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Abstract— This paper presents a method using Visible Light 

Communication (VLC) to improve traffic signal efficiency and 

manage vehicle trajectories at urban intersections. It combines 

VLC localization services with learning-based traffic signal 

control for a multi-intersection traffic system. VLC enables 

communication between vehicles and infrastructure, aiding in 

joint transmission and data collection. The system aims to 

reduce waiting times for pedestrians and vehicles while 

enhancing safety. It's flexible, adapting to various traffic 

movements during signal phases. Cooperative mechanisms 

balance traffic flow between intersections, improving road 

network performance. Evaluated using the SUMO urban 

mobility simulator, it shows reduced waiting and travel times. 

An agent based scheme optimizes traffic signal scheduling based 

on VLC behaviors. The proposed approach is decentralized and 

scalable, suitable for real-world traffic scenarios.  

 

Keywords— Intelligent Transport System (ITS); Visible Light 

Communication; traffic signal control; urban intersections; 

traffic flow optimization; pedestrian safety; SUMO simulator; 

cooperative communication. 

I. INTRODUCTION  

The transportation landscape is rapidly evolving with the 

integration of smart sensors, Visible Light Communication 

(VLC), and artificial intelligence. VLC, using light intensity 

modulation from LEDs for data transmission, shows promise 

in revolutionizing Smart Mobility solutions and addressing 

societal goals such as reducing emissions and enhancing 

traffic safety [1]. It is widely implemented in various 

domains, including vehicular communication and traffic 

signal systems, highlighting its versatility and efficiency. 

However, current traffic signal optimization often overlooks 

pedestrian dynamics within intersections, necessitating 

comprehensive systems that consider both vehicular and 

pedestrian flows. 

This paper proposes integrating VLC localization 

services with learning-based traffic signal control to manage 

pedestrian and vehicular traffic holistically [2]. Leveraging 

Reinforcement Learning (RL) concepts, the system optimizes 

traffic flow and enhances safety by considering interactions 

between vehicles and pedestrians. It introduces a pedestrian 

mobility model tailored for outdoor scenarios, analyzing 

multiple pedestrian behaviors, and incorporating them into 

the traffic signal control scheme. Validated through a case 

study in Lisbon's downtown, the model integrates pedestrian 

preferences to optimize routing algorithms [3].  

Simulation experiments validate the effectiveness of the 

approach, utilizing real intersection data to demonstrate 

improved traffic flow and reduced waiting times.  

The paper is structured to discuss, in Section 1, the 

importance of traffic control, in Section 2, the challenges it 

faces, and the motivation behind the proposed solution. It 

then delves, in Section 3, into the complexities of managing 

traffic in multi-intersection environments and, in Section 4, 

presents a model for traffic signal control incorporating 

machine learning elements, and analyzes simulated results. 

Finally, the conclusions, in Section 5, summarize the 

findings, insights gained, limitations, and potential future 

directions of the research. 

II. TRAFFIC CONTROL CHALLENGES  

A. Pedestrian Dynamics and Complexity in Multi-

Intersection Environments 

Traffic signal control research has traditionally prioritized 

vehicles, but there's now a shift towards pedestrian-friendly 

systems to prevent delays and accidents [4][5]. Sidewalks 

present challenges due to bi-directional flow, and differing 

speeds and movements between pedestrians and vehicles 

further complicate matters [6]. Our adaptive traffic control 

considers factors like queue lengths in neighboring 

intersections to balance scalability and efficiency. Our 

strategy is designed to address real-time traffic demands by 

modeling current and anticipated future traffic flows. 

