SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Generation of choreography skeletons from web
service definitions

Annett Laube and Patrick Winkler
Bern University of Applied Science
Devision of Computer Science

Biel/Bienne, Switzerland
Email: annett.laube @bfh.ch, winkp1 @bfh.ch

Abstract—Modern IT landscapes underlie constant evolution.
Modeling activities - as a basis for continuous monitoring and
maintenance - stay often behind. Service models describe the way
how services interact. We propose reverse engineering techniques
to generate choreography skeletons from web service definitions.
We describe the necessary transformation to generate a detailed
and consistent choreography than can be easily completed and
merged with existing choreographies. We discuss the restrictions
of the generated WS-CDL skeletons and how they can be
overcome.

Index Terms—web service, choreography, service model, re-
verse engineering

I. INTRODUCTION

IT landscapes in industry or finance are often a result of
a long evolution. Despite continuous efforts to keep models
of systems and components up-to-date, rarely IT landscape
models are consistent and complete.

The landscape model (sometime also called system model)
consists often of two parts: the physical infrastructure and the
service model. The physical infrastructure reflects in great de-
tail components composed in the following groups: computer
hardware (e.g. processing power, memory, etc.), computer
software (e.g. OS, server applications), and network devices
(e.g. links, traffic controllers - hubs/switches/gates/routes).

The service model is an abstraction of the set of all services.
It defines the way how the services interact by exchanging
messages and how more complex services are created by com-
bining services. The terms orchestration and choreography
describe two different aspects of creating business processes
from composite web services.

Orchestration refers to an executable business process that
can interact with both internal and external web services.
Orchestration represents the composition from the viewpoint
of the parties involved in this composition.

A choreography description concerns the composition of
web services seen from a global viewpoint focusing on the
common and complementary observable behavior. Choreogra-
phy is particularly relevant in a setting where there is not a sin-
gle coordinator. Choreography tracks the message sequences
among multiple parties and sources - typically the public
message exchanges that occur between web services - rather
than a specific business process that a single party executes
[1]. Typical examples are a travel agency that offers a broad
range of services including air and train travel, bus tickets,

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

hotels, car rental, excursions, insurance etc. or a company that
wishes to purchase a fleet of cars from automobile suppliers,
which in turn request quotes for specific bill or material items
from their component manufacturers [2].

The main use of a choreography description is to precisely
define the sequence of interactions between a set of coopera-
ting web services in order to promote a common understanding
between participants and to make it as easy as possible to
automatically validate conformance, ensure interoperability
and increase robustness [2].

We want to automate the generation of service models,
more specific of web service choreographies. This reduces the
modeling effort for existing service landscapes. Normally, IT
service landscapes underlie constant evolution due to newly
added or modified business functions. Quite often web services
from partners or external service providers have to be inte-
grated into the existing network. Examples are services from
B2B partners or external data services, like Dun&Bradstreet
to get business information and company assessments from
business partners. In this case, our work helps to keep the
service models up-to-date and to monitor changes in constantly
changing service infrastructures.

We use reverse engineering techniques to extract the neces-
sary information from the implemented web services. Main
information source are the web service definitions, which
provide the documentation for distributed systems and are
available to all communication partners. As the information in
the web service definitions is insufficient to build a complete
service choreography, we concentrate on the generation of
consistent skeletons, which then can be enhanced manually
or enriched with business process information.

The paper continues with a description of related work.
The basis features of WS-CDL and WSDL are addressed in
Sections III and IV. In Section V, the transformation from web
service descriptions to a choreography model is described.
In Section VI, we discuss how the generated choreography
skeletons can be completed. Our implementation of the trans-
formation process is described in Section VII. In Section VIII,
we conclude this paper and discuss further work.

II. RELATED WORK

The most known languages to specify web services cho-
reographies are Web Service Choreography Interface (WSCI,

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

[3]), Web Service Choreography Description Language (WS-
CDL, [4]), and Ontology Web Language for Services (OWL-S,
[5]). All are XML-based and support WSDL [6][7], the well-
established standard to describe web services.

