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Abstract—The increasing sophistication in the technological
requirements of modern life has created intractable problems in
controlling and managing the limited sources of frequency bands.
While all modern wireless systems mainly propose to reconsider
novel methods of exploiting these frequencies. Cognitive radio
network techniques required both spectrum sensing and dynamic
spectrum access to solve the problem of resources management.
Where, the spectrum sensing aspect provide all information
about the utilization stat of frequency bands. The secondary
users get actions according to this information by adopting the
Dynamic Spectrum Access (DSA). Those unlicensed users get
the permission to use the frequency bands of primary/licensed
users when it was free. This approaches had many difficulties
citing the unpredictable communication conditions first, and
secondly, the amount of damage caused by any wrong sensing
detection. This paper presents the detection capabilities using
a novel idea based on the signal correlation proprieties. This
novel technique use the average of the three first correlation lags
as a statistic parameter. Starting by presenting the optimized
detector parameters and its efficiency in simulation environments.
Ultimately, the practical implementation serves to validate the
detection capabilities of the technique within an authentic FM
Radio broadcasting setting. This involves utilizing the Register
Transfer-Level Software Defined Radio (RTL-SDR) dongle to
capture the FM signal, while leveraging the GNU Radio software
platform to both showcase the efficacy of the technique and
highlight its limitations.

Index Terms—Spectrum sensing, Cognitive radio networks, Ra-
dio Spectrum, Correlation function

I. INTRODUCTION

Recent statistical data reveals significant congestion in
frequency utilization, prompting scientific investigation into
strategies for managing frequency resources. Cognitive Radio
(CR), introduced by [7], addresses spectrum scarcity through
Spectrum Sensing (SS) and Dynamic Spectrum Access (DSA),
enabling secondary users (SUs) to opportunistically reuse un-
occupied bands. Various spectrum sensing techniques exist, yet
none fully overcome real-world limitations. Energy detection,
highlighted by [3] proves efficient for narrowband sensing. It
compares received signal power against a threshold to identify
primary user signals. Despite simplicity, susceptibility to low
Signal-to-Noise Ratio (SNR) drives exploration of alternatives.
Methods comparing signal statistics with established knowl-
edge offer efficacy, but with higher complexity. Matched filters

[6] and cyclostationary techniques [11] use signal pattern
databases, while [2] suggest autocorrelation for weak signal
detection. [8] propose an autocorrelation-based statistic using
Lag1 and Lag0 values. Similarly, Sharma et al. [10] advocate
the sum of the first two autocorrelation lags. Correlation Sum
(CorrSum) outperforms other techniques. Reyes et al. [9]
explore autocorrelation-based sensing, comparing correlation
detection, Euclidean distance, and energy detection for cog-
nitive radio networks. The authors in [4] suggest utilizing
the variance of autocorrelation coefficients as a statistical
parameter, demonstrating its strong performance in spectrum
sensing. Despite the array of solutions available, they fall short
since Dynamic Spectrum Access (DSA) requires the utilization
of a spectrum sensing technique that can operate effectively
in practical real-world implementations for both narrow and
wideband channels, even in the absence of prior knowledge,
and yield commendable performance outcomes.

In practice, multiple sensing parameters are employed to
evaluate the robustness of each detector. Notably, the proba-
bility of detection is a pivotal metric reflecting a detector’s
capabilities, often assessed through analysis of Signal-to-
Noise Ratio (SNR) variations to elucidate sensing limitations.
Another crucial parameter is the probability of false alarm,
representing unnecessary frequency band consumption when
the detector is utilized. Instances of false alarm declarations
treat a channel as occupied, even if it remains available.
Conversely, the probability of miss detection pertains to mis-
classifying an occupied channel as vacant, potentially leading
to communication interference and operational disruptions
between licensed and unlicensed users.

The wish list and the desired enhancements encompassed a
range of anticipated features, notably a streamlined version
of the spectral detection system to aid practical real-time
implementation. The primary aspiration was to achieve a
notably high detection probability, coupled with an acceptable
false alarm probability, ensuring the dependable administration
of spectral resources and preventing undesirable interference
between licensed and non-licensed users. In our research, we
suggest utilizing specific correlation characteristics of received
signals as statistical measures. Notably, autocorrelation values
tend to quickly converge to zero when noise is present,
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Fig. 1: Autocorrelation function of the noise signal (a) and a noisy
signal (b) and a periodic signal (c)

whereas this trend is more gradual in other scenarios. In-
corporating these insights, calculating the average of the first
three lags results in a more pronounced distinction between
scenarios involving noise and those with a noisy signal. Typ-
ically, beyond the fourth lag, the discrepancies in magnitude
between lag values become more consistently aligned. The
aim of this approach is to assess a novel, straightforward, and
blind technique that can achieve a prominent position among
conventional spectrum sensing methods.

The remainder of this paper is organized by detailing the
following sections. The technique proposed system model is
explained in Section II. Section III provides an exposition of
the technique, encompassing its principles and the modeling of
its detection methodology. The characterization of the correla-
tion average sensing technique and its subsequent evaluation
through simulation are expounded in Section IV. Utilizing a
Software-Defined Radio (SDR) implementation on the GNU
Radio platform, practical sensing outcomes are detailed in
Section V. Concluding remarks are furnished in Section VI.