Compared to traditional fixed coil detectors, our adaptive 

system in V2X environments gathers more granular data, 

including vehicle positions, speeds, queue lengths, and 

stopping times. V2V links play a crucial role in safety 

functionalities like pre-crash sensing, while V/P2I links 

provide valuable information to connected vehicles. 
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B. Integrating V-VLC for Innovative Traffic Solutions 

      With wireless tech advancements and Connected Vehicle 

(CV) [7] systems like V2V and V2I, integrating VLC 

localization with learning-based traffic control can manage 

both pedestrian and vehicular traffic in multi-intersections. It 

employs RL to enhance safety and reduce waiting times using 

V2V, V/P2I, and I2V/P communications. This approach 

synchronizes signal control in real-time, considering 

pedestrian and vehicle factors in the state and reward design, 

utilizing sidewalks for crucial pedestrian location info. 

SUMO simulations [8] assess the V-VLC system's 

effectiveness, with agent-based models learning to optimize 

traffic flow dynamically. Dynamic diagrams and state 

matrices illustrate the concept, showing potential for optimal 

traffic control policies. 

III. UNLOCKING TRAFFIC CONTROL  

A. VLC background 

The V-VLC system, as depicted in Figure 1a, utilizes a 
mesh cellular hybrid structure with two controllers. The 
"mesh" controller at streetlights relays messages to vehicles, 
while the "mesh/cellular" hybrid controller acts as a border-
router for edge computing [9][10].  

a) 

b) 

Figure 1. a) 2D representation of the simultaneous geo-localization as a 
function of node density, mobility and transmission range. b) Emitter and 

receivers’ relative positions. Illustration of the coverage map in the unit 

cell: footprint regions (#1-#9) and steering angle codes (2-9). 

The proposed architecture enables Infrastructure-to-Cloud 
communication (I2IM) through embedded computing 
platforms for processing and sensor interfacing. It also 
facilitates peer-to-peer communication (V2V) among 
vehicles, enhancing data sharing. 

The Vehicular Visible Light Communication system (V-
VLC) consists of a transmitter generating modulated light and 
a receiver detecting light variation, both wirelessly connected. 
LED-produced light is modulated using ON-OFF-keying 
(OOK) amplitude modulation (Figure 1b). Square unit cells in 
the environment feature tetra-chromatic white light (WLEDs) 
sources at cell corners. The V-VLC system uses coded signals 
transmitted by devices like streetlights, headlights, and traffic 

lights to communicate directly with identified vehicles and 
pedestrians (L/I2V/P), or indirectly between vehicles through 
their headlights (V2V). PIN-PIN photodetectors within 
mobile receivers receive and decode coded signals. This 
information aids in pinpointing positions within the network 
and provides directional guidance along cardinal points for 
drivers/pedestrians [10]. 

The system employs queue/request/response mechanisms 
and temporal/space relative pose concepts to manage vehicle 
passage through intersections. Vehicle speed is determined 
using transmitter IDs for tracking, while mesh nodes estimate 
indirect V2V relative poses in scenarios with multiple 
neighboring vehicles. 

The integration of VLC enables direct monitoring among 
pedestrians, vehicles, and infrastructure, focusing on critical 
aspects such as queue formation and pedestrian corner density 
to enhance road safety. P2I2P communication enables travel 
time calculations, while real-time data on speed and waiting 
times are analyzed using transmitter tracking IDs. 

B. Traffic Scenario and Phasing Diagram 

The simulated scenario, as shown in Figure 2a, features 
two intersections, each with two 4-way junctions, consisting 
of 2 lanes per arm spanning 100 meters in total length. 

a) 

b) 

 

 
 
 

Figure 2. Simulated scenario: Four-legged intersection and environment 
with the optical infrastructure (Xij), the generated footprints (1-9) and the 

connected cars and pedestrians. b) Phasing diagram and schematic diagram 

of the C2 intersection with coded lanes (L/0-7) and traffic lights (TL/0-15). 