WSCI - sometimes considered as predecessor of WS-CDL
(the last update was released in 2002) — describes the ob-
servable behavior of only one web service including temporal
and logical dependencies in the message flow. WS-CDL and
OWL-S are more powerful to express the collaboration of 2
parties. WS-CDL describes peer-to-peer collaborations of web
services taking part in a choreography. It defines a set of
agreements about ordering and constraint rules. The aim of
OWL-S is to automate the discovery, invocation, composition,
interoperation and monitoring of web services. A detailed
comparison of the 3 languages can be found in [8].

More choreography languages, like Let’s Dance and
BPEL4Chor, are emerged in the last years. Let’s Dance [9]
is a language for modeling service interactions and their flow
dependencies targeting business analysts. It is a language
for high-level analysis and design. WS-CDL is a potential
implementation language for Let’s Dance models. BPEL4Chor
[10] is an extension of Business Process Execution Language
(BPEL, [11]). It adds participant behavior descriptions, i.e.
control flow dependencies, the participant topology and their
interconnection using message links and participant ground-
ings, i.e. concrete configurations for data formats and port
types to the standard BPEL.

To our knowledge, it is a novel approach to reengineer
WSDL files to create a service model. But there are reverse
approaches to generate WSDL descriptions (skeletons) from
choreography models. In [12], the authors describe an ap-
proach to generate the orchestration behavior (BPEL stubs)
and the necessary WSDL templates automatically from WS-
CDL models. The same functionality is implemented in the
visual modeling tool known as pi4SOA [13]. pi4SOA, an open-
source implementation that plugs into Eclipse, is one of the
few WS-CDL implementations available today.

There are many approaches, complementary to our ap-
proach, to recreate the process flow of interacting web ser-
vices. Business process mining, or process mining for short,
aims at the automatic construction of models explaining the
behavior observed in the event log [14]. For example, based
on event logs, it is possible to construct a process model
expressed in terms of a Petri net or Event-driven Process Chain
(EPC). Beside the process perspective, process mining can also
focuses on the originator field (organizational perspective), to
find out, which performers are involved and how are they
related. The goal is either to structure the organization by
classifying people in terms of roles and organizational units or
to show relations between individual performers (e.g., build a
social network [15]).

III. CHOREOGRAPHY

The goal of specifying web service choreographies is com-
posing peer-to-peer interactions between any kind of services,

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

regardless of the programming language or the environment
that hosts the service.

We have chosen to use WS-CDL for our service model,
because its tight coupling to WSDL files and the recommenda-
tion of the W3C Web Services Choreography Working Group.

A WS-CDL model consists of 3 parts:

o Collaborating parties: describing the entities that ex-
change information, their roles and their relationships,

o Collaborative behavior: describing the physical order
(message flow) of the information exchange and assigned
constraints,

« Exchanged information: describing the type of informa-
tion used in the information exchange.

A. Collaborating parties

Within a choreography, information is always exchanged
between participants. A participant — described by a partici-
pant type — groups all the parts of the collaboration that must
be implemented by the same entity. A role type enumerates
potential behaviors of a participant within an interaction. A
channel type is a point of collaboration between participants
specifying where and how information is exchanged. Finally,
a relationship type is used to identify the mutual obligations
between participants that must be fulfilled to succeed.

B. Collaborative behavior

A choreography defines re-usable common rules that govern
the ordering of exchanged messages. A choreography contains
collections of activities that may be performed by one or
more participants. There are three types of activities in WS-
CDL, namely control-flow activities, WorkUnit activities and
basic activities. In the first category, there are three types
of activities: Sequence, Parallel, and Choice. These activities
enclose a number of sub-activities. A WorkUnit activity de-
scribes the conditional and, possibly, repeated execution of
an activity. The basic activities include Interaction, NoAction,
SilentAction, Assign, and Perform. The most important element
of WS-CDL is the Interaction activity that corresponds to an
operation of a web service.

C. Exchanged information

InformationTypes describe the type of variables, tokens and
messages used in the choreography. Their description at the
package level makes them available to all enclosed activities.
They normally refer either WSDL 1.1 message types, WSDL
2.0 schema elements or XML schema elements/types.

IV. WSDL

A web service is described by a web service description
(WSDL file). Currently, there are 2 versions of the specifica-
tion. WSDL 1.1 [6] is the widely accepted standard. Although
WSDL 2.0 [7] is recommended by the W3C since June 2007
and promises an easier implementation, its adaption by SOAP
servers, vendors and tools is still reluctant.

