
Gait Analysis of Healthy and Parkinson’s Disease Patients in Elderly Population Using
FMCW Radar

Sohaib Abdullah1, Shahzad Ahmed1, Chanwoo Choi1, Hee-Jin Kim2, Kyung Hae Choi2, and Sung Ho Cho1,*
1Department of Electronic Engineering, Hanyang University, Seoul, South Korea

2Department of Neurology, College of Medicine, Hanyang University, Seoul, South Korea
E-mail: {engrsohaib791, shahzad11, choi2311211, dragon1,*}@hanyang.ac.kr

hyumcbrain@hanyang.ac.kr2, choikh73@hanmail.net2

*Correspondence: Sung Ho Cho, dragon@hanyang.ac.kr

Abstract—Parkinson’s Disease (PD) is a prevalent neurological
disorder among elderly individuals, resulting in reduced gait
control. Technological advancements have brought us many PD
sensors based on gait analysis. Amongst these solutions, Radio
Frequency (RF) sensors such as, Frequency Modulated Contin-
uous Wave (FMCW) radars have been increasingly used due to
their non-invasive nature and ability to operate across different
lighting conditions. This study aims to assess the possibility of
using FMCW radar-extracted gait parameters for PD detection.
Four gait parameters were extracted using radar and reference
Inertial Measurement Unit (IMU) sensors from twenty elderly
participants including ten control and ten PD patients. The
results suggest that FMCW radar can effectively measure step
time, step length, step speed, and cadence with Mean Absolute
Percentage Error (MAPE) of 8.8%, 10.17%, 9.01%, and 2.82%,
respectively. Based on these parameters, gait asymmetry was also
measured. The difference between the control group and the PD
group in terms of the aforementioned parameters is used to verify
the effectiveness of using radar for PD screening.

Keywords—gait analysis, elderly care, Parkinson’s disease,
FMCW radar.

I. INTRODUCTION

The rise in life expectancy of the first world countries [1]
has given rise to detective and preventive healthcare research.
Particularly, in-home remote health sensing can be a useful
early screening tool for several diseases. Remote healthcare
sensing empowered by Artificial Intelligence (AI) has enabled
several personalized healthcare solutions for the high risk
(aging) population [2] [3].

Parkinson’s disease (PD) is a frequently occurring neuro-
degenerative disorder in elderly individuals which is charac-
terized by motor symptoms such as, slowness of movement
speed (bradykinesia), rest tremor, and rigidity, and the al-
terations in spatiotemporal parameters of gait can indicate
bradykinesia in PD [4]. Gait analysis can also help distinguish
PD patients with non-motor mental symptoms, showing that
these patients exhibit a distinct gait pattern characterized
by increased slowness and dynamic instability [5]. For this
purpose, an extensive amount of research on gait analysis using
several different methods has been published. These methods
employ Inertial Measurement Units (IMUs), pressure sensitive
electronic walkways, optical sensors, and RF sensors, such as
radars, for gait analysis.

For gait evaluation using IMU sensors, the devices are
typically attached to the lower limbs, such as the feet, shanks,

ankles, or knees. An IMU unit includes gyroscope, accelerom-
eter, and magnetometer sensors to collect data on velocity, ac-
celeration, and positional information. Several research works
have employed IMU sensors for gait parameters extraction
[6]–[9]. For instance, an IMU-based gait study [10] involved
attaching IMU sensors to the shanks of both legs of healthy
participants, who were then asked to walk a 40-meter distance.
Parameters such as stride time, stance time, swing time, step
time, step length, stride length, and cadence were calculated.

Despite the high performance of IMU sensors, it can be
challenging for patients to walk for long duration while
wearing multiple sensors. In contrast, the RF sensors such
as radars can measure gait parameters without direct con-
tact with the human subject. For this purpose, a Frequency
Modulated Continuous Wave radar is often used. An FMCW
radar transmits electromagnetic signals with frequency linearly
increasing with time. These radars are extensively used for
gesture recognition [11], patient vital sign monitoring [3],
activity recognition in long-term care facilities [12], posture
estimation [13] and fall detection [14].