Traffic flows from compass directions, with lanes 
indicating movement options: right lanes for right turns or 
going straight, and left lanes for left turns only. Central traffic 
light systems, regulated by Intelligent Managers (IMs), 
control traffic. Features like emitters (streetlamps), pedestrian 
lanes, waiting areas, and crosswalks are integrated. Four 
traffic flows along cardinal points are considered, with road 
request and response segments offering binary choices (turn 
left/straight or turn right). Assumptions include a total influx 
of 2300 cars per hour, primarily from east and west directions, 
with 25% expected to turn and 75% to continue straight. 
Pedestrian influx is around 11200 per hour, crossing in all 
directions at an average speed of 3 km/h. Figure 2b outlines 
intersection phase progressions within a structured cycle 
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length, comprising eight vehicular phases and an exclusive 
pedestrian phase. Each phase is subdivided into discrete time 
sequences, providing a comprehensive temporal framework 
[11][12]. 

Each flow (illustrated by the different vehicle colors) 
comprises vehicles moving straight or making left turns, with 
specific vehicles representing top requests in the sequence. 
The assumption is that specific vehicles, labeled a1, b1, a2, b2, 
a3, c1, b3, e1, a4, c2, a5, and f1, represent the top requests in the 
given sequence. 

C. Communication protocol, coding, and decoding 

techniques  

Data transmission in the VLC system follows a 
synchronous approach using a 64-bit data frame structure. 
Information is encoded using On-Off Keying (OOK) 
modulation, with each luminaire containing WLEDs 
(RGBV), enabling simultaneous transmission of four signals. 
A PIN-PIN demultiplexer decodes the message based on 
calibrated amplitudes of RGBV signals. The communication 
protocol includes components like Start of Frame (SoF) for 
synchronization, Identification Blocks encoding 
communication type (COM) and localization (position, time), 
and other ID Blocks for additional identifiers, Traffic 
Message containing vehicle information, and End of Frame 
(EoF) indicating the end of transmission. This structured 
protocol ensures efficient encoding and decoding of critical 
movement information, maintaining synchronization and 
data integrity in the VLC system. In Table 1, the 
communication protocol is depicted. 

 
TABLE I. COMMUNICATION PROTOCOL. 

 

Decoding the information received from the photocurrent 
signal captured by the photodetector involves a critical step 
reliant on a pre-established calibration curve [12]. This curve 
meticulously maps each conceivable decoding level to a 
sequence of bits. Essentially, the calibration curve serves as a 
guide, facilitating the establishment of associations between 
photocurrent thresholds and specific bit sequences. 

IV. RESULTS 

A. VLC Algorithms 

Figure 3, displays the decoded optical signals (at the top 
of the figures) and the signals received (MUX) by the 
receivers in a V2V (COM 2) and V2I (COM 3) 
communication scenario involving a leader vehicle ao at 
position (R3,10, G3,11, B4,10, ). This vehicle is communicating 
with the agent at the second intersection (C2) on lane L0 
(direction E) at 10:25:46 and is followed by three other 
vehicles (Veic. nr) V1, V2, and V3 with the same direction, 
located at positions (IDx,y ) R3,8, G3,6 and  R3,4, respectively. 

Figure 4 demonstrates the MUX signal and the decoded 
messages sent by the traffic lights to pedestrians (I2P1,2). This 

visual representation helps to understand the communication 
between pedestrians waiting in the corners and the 
corresponding traffic lights, providing insights into the signals 
exchanged for pedestrian crossings at both intersections (C1 
and C2). 
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communication. On the top the decoded messages are displayed. 
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Figure 4. Normalized MUX signal responses and the corresponding 

decoded messages, displayed at the top, sent by the IM to pedestrians 

waiting in the corners (I2P1,2) (b) at various frame times. 

      Upon pedestrian q2 receiving information from the traffic 

light C2, it becomes evident that the current active phase is 

N-S (Phase 1), signifying that the pedestrian did not arrive in 

time for their designated phase (Phase 0). Consequently, the 

pedestrian is required to wait for an estimated cycle time of 3 

(cycle time) minutes before being granted the opportunity to 

cross. Subsequently, the pedestrian crosses the crosswalk, 

covering the distance to the next intersection in 

approximately 1 minute and 50 seconds. Upon arrival, the 

pedestrian waits in the designated waiting zone at position 

R3,4-G3,5 until the pedestrian phase becomes active once 

again. At 10:28:35, the pedestrian establishes communication 

with traffic light TL13 at the C1 (P12I). The traffic light 

promptly responds (I2P1) at 10:28:36, providing crucial 

information that the currently active phase is the final one in 

the cycle (Phase 6). These interactions highlight the 

effectiveness of the pedestrian's communication with the 
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traffic lights, enabling them to stay informed about the active 

phase, waiting time, and make decisions accordingly. 