A WSDL 1.1 description containing six major elements
(In this paper, we concentrate on WSDL 1.1, but the same
information is also available in WSDL 2.0.):

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

o types, which provides data type definitions used to de-
scribe the exchanged messages.

o message, which represents an abstract definition of the
data being transmitted.

o portType, which is a set of abstract operations, which
refer to input and output messages.

« binding, which specifies concrete protocol and data for-
mat specifications for the operations and messages de-
fined by a particular portType.

e port, which specifies an address for a binding, thus
defining a single communication endpoint.

o service, which is used to aggregate a set of related ports.

To generate the choreography skeletons, only the elements

message, portType with operations and service are used. The
name of service element is used to name the activities and
collaborating parties in the choreography.

V. TRANSFORMATION

Our goal is the generation of a valid web service cho-
reography (*.cdl file) out of one or several web service
definitions (WSDL files). In the following, we describe the
needed transformations to create the 3 essential parts of a WS
choreography.

A. Collaborating parties

The service element of a web service description is used
to generate the collaborating parties of the choreography.
Each service element represents a relationship between service
provider and service consumer. The name of the service
element is used to generate the relationship type and the role
types related to web service provider and consumer. In Figure
1, the graphical representation of such a relationship is shown.!

i BarCodeConsumer,

i EBarCodeProvider,

= BarCodeSnap

=y BarCodeSoap

FiarCodeRelationship

4:_.-: BarCodeHttpGet 4:‘" BarCodeHttpGet

*E:“' BarCodeHttpPost E_,:' BarCodeHttpPost

Fig. 1.

Graphical Model of a WS-CDL Relationship

The role types enumerate potential observable behaviors
a participant can exhibit in order to interact. This behavior
corresponds to the portTypes (interfaces in WSDL 2.0) of the
WSDL. In Figure 1, each role type has 3 behaviors assigned.

The optional behavior of the role types in the relationship
is not filled during the transformation. In this case, all the
behaviors belonging to this role type are identified as the
commitment of a participant for this relationship. The right
values have to be selected manually in a later stage.

The generated relationship type is assigned to the choreo-
graphy (see in Figure 2) and bound to all interactions created
from the WSDL file (see Section V-B).

'In this and the following examples, we used a public web
service for bar code generation available with its WSDL under
http://www.webservicex.net/WCF/ServiceDetails.aspx ?SID=40.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

<package>
<roleType name="BarCodeProvider">
<behavior interface="BarCodeSoap" name="BarCodeSoap"/>
<behavior interface="BarCodeHttpGet"
name="BarCodeHttpGet" />
<behavior interface="BarCodeHttpPost"
name="BarCodeHttpPost"/>
</roleType>
<roleType name="BarCodeConsumer">
<behavior interface="BarCodeSoap" name="BarCodeSoap"/>
<behavior interface="BarCodeHttpGet"
name="BarCodeHttpGet"/>
<behavior interface="BarCodeHttpPost"
name="BarCodeHttpPost"/>
</roleType>
<relationshipType name="BarCodeRelationship">
<roleType typeRef="BarCodeProvider"/>
<roleType typeRef="BarCodeConsumer"/>
</relationshipType>
<choreography name="BarCode" root="true">
<relationship type="GlobalWeatherRelationship"/>

</choreography>
</package>

Fig. 2. WS-CDL Relationship

Participant types are not generated. The participants are the
logical entities or organizations implementing or using the
web services. The necessary information is not available in
the WSDLs of the web services and can be added later.

<informationType element="AnyType" name="BarCodeRef"/>
<token informationType="BarCodeRef" name="BarCodeRef"/>

<channelType action="request-respond"
name="GenerateBarCodeChannelll"
usage="distinct">
<roleType typeRef="BarCodeProvider"/>

<reference>
<token name="BarCodeRef"/>
</reference>
</channelType>
Fig. 3. WS-CDL ChannelType and related token

A channel type realizes a point of collaboration between
participant types by specifying where and how information is
exchanged. All our channel types have mostly the action type
request-respond. In the rare cases, that a web service
operation has no parameters or does not return anything (that
means there is no input or output message assigned to the
operation) the action type respond rsp. request is assigned.
A channel type is named (the name is generated from the
wsdl:operation) and then related to the role of the web service
provider. In the case of several behaviors (corresponding to the
portTypes in the WSDL), we generate equally channel types.
The first of these is related to the interaction via a channel
variable. A channel type gets a reference assigned to convey
the information needed to contact the receiver of the message.
This reference token is associated with an information type.
As the reference information belongs to the business process,
we can only generate the tokens and a dummy information
type (see in Figure 3).