Seifert et al. [15] used a continuous wave radar along with
a motion capture system to analyze the walking patterns of
nineteen participants on a treadmill. Several gait parameters,
including stride time, stride length, stance time, flight time,
step time, step length, and cadence, were extracted. The errors
were found to be negligible, although the study employed two
radars. Similarly, walking patterns were also extracted using a
doppler radar through trunk velocity and leg velocity. While
step characteristics (step time and step length) remained same,
the errors for stride-related measurements were higher when
extracted using trunk velocity. Another study [16] employed
FMCW radar to extract various parameters by mounting the
radar on a treadmill and evaluated gait asymmetry. In a
more recent study [17], gait asymmetry was evaluated using
FMCW radar for both normal and induced abnormal walking.
However, it is important to note that these methodologies were
not tested on real patients.

In this paper, gait analysis of both healthy individuals
and PD patients is performed using an FMCW radar. For
all participants, the parameters step time, step length, step
velocity, and cadence were extracted and compared with data
obtained from IMU sensors. These parameters were collected
within a six meters walking (three meters round-trip including
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Figure 1. End-to-end block diagram for gait parameters extraction from FMCW radar.

turning point). Additionally, the measured parameters were
compared between healthy individuals and PD patients to
identify which parameters best describe the walking patterns of
PD patients. Gait asymmetry was also evaluated using already
established metric, and behavior of participants was analyzed
on the turning point using radar. To the best of our knowledge,
this study is the first to evaluate gait in real patients and
observe the turning behavior using an FMCW radar.

The rest of the paper is organized as follows. Section II
explains the proposed methodology, Section III describes the
experimental setup, Section IV discusses the results and the
conclusions are presented in Section V.

II. METHODOLOGY

This section discusses the proposed methodology of radar-
based gait analysis in detail. Figure 1 gives an overview of the
methodology.

A. Radar Signal Pre-processing

An FMCW radar emits electromagnetic waves with fre-
quency which increases linearly in time, known as chirps.
These transmitted signals have a base frequency known as
(fc) and sweep a bandwidth (B) defined by chirp’s slope
(S) and duration (Tc). The transmitted signal x(t) can be
mathematically represented as:

x(t) = exp(j2π(fct+
B

Tc
t2)) (1)

These chirps collide with a walking human present within
the unambiguous range of the radar, and received at receiver
antennas after a delay τd. To extract the velocity profile of
the target human, multiple chirps are transmitted together in
a frame. The reflected signals can be represented as:

y(t) = exp(j2π(fc(t− τ) +
B

Tc
(t− τd)

2)). (2)

All the received chirps are mixed with a copy of transmitted
chirps to form a single-frequency signals, called Intermediate
Frequency (IF ) signal. The IF signals for each chirp frame
are sampled and stored in a matrix and is further processed to
extract different gait parameters.

B. Fast Fourier Transform (FFT) Processing

The two-dimensional matrix contains Analog to Digital
Converter (ADC) samples for each IF signal. A Fast Fourier
Transform (FFT) is performed on the ADC samples of each
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Figure 2. Working principle of CASO-CFAR detection.
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Figure 3. Graphs representing (a) Changes in velocity of the participant
measured from radar and IMU during complete walking cycle and (b)

Range-time information from radar to measure step length identified through
step time marked by consecutive minima in velocity-time graph.

transmitted chirp to resolve the range of the target (range-
FFT). Another FFT, known as Doppler-FFT is computed on
number of chirps in a frame to find the velocity of the target.
For range-FFT and Doppler-FFT, FFT sizes of 256 and 128
were used. In this way, a range-Doppler map is created for
each frame.

C. Foot Velocity Extraction

After range-FFT and Doppler-FFT processing, the obtained
range-Doppler maps contain reflections from human and mul-
tipath. So, a 2D Cell-Averaging Smallest of-Constant False
Alarm Rate (CASO-CFAR) detection is applied to identify
valid target reflections and neglect noise. The CASO-CFAR
selects the smallest average from the left and right reference
cells as noise level and compares it with signal present in Cell
Under Test (CUT) using a desired false alarm rate [18]. The
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working principle of CASO-CFAR is also shown in Figure 2.
In order to enhance the robustness, the CFAR was first applied
in range dimension and then in Doppler dimension and only
the targets confirmed in the second pass were selected. In our
case, the number of reference cells and guard cells both were
specified as 8. For a radar positioned at the feet of a human
in motion, the foot velocity can be quantified by finding and
accumulating the peak with the maximum velocity over time.
For IMU sensor, the linear velocity is averaged from x,y and
z-axis to obtain reference velocity. Figure 3 (a) show the foot
velocity extracted from FMCW radar and IMU sensors.