B. Dynamic Traffic Control: Integrating Pedestrian 

Consideration  

Assessing the effectiveness of the proposed V-VLC 
system in multi-intersection utilizes the Simulation of Urban 
MObility (SUMO), employing agent-based simulations. 
SUMO tests traffic control algorithms, manages 
intersections, and oversees pedestrian crossings, mirroring 
real-world conditions. For data analysis, SUMO collects and 
analyzes simulation data, including vehicle trajectories, 
travel times, congestion levels, and pedestrian movements.  

 

 

 

Figure 5.  State phasing diagrams for C1 and C2 intersections. 

The simulation scenario, adapted to the SUMO simulator, 
provides insights into traffic light signals and 
vehicle/pedestrian movements within the terminals. In Figure 
5 a state diagram was generated for C2 intersection, 
incorporating both vehicles in the lanes (2300v/h) and 
pedestrians (11200 p/h) in the sidewalks during two cycles of 
120 seconds. These diagrams offer insights into the dynamic 
behavior of traffic light signals and carrier/pedestrian 
movements within the simulated terminals. As can be 
observed in the diagrams it is possible to distinguish the 
different cycles that occur during the simulation. It always 
begins with a pedestrian phase (Phase 0), during which some 
pedestrians can cross the crosswalk, turning red for 
pedestrians starting from 11 seconds. Then, phases dedicated 
to vehicles (Phases 1-8) take place until it concludes at 123 
seconds. At this moment, the second cycle begins, with the 
pedestrian phase becoming active again. The same process 
repeats until 247 seconds, marking the end of this second cycle 
and the initiation of a third cycle. These diagrams align with 
the analysis conducted for pedestrians. 

V. INTELLIGENT TRAFFIC CONTROL SYSTEM 

With the data collected on vehicles via VLC through the 
cells in Figure 1, implemented via lamps along the roads as 
shown in Figure 2, an intelligent traffic system must be 
developed to optimize traffic flow at intersections. This 
system utilizes Reinforcement Learning (RL), a machine 
learning paradigm where an agent learns to make decisions by 
interacting with its environment. Agents in RL aim to achieve 
a goal in uncertain, potentially complex environments by 

receiving feedback in the form of rewards or punishments. 
The fundamental idea is for the agent to learn optimal 
behavior or strategies through trial and error.  

At each time step t, the agent receives a state input 𝑠t, based 
on the observation of the environment and then executes an 
action 𝑎t, that transforms the state observed to a next state 𝑠t+1. 
Then the reward 𝑟t, a metric that defines how good the action 
was for the environment, is calculated. In this case, the reward 
is defined by (1), using the accumulated total waiting time, 
atwt, as a metric for vehicles (veh) and pedestrians (ped). atwtt 
and atwtt−1 are the accumulated total waiting time of all the 
cars/pedestrians in the intersection captured respectively at 
agentstep t and agentstep t−1. The weights of the pveh and pped 
are set based on the desired priority that the agent should have 
towards vehicles and pedestrians during network training. The 
agent will learn a policy that benefits one more than the other, 
or keeps the system balanced if the weights are equal. 

If the agent’s behavior leads to positive environmental 
reward, which indicates that the waiting time is longer in the 
past, t-1, than at the present moment, t, then the tendency of 
producing this behavior by the agent will be strengthened, and 
vice versa. The goal is to maximize the cumulative discounted 
reward. 