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

’\. GetInFoBEAreaCndeInte

—F GetInfoByareaCod
4+ GetInfoByAreaCod

’\. < EGetInFDBEF\reaCDdeIn

I
o= [{Parallel
% [GetInfoByZIPTnteraction % [GetInfoByCitylrteractio
—F GetInfoByZIPExcha —F GetInfoByCityExchi
4+ GetInfoByZIPExcha 4+ GetInfoByCityExch:
%, <[GetInfoByZIPInteracti %, <JGetinfoByCityInteract
& < [{Parallel
3

Fig. 4. Graphical Model of Parallel Activities

B. Collaborative behavior

The collaboration behavior of two partners is described
by activities with an ordering structure. The web service
definition contains no information about the order in which
the different operations are called, therefore we assume an
unrestricted parallel activity, in which one or more activities
can be executed in any order or at the same time (see Figure
4%). By nature, all operations of a web service can be called
at any time and in any order. Ordering restrictions are only
given by the using business process. Our skeletons could be
enriched later with the real ordering structure, either manually
or automatically by integrating the information from, e.g., a
business process model.

The basic activities generated from the WSDL files are
interaction activities. Each web service operation corresponds
to one interaction (see in Figure 5 a generated example
interaction). The name of the web service operation is used
to generate a name for the interaction and the operation
attribute.

An interaction activity description has 3 main parts corres-
ponding (i) to the participants involved, (ii) to the information
being exchanged, and (iii) to the channel for exchanging the
information.

The information about the involved participants is contained
in the element participate and refers to the role types and
relationship types described in Section V-A. The attribute
fromRoleTypeRef refers the web service consumer role,
the attribute toRoleTypeRef to the web service provider
role, and the attribute relationshipType to the relation-
ship between the two.

The exchanged information is described in the message
part of a WSDL. The operation input and output elements
connect the related messages to a WSDL operation. The
information from the message element is transformed to the

2To illustrate parallel activities, we have chosen a weather web service avail-
able under http://www.webservicex.net/WCF/ServiceDetails.aspx?SID=48

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

<informationType type="GenerateBarCodeType"
name="GenerateBarCode"/>

<informationType type="GenerateBarCodeResponseType
name="GenerateBarCodeResponse" />

nr

<choreography name="BarCode" root="true">

<parallel>
<interaction
channelVariable="GenerateBarCodeChannelVariablel"
name="GenerateBarCodeInteraction"
operation="ReceiveGenerateBarCode">
<participate fromRoleTypeRef="BarCodeConsumer"
relationshipType="BarCodeRelationship"
toRoleTypeRef="BarCodeProvider"/>
<exchange action="request"
name="GenerateBarCodeExchangel"
informationType="GenerateBarCode">
<send/>
<receive/>
</exchange>
<exchange action="respond"
name="GenerateBarCodeExchange2"
informationType="GenerateBarCodeResponse">
<send/>
<receive/>
</exchange>
</interaction>

</parallel>
</choreography

Fig. 5. Generated WS-CDL Interaction

exchange element in the WS-CDL interaction. Depending on
the operation type the action attribute of the exchange is
generated differently: input messages — action=request
and output message — action=respond.

The attribute informationType of the exchange ele-
ment refers to the information type used for the exchanged
information. All information types are defined at the package
level of the choreography. The elements send and receive,
which contain application-dependent or state information are
generated without attributes.

The channels used during the interactions are also derived

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

from the web service operations. The associated channel types
are defined on package level and only referred via channel
variable in the interaction (attribute channelVariable).

C. Exchanged information

Information types are mainly used in the exchange element
of the interaction to describe the type of exchanged informa-
tion. WS-CDL does not allow the construction of complex
data types like possible in the rypes element of the WSDL.
Therefore we have to generate new information types from
the data type assigned to the WSDL 1.1 message parts.

The information types contain also the generated informa-
tion type for the reference tokens (see Figure 3).

The complete mapping of web service definitions to a
WS-CDL choreography is shown in Table 1. Although the
described transformation uses a single WSDL, the concept
can equally applied to several files. Naming conflicts are an-
ticipated by applying different namespaces for WSDL specific
and generated elements.