D. Gait Parameters

In the foot velocity profile, the number of local peaks
correspond to the number of steps. In the case of RF-based
gait analysis technique, the toe-off and heel-strike cannot be
differentiated properly. Hence, an estimate of gait parameters
can be provided by identifying two consecutive local minima
as toe-off and heel-strike events. Similar strategy was used to
derive parameters from IMU sensors. Using this assumption,
following spatio-temporal gait parameters can be measured:

1) Step Time: Step time refers to the duration of time taken
for one complete step, usually measured in seconds. It is the
time interval between the initiation of one foot’s contact with
the ground and the subsequent contact of the other foot. For
the case of radar, step time can be measured by measuring the
time difference between two consecutive minima in velocity
profile, as expressed below,

Tstep(i) = tHS(i+ 1)− tHS(i), (3)

where Tstep(i) is the ith step time, tHS(i) and tHS(i + 1)
are the times at which two consecutive minima in the velocity
profile occur.

2) Step Velocity: Step velocity is the speed at which a
person walks each step. It can be measured by averaging the
instantaneous velocities in a single step.

Vstep =
1

t

t∑
n=1

V (n), (4)

where Vstep is the step velocity, V (n) is instantaneous velocity
at instant n, and t represent total number of sampling points
within one step.

3) Step Length: Step length is the distance measured from
the placement of one foot on the ground to the placement of
the opposite foot. For radar, step length can be estimated from
range-FFT by utilizing the step time measured previously, as
shown in Figure 3 (b), and can be expressed as:

Lstep(i) = rHS(i+ 1)− rHS(i), (5)

where Lstep is the step length of step i, rHS(i) and rHS(i+1)
is the range of human body at two consecutive heel strikes.

TABLE I. DEMOGRAPHIC AND PHYSICAL CHARACTERISTICS OF
STUDY PARTICIPANTS.

Parameter Value
Age (years) 76.89±7.06
Sex (male) 55.5%
Height (m) 1.59±0.08
Weight (kg) 63.33±8.19

4) Cadence: Cadence refers to the number of steps taken
per minute. In the case of radar, cadence can be computed by
dividing the number of detected steps by total walking time.
It is usually expressed as steps per minute (steps/min).

Cadence =
Number of Steps

Total Walking Time
(6)

III. EXPERIMENTAL DETAILS

This section provide information about the participants,
explains the detailed experimental design and configuration
of radar and IMU sensors.

A. Participants

Ten patients diagnosed with PD, and ten control volunteered
for the study. The additional information such as, age, sex,
height and weight is listed in TABLE I in the form of
mean±standard deviation. It was made sure that patients did
not have any injury of lower limbs that caused any abnormal
walking pattern, and that they could walk alone without
assistance. All the participants signed a written consent form
before taking the experiment.

B. Experimental Setup

The experiments were conducted in the corridor of univer-
sity hospital. The experimental environment and the details
of radar and IMU sensors used are presented in Figure 4(a).
The radar was installed at 20cm height. The IMU sensor was
also attached to each foot. The participants were asked to
walk 3m towards radar, take a 180o turn, and walk 3m again,
towards initial starting point, in a continuous manner. The
overall experimental setup including positioning of radar and
IMUs, walking path and turning point is shown in Figure 4(b).

C. Radar and IMU Configuration

The radar used was Texas Instruments IWR6843ISK and
E2box EBIMU24GV5 chipset was used as reference IMU
sensor. Both the IMU unit and radar were properly synchro-
nized by matching the starting time and any discrepancies
were removed through received timestamps. The operating
frequency of radar was 60 GHz and a bandwidth of 3.98 GHz
was selected. The slow time sampling rate was 20 FPS and a
total of 64 chirps were transmitted in a single frame. All the
parameters for radar are listed in TABLE II. Depending on
their walking speed, participants completed the walking path
in varying duration. Therefore, the radar data capture time was
initially set to 25 seconds and the data was later cropped to
match the duration of each participant’s walking. For IMU, the
base frequency was 2.4 GHz and the sampling rate was 100
FPS which was later down-sampled to match with the radar.
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Figure 4. Experimental setup depicting (a) data capturing environment and detail of the employed sensors and (b) radar height, walking path, and turning
point.