𝑟t = pveh(atwtveh,t-1- atwtveh,t) +pped(atwtped,t-1- atwtped,t) (1) 

This experience ex = (𝑠t, 𝑎t, 𝑟t, 𝑠t+1) will be stored in the 
replay memory, to be used in the future to train the agent. The 
replay memory is a dataset of an agent’s experiences Dt = (e1, 
e2, … , et), which are gathered when the agent interact with the 
environment as time goes by (t = 1, 2…, n). 

To train the agent, the deep Q-Learning technique is 
employed, leveraging the Q-Learning algorithm [11][13]. The 
Q-value represents the expected cumulative reward of taking 
a particular action in a particular state and following the 
optimal policy thereafter. These Q-values are predicted by a 
Neural Network (NN) that takes the state as input and outputs 
Q-values for each possible action. 

 

Figure 6. Deep Reinforcement Learning. 

The Q-value represents the expected cumulative reward of 
taking a specific action in each state while following the 
optimal policy thereafter.  

A Neural Network (NN) predicts these Q-values by taking 
the state as input and outputting Q-values for each possible 
action. The state of the environment comprises 100 cells at 
each intersection, indicating the presence of vehicles or 
pedestrians. These cells are set to '1' if occupied and '0' if not. 
Each lane, divided into 10 cells, indicates vehicle movement 
toward the intersection, with cell sizes increasing farther from 
the intersection. With 8 lanes per junction, there are 80 vehicle 
cells per intersection. For pedestrians, only the waiting zones 
are considered, each divided into 5 cells, totaling 20 pedestrian 
cells per intersection, as drafted in Figure 6. 

The neural network's input layer consists of 100 neurons 
representing the state of the environment. This is followed by 
five hidden layers, each with 400 neurons using Rectified 
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Linear Units (ReLUs). The output layer features nine neurons, 
each representing the Q-values for potential actions. To refine 
Q-value predictions, a Mean Squared Error (MSE) function 
quantifies the disparity between predicted and target Q-values, 
enhancing the learning process. N represents the number of 
samples stored in memory, and Qtarget and Qpred denote the 
target and predicted values, respectively. After each training 
episode, target Q-values for action-state pairs are calculated 
based on (2). 

𝑀𝑆𝐸𝐿𝑜𝑜𝑠 =
1

𝑁
∑ (𝑄𝑡𝑎𝑟𝑔𝑒𝑡 − 𝑄𝑝𝑟𝑒𝑑)

2𝑁
𝑖=1          (2) 

 
N is the number of samples stored in memory, and the 

target and predicted value, Qtarget and Qpred, respectively. After 
each episode of training, the target Q-values for action-state 
pairs are calculated based on (3). 

 

𝑄𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑟𝑡 + . 𝑚𝑎𝑥𝑄𝑝𝑟𝑒𝑑(𝑠𝑡+1, 𝑎
´′)                      (3) 

 
The nine Q-values at the neural network's output 

correspond to the nine actions shown in Figure 7. The agent 
selects the action that best suits the current traffic situation, 
without following a predefined order. Conversely, today's 
dynamic traffic systems at junctions follow a fixed sequence 
of phases, as shown in Figure 7.  

 

Figure 7. Nine possible actions that can be chosen by the agent. 

This can result in activating a phase that does not align 
with current traffic needs. The next section compares these 
two systems to highlight their differences and evaluate their 
effectiveness. 

VI.  SIMULATION RESULTS 

A. Training Results 

To evaluate the behaviour of the intelligent traffic control 
system in relation to pedestrian and vehicle scenarios, a 
comparison was made with the dynamic traffic control 
system. The neural network used was trained with a reward 
system that weighted the waiting times for vehicles (pveh) and 
pedestrians (pped) equally, for 300 epochs, each lasting one 
hour. Both systems considered the same generation rates for 
pedestrians and vehicles, totalling 2300 vehicles and 11000 
pedestrians in the traffic scenario.8  

Figure 8 shows the cumulative negative reward from 
training the network for both agents. Both agents evolved and 
learned from their traffic experiences throughout the episodes. 
The curves converged towards less negative reward values, 
indicating better decision-making over time. 

