra, RFC 5023 - The Atom Publish-
ing Protocol, http://tools.ietf.org/html/rfc5023. Last Access:
04.07.2010.

[16] R. Sommermeier, A. Heil, and M. Gaedke, “Lightweight data
integration using the webcomposition data grid service,” in
First International Workshop on Lightweight Integration on
the Web (Composable Web’09) in conjunction with the 9th
International Conference on Web Engineering (ICWE 2009),
San Sebastian, Spain, 22.-26. Jun 2009, pp. 30–38.

[17] M. Gaedke, J. Meinecke, and M. Nussbaumer, “A modeling
approach to federated identity and access management,” in
WWW ’05: Special interest tracks and posters of the 14th
international conference on World Wide Web. New York,
NY, USA: ACM, 2005, pp. 1156–1157.

61

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