VI. SKELETON COMPLETION

The following steps are necessary to complete the generated
WS-CDL skeletons and to merge them into existing choreo-
graphies:

1) Create the participant types and assign the generated role
types: Typically a participant type groups several roles.
In a chain of interacting services, a participant can be
the consumer of one service and the provider of another.
Process mining techniques could be used to identify the
roles that belong to one participant type.

2) Select the implemented behaviors in role types of the
service consumer: The behaviors generated from the
portTypes describe the different possibilities to commu-
nicate. But a specific service consumer could decide to
use only a certain subset. This information belongs to
the web service consumer’s client application.

3) Verify the behaviors of the relationship types: Per de-
fault, all generated behaviors are committed from both
sides. But for a specific combination of service consumer
and service provider only a subset could be used (in
accordance with the selection in 2).

4) Remove or flag unused channel types: A channel type
describes the communication channel for each interac-
tion in accordance with a selected behavior. If a web
service consumer uses only a subset of the communi-
cation channels, some of the generated channel types
become obsolete and can be removed.

5) Select the correct channel for each interaction: Each
interaction has exactly one channel type assigned. Per
default, we select always the first generated channel
type. In accordance to the selected behaviors for the
relationship type, the right channel type has to be
selected. If the interaction can be executed on several
channels the interaction has to be duplicated.

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

6) Fill additional information: Information from the busi-
ness process and description of all components can be
added.

7) Merge the choreography: The completed skeleton can
now be merged with existing choreographies. This is a
manual step that is not supported by the pi4SOA tool
[13].

8) Establish the flow: The last step is to establish the correct
ordering structure of the activities from the merged
choreographies. The generated parallel activities have
now to be brought in the right sequential order and
to be integrated in the complex flow of activities. As
information source serves mainly the knowledge about
the business process. Existing workflow descriptions of
the business process or process models constructed with
process mining techniques could enrich the choreogra-

phy.
VII. IMPLEMENTATION

Our transformation process consists of 3 automated steps
(see Figure 6) complemented by manual activities to add
additional information and to merge the skeletons with existing
choreographies (see Section VI).

Fig. 6.

Merge

Choreography

{*.cdl)

mport pi4S0A Graphical
;/ Model

Transformation flow

Validate

The transformation process starts with the selection of one
or several WSDL files. A XSLT transformation transforms the
input into a *.cdl file containing the choreography skeleton
in WS-CDL. We use a XSLT 2.0 engine. The *.cdl file can
now be manually completed and merged with existing cho-
reographies. After this, a validation against the XML schema
provided by [4] verifies the correctness of the manual editing.
In the last automated step, the *.cdl file is imported into the
Eclipse Plug-in pi4SOA [13]. During the import, the *.cdl file
is semantically validated and transformed in a graphical model
(stored as *.cdm file) that can be visually modified.

VIII. CONCLUSION AND FUTURE WORK

We presented an approach to generate WS-CDL skeletons
from web service definitions. The result is promising; we could
generate complete and consistent choreographies that can be
easily completed manually with the support of a graphical
tool. Our approach of reengineering web service definitions
facilitates the modeling process (the modeling time is reduced
from several hours to a couple of minutes). It generates
skeletons that describe the web service operations detailed as
interactions including the cumbersome modeling and referenc-
ing of communication channels, behaviors, relationships, etc.

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

WSDL WS-CDL
Element [Autribute Element [Awtribute
message — part element informationType name
(name="parameters”) element+"Type” informationType type
message — part element interaction — exchange informationType
portType name roleType — behavior name
name roleType — behavior interface
portType — operation name channelType name
“request-respond”/’request”’/’respond” channelType action
“distinct” channelType usage
portType — operation name+"Interaction” interaction name
”Receive”+name interaction operation
name+"Channel Variable” interaction channel Variable
portType — operation — input “request” interaction — exchange action
portType — operation name+"Exchange[n]” name
portType — operation — output | “respond” interaction — exchange action
portType — operation name+" Exchange[n]” name
portType — operation — fault “respond” interaction — exchange action
name faultname
portType — operation name+"Fault” name
service name+"Provider” roleType name
name+"’Consumer” roleType name
name+"Relationship” relationshipType name
name+"Provider” relationshipType — roleType | typeRef
name+" Consumer” relationshipType — roleType | typeRef
service name+"Relationship” choreographie — relationship | type
service name+" Ref” informationType name
”AnyType” informationType element
name+" Ref” token name
name+" Ref” token informationType

TABLE 1
WSDL 1O WS-CDL MAPPING

We plan to further reduce manual modeling efforts by
automated enrichments of the choreography model from ex-
isting workflow descriptions, like BPEL, or process models
constructed by process mining. In [12], orchestration behavior
was generated from a choreography. We will also try to reverse
this process.