TABLE II. PARAMETERS USED FOR RADAR CONFIGURATION.

Parameter Value
Operating Frequency 60 GHz

Sweep bandwidth 3.98 GHz
Number of frames / sec 20

Number of chirps / frame 64
ADC samples / chirp 128

Number of TX antenna 2
Number of RX antenna 4

IV. RESULTS AND DISCUSSION

This section presents the obtained results and discusses the
findings in detail.

A. Performance Comparison

After the extraction of gait parameters, the values for all the
steps were compared with the reference and two error metrics,
Mean Absolute Error (MAE) and Mean Absolute Percentage
Error (MAPE) were calculated as follows,

MAE =
1

n

n∑
t=1

|At − Ft| (7)

MAPE =
1

n

n∑
t=1

∣∣∣∣At − Ft

At

∣∣∣∣× 100% (8)

where n is number of detected steps, At and Ft is actual (IMU)
and predicted (radar) value of the gait parameter for tth step.

TABLE III. RESULTS OBTAINED FOR CONTROL GROUP.

Gait
Parameter

Radar
Value

IMU
Value MAE MAPE

(%)
Step Time

(s) 0.66±0.46 0.67±0.06 0.06 8.32

Step Length
(cm) 47.8±6.42 47.3±7.38 4.79 9.91

Step Velocity
(m/s) 1.5±0.17 1.41±0.18 0.11 8.45

Cadence
(steps/min) 38.56±6.19 38.56±6.19 0.80 2.08

The values obtained for step time, step distance, step veloc-
ity and cadence along with the errors are presented in TABLES
III and IV, for control and patient group, respectively. By
looking at the MAE, it can be seen that the control group
showed slightly higher error rate in terms of step length and
slightly lower error for the case of cadence, whereas similar
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Figure 5. Graphs showing agreement of gait parameters (step time, step length, step velocity and cadence) extracted from radar and IMU for (a) control
group and (b) patient group.

error rates were observed for step time and step velocity.
However, the MAPE shows consistently higher error rates
for PD patients for all the parameters, due to the fact that it
depends heavily on the scale of the actual values. As the PD
patients show smaller values of gait parameters than control
group (except cadence), consequently, their percentage error
appeared as higher, even for same MAE (as for the case of
step velocity). Figure 5 shows mean values of all the gait
parameters obtained from radar and IMU sensors for all the
participants.

B. Unique Patterns between Control and Patient Group

Once the parameters were extracted, the values were com-
pared among both groups using Mann-Whitney U-test and the
p-values are listed in TABLE V. It was found that the control
group exhibited significantly greater step length (p<0.01) and

TABLE IV. RESULTS OBTAINED FOR PATIENT GROUP.

Gait
Parameter

Radar
Value

IMU
Value MAE MAPE

(%)
Step Time

(s) 0.63±0.05 0.64±0.05 0.06 9.43

Step Length
(cm) 34.2±11.77 34±9.88 3.5 10.43

Step Velocity
(m/s) 1.14±0.42 1.09±0.41 0.11 9.58

Cadence
(steps/min) 48.76±12.1 48.39±12.22 1.72 3.56

TABLE V. COMPARISON OF RADAR-BASED GAIT PARAMETERS
AMONG CONTROL AND PATIENT GROUP. THE PARAMETERS WITH

AN ASTERISK(*) WERE FOUND TO BE STATISTICALLY
SIGNIFICANT.