In Figure 9a, which represents the high vehicle and 
pedestrian scenario, the intelligent system significantly 
outperforms the dynamic system. The dynamic system peaks 
at around 1500 waiting pedestrians in the first 25 minutes, 
while the intelligent system peaks at just 400 pedestrians. 
Figure 9b shows a smaller difference in the high vehicle and 
low pedestrian scenario, where the dynamic system peaks at 
275 pedestrians in the first 15 minutes, compared to 150 for 
the intelligent system. This disparity arises because the 

intelligent system adapts phases dynamically to current traffic 
conditions, unlike the dynamic system, which follows a fixed 
cycle. The pedestrian phase in the dynamic system, appearing 
every 120 seconds, results in periodic peaks in waiting 
pedestrians. 

 

Figure 8.  Cumulative Negative reward for both agents in training. 

After training the network, tests were conducted to 
compare both systems under two traffic scenarios representing 
peak hour conditions. The first scenario involved high vehicle 
and pedestrian traffic (High-High) with 2300 cars and 11000 
pedestrians. The second scenario had high vehicle traffic but 
low pedestrian traffic (High-Low), with 2300 cars and 5600 
pedestrians. 

B. Testing results – High-High and High-Low scenarios 

Figures 9a and 9b display the number of pedestrians 
waiting in zones at the two junctions for both traffic scenarios.  

 

Figure 9.  Comparison of the number of pedestrians stopped waiting in 

both systems for the High-High (a) and High-Low (b) scenarios. 

Figures 10a and 10b illustrate vehicle waiting times under 
both scenarios. Figure 10a shows that the intelligent system 
reaches a peak of waiting vehicles between 8 and 15 minutes 
due to higher pedestrian traffic affecting vehicle flow. In 
contrast, Figure 10b indicates a peak at around 15 minutes 
when pedestrian traffic is lower, allowing the system to 
balance vehicle and pedestrian phases better. 

a) 

b) 
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Figure 10. Comparison of the number of cars in the entire environment for 

both systems for the High-High (a) and High-Low (b) scenarios. 

Despite both scenarios having high vehicle traffic, the 
intelligent system manages fewer waiting vehicles in the low 
pedestrian scenario. The dynamic system shows consistent 
behavior with a 120-second cycle time, but the high pedestrian 
count negatively impacts vehicle dispatch, suggesting that 
many waiting pedestrians might lead to poor vehicle flow. 

VII. CONCLUSIONS 

This paper sets the groundwork for advancing intelligent 
traffic management by highlighting the potential of VLC  
technology to enhance safety and efficiency at urban 
intersections. Our focus was on optimizing both vehicular and 
pedestrian traffic, addressing the previously overlooked 
aspect of pedestrian phases. By analyzing agents' behavior and 
decision-making, particularly concerning pedestrian safety, 
we aimed to refine the timing of pedestrian phases. 

In the domain of traffic optimization, our state 
representation incorporates environmental information, 
vehicle and pedestrian distribution data from V-VLC 
messages, and a proposed phasing diagram guiding agent 
actions. We developed dynamic and intelligent control system 
models to securely manage traffic at two connected 
intersections. Through Reinforcement Learning and the 
SUMO simulator, we conducted a thorough analysis. With an 
agent at each intersection, the system optimizes traffic lights 
based on communication from VLC-ready vehicles, devising 
strategies to enhance flow and coordinate with other agents for 
overall traffic optimization. 

Overall, the intelligent system demonstrates superior 
adaptability and efficiency. It manages to reduce pedestrian 
waiting times while still maintaining a reasonable level of 
vehicle flow. In comparison, the dynamic system's fixed cycle 
often leads to longer pedestrian wait times, which can cause 
significant congestion. Therefore, the intelligent system 
proves to be more effective in handling the traffic scenarios 
studied, providing a better balance between vehicle and 
pedestrian needs. 
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