We consider our work as a first step in the direction of
automated service model generation as a basis for constant
monitoring of steadily evolving service landscapes. So far,
we concentrated on the functional feature of web services.
In the future, we want also consider non-functional aspects,
like security and dependability. This will require extensions to
the choreography languages, like WS-CDL.

ACKNOWLEDGMENT

This work was partially funded by the European Commis-
sion under the Seventh Framework Project "PoSecCo” (IST
257129).

[1]
[2]

[3]
[4]

Copyright (c) IARIA, 2010

REFERENCES

C. Peltz, “Web services orchestration and choreography,” Computer,
vol. 36, no. 10, pp. 46-52, 2003.

D. Austin, A. Barbir, E. Peters, and S. Ross-Talbot, “Web services
choreography requirements 1.0,” World Wide Web Consortium, March
2004. [Online]. Available: http://www.w3.0rg/TR/2004/WD-ws-chor-
reqs-20040311

A. Arkin et al., “Web service choreography interface 1.0,” 2003.
[Online]. Available: http://www.w3.org/TR/wsci/

N. Kavantzas et al., “Web Services Choreography Description Language
1.0,” November 2005. [Online]. Available: http://www.w3.org/TR/ws-
cdl-10/

ISBN: 978-1-61208-105-2

[5]
[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]
[14]

[15]

[16]

D. Martin et al., “OWL-S: Semantic Markup for Web Services,” 2004.
[Online]. Available: http://www.w3.org/Submission/OWL-S/

E. Christensen et al, “Web Services Description Lan-
guage (WSDL) 1.1,” March 2001. [Online]. Available:
http://www.w3.0org/TR/2001/NOTE-wsdl-20010315

R. Chinnici et al., “Web Services Description Language (WSDL)
Version 2.0 Part 1: Core Language,” Juni 2007. [Online]. Available:
http://www.w3.org/TR/wsdl20/

M.-E. Cambronero, G. Daz, E. Martinez, and V. Valero, “A Comparative
Study between WSCI, WS-CDL, and OWL-S.” in ICEBE. IEEE
Computer Society, 2009, pp. 377-382.

J. M. Zaha, A. P. Barros, M. Dumas, and A. H. M. ter Hofstede,
“Let’s Dance: A Language for Service Behavior Modeling,” in OTM
Conferences (1), ser. Lecture Notes in Computer Science, vol. 4275.
Springer, 2006, pp. 145-162.

G. Decker, O. Kopp, F. Leymann, and M. Weske, “BPEL4Chor: Extend-
ing BPEL for Modeling Choreographies,” in Proceedings of the IEEE
International Conference on Web Services (ICWS).

IBM, BEA Systems, Microsoft, SAP AG, and Siebel
Systems, “Business process execution language for
web services version 1.1 2007. [Online]. Available:

http://www.ibm.com/developerworks/library/specification/ws-bpel/

F. Rosenberg, C. Enzi, A. Michlmayr, C. Platzer, and S. Dustdar,
“Integrating quality of service aspects in top-down business process de-
velopment using WS-CDL and WS-BPEL,” in EDOC. IEEE Computer
Society, 2007, pp. 15-26.

pi4 Technologies Foundation, “Pi4soa,” 2007. [Online]. Available:
http://pi4soa.sourgeforge.net/

“Business process mining: An industrial application,” Information Sys-
tems, vol. 32, no. 5.

W. M. van der Aalst and M. Song, “Mining social networks: Uncovering
interaction patterns in business processes,” Business Process Manage-
ment, pp. 244-260, 2004.

A. Barros, M. Dumas, and P. Oaks, “A Critical Overview of the Web
Services Choreography Description Language (WS-CDL),” BPTrends,
March 2005.