Parameter Control
Group

Patient
Group p-value

Step Time (s) 0.66±0.46 0.63±0.05 0.622
Step Length (cm)* 47.8±6.42 34.2±11.77 0.003
Step Velocity (m/s)* 1.5±0.17 1.14±0.42 0.002
Cadence (steps/min) 38.56±6.19 48.76±12.1 0.16
MAPE for Step Time (%) 8.32±2.61 9.43±3.98 0.97
MAPE for Step Length (%) 9.91±1.56 10.43±1.91 0.113
MAPE for Step Velocity (%) 8.45±1.76 9.58±2.21 0.678
MAPE for Cadence (%) 2.08±1.84 3.56±3.28 0.99

step velocity (p<0.01) while no considerable difference was
found in terms of step time (p>0.05) and cadence (p>0.05).
The patients suffering from PD can have limited range of
motion of lower limbs, thereby reducing step (or stride) lengths
and overall walking speed [19]. Additionally, for MAPE, no
statistically significant difference was found in the control and
the PD group. The average values for each each gait parameter
for both groups are also shown in Figure 6.

C. Gait Asymmetry

The steps of all the participants were separated and the
asymmetry between even and odd numbered steps was cal-
culated using two different metrics, Symmetry Index (SI) [20]
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and Gait Asymmetry (GA) [21],

GA = |ln{min(Xeven, Xodd)

max(Xeven, Xodd)
}| × 100% (9)

SI =
|Xeven −Xodd|

0.5(Xeven +Xodd)
× 100% (10)

where Xeven and Xodd refer to the average value of the gait
parameter under consideration, for even and odd numbered

TABLE VI. MEASURE OF GAIT ASYMMETRY FOR CONTROL AND
PATIENT GROUP.

Gait Parameter Control Group Patient Group p-value
Step Time GA(%) 9.87±6.01 7.64±5.07 0.39
Step Length GA(%) 9.57±7.16 24.45±12.57 0.02
Step Velocity GA(%) 3.15±2.58 8.21±9.81 0.04

step, respectively. A value of 0% indicate complete symmetry
while 100% means complete asymmetry.

Using (9) and (10), the gait asymmetry and symmetry index
was calculated for step time, step speed and step length. The
use of the above two relations resulted in similar values.
Subsequently, the statistical significance was also assessed be-
tween the control and PD groups using previously mentioned
statistical test. The measure of gait asymmetry for both groups
along with the p-values are presented in TABLE VI. It was
found that patient group had higher step length asymmetry
(p<0.05) and step velocity asymmetry (p<0.05) while no
significant differences were found in step time asymmetry
(p>0.05). The step length asymmetry in PD patients can be
linked to reduced structural connectivity in the sensorimotor
corpus callosum, compared to the control group [22].

D. Turning in Control and Patients Group

Mostly, research on gait analysis in individuals with PD
emphasizes straight-line walking, however, turning difficulties
are an early indicator of PD progression as individuals with PD
require more time and steps to complete a turn [23]. Hence,
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analysis of turning behavior can provide meaningful insight
into the health of PD patients. For radar, the starting of the
turning phase can be marked through a sharp reduction in
velocity while the end of turning can be recognized through
multiple consecutive high velocity peaks in the velocity-time
plot. In this way, the turning phase was analyzed for healthy
and patient’s data. Figure 7 shows an example of turning phase
identification for one healthy subject and one patient.

After identifying the turning phases, the number of steps
and time was measured for both groups and a graph was
plotted. Figure 8 (a) shows the number of steps and Figure 8
(b) shows the time taken while turning for both control group
and patient group. It can be seen that the patient group took
more steps and longer time to turn. The turning ability in PD
can be hindered by limited trunk flexibility, problems with
turn coordination, freezing episodes, and balance issues [24],
therefore, they complete the turn in multiple steps in order to
avoid fall [23].

V. CONCLUSION

This study demonstrates the potential of FMCW radar in
measuring gait parameters for individuals with PD and healthy
controls. The analysis focused on four key gait parameters
namely step time, step length, step speed, and cadence. On
comparing the performance of radar data with IMU sensor,
the results show a MAPE of 8.8% for step time, 10.17% for
step length, 9.01% for step speed, and 2.82% for cadence.

Additionally, the study highlights the radar’s ability to detect
gait asymmetry and analyze walking patterns at the turning
point. These findings suggest that the FMCW radar can serve
as a viable, non-invasive tool for gait monitoring in daily living
scenarios, potentially aiding in early intervention and better
management of PD.
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