II. SYSTEM MODEL

In wireless communication systems the received signal X(n)
always has some noise components W (n). In addition, the
sensing technique procedure is used to detect the primary user
signal S (n) presence or absence. All that makes the spectrum
sensing process shortened as the following binary hypotheses
test:

H0 : X (n) = W (n)
H1 : X (n) = S (n) +W (n)

(1)

Where H0 hypothesis means absence of the PU signal,
and the inverse H1 assumed that the PU signal is present.
In this paper the PU signal is supposed M-PSK or M-QAM
modulated signal in simulations and the noise is supposed
Gaussian. However, in implementation, the received signal is
a real received FM broadcasting signal undefined noise nature.

The detector principles based on comparing the statistic
parameter T to a chosen threshold λ to differentiate between
cases of PU signal presence or absence. The detector sets its
outputs H1 to 1 and fixes H0 at 0 when the statistic parameter
is greater than the threshold. However, in the opposite cases
the parameters H1 and H0 are respectively fixed to 0 and 1,
as it is mentioned in the following equation:{

T > λ H0

T < λ H1
(2)

TABLE I: NUMERICAL SIMULATION PARAMETERS AND
RESULTS.

Parameters Values
Number of samples 1000
Sampling frequency 8000
Noise signal N (t) ∼ N (0, 1)
Periodic signal cos (100πt)

Time domain 1
Fs

(1 : 1 : 1000)

Statistic parameter T of the two first lags 0.89 periodic signal
0.61 noise

Statistic parameter T of the three first lags 0.81 periodic signal
0.48 noise

Statistic parameter T of the four first lags 0.73 periodic signal
0.42 noise

Statistic parameter T of the five first lags 0.67 periodic signal
0.37 noise

N (µ, σ2) is a Gaussian distribution with µ mean and the variance σ2.

III. AUTOCORRELATION AVERAGE SENSING PROCESS

The autocorrelation is a continuous function represented by
the integration of the product between a signal and its time-
shifted version. The time instances at which the correlation
function is evaluated are referred to as lags. Analyzing these
lags provides deeper insights into the signal’s behavior, re-
vealing the degree of independence between the signal and its
temporally shifted counterpart. At the origin, the autocorrela-
tion function achieves its maximum value, which is equivalent
to the signal’s energy. Mathematically, for a continuous-time
signal x(t), the autocorrelation function at the origin R(0) is
expressed as follows:

R(0) =

∫ ∞

−∞
x(t) · x(t) dt = Energy of the signal

The maximum value of the autocorrelation function expe-
riences rapid decline in the presence of noise signals, and
a more gradual decrease for correlated signals or signals
with noise interference. This intriguing variation has prompted
researchers to explore leveraging these distinctive patterns to
differentiate between noise and other types of signals.

Consider Figure 1, which portrays three distinct simulation
scenarios. Figure 1a showcases an instance of an uncorrelated
signal (Additive Gaussian White Noise - AGWN signal). On
the other hand, Figures 1b and 1c illustrate the autocorrelation
function of a signal with noise interference and a periodic
signal, respectively (correlated signals). The figure visually
demonstrates the slower convergence of the autocorrelation
function to zero for periodic signals, and its notably faster
convergence for noisy signals. Conversely, for noise signals,
the autocorrelation values swiftly approach zero. Table 1
provides a concise overview of simulation parameters and the
corresponding statistical parameter values for each of these
scenarios.

Table 1 resumes many simulation parameters and outline
some interesting statistical indices. The table values are illus-
trated from the autocorrelation functions presented the figure
1. This figure plots the three different simulation cases. Table 1
presents two main ideas. The effectiveness of utilization of the
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average of the three first lags as statistic parameter first, then
a simple comparison between some statistical parameters to
mention the purposes of limiting the average in the three first
lags only. Generally, as much the difference between statistic
parameter of the noise and the other cases is increased, the
operation of choosing of the required threshold be easy.

Upon reviewing the contents of this table, the detection
factors prominently demonstrate the innate sensing capabilities
embedded within the proposed autocorrelation average-based
sensing approach. In practical scenarios, the focal points
regarding sensing capabilities frequently center on the straight-
forwardness of the sensing algorithm and the feasibility of
its implementation. These attributes collectively position this
proposed method at a higher vantage point relative to all
currently existing narrowband sensing techniques.

For instance, when utilizing solely the initial three lags
for statistical computation, the most notable disparity between
noise and periodic signal instances becomes apparent, resulting
in reduced computational load. Taking these insights into
account, a suitable threshold can be established within the
range of 0.6 to 0.7 for the specified statistical parameter
presented in the folowing equation:

T =
lag0 + lag1 + lag2

3 lag0

(3)

IV. TECHNIQUE CHARACTERIZATION AND EVALUATION
RESULTS

In order to define the techniques characteristics and to eval-
uate its performances. Many simulations have been realized
using MATLAB platform [1]. At first, the proposed technique
was tested to outline the effect of variation of both the
threshold and the number of sample on the Pfa values. This
operation was stimulated to mention the appropriate Pfa target
value according to these parameters. Secondly, the proposed
technique was evaluated to guess its efficiency compared to
those of the reference sensing techniques in two different
environments. The first environment is when the treated signal
is a 4-QAM modulated signal. However, the second one is
when the received signal is an 8-PSK modulated signal.

Figure 2 illustrates the initial impact of the chosen threshold
on the target values of Pfa. It is evident that an inverse corre-
lation exists between these two parameters. As the threshold
increases, the probability of false alarm diminishes. A stable
phase of Pfa values emerges at 0.5, highlighting the constancy
in these values despite fluctuations in the threshold selection.
This stability underscores the efficacy of leveraging such statis-
tical parameters, effectively discerning noise cases from noisy
signals. The persistent stability of Pfa values at 0.5 indicates
a substantial gap between the two distinct states, a crucial
requirement for accurate differentiation. This gap serves as a
safety margin to prevent high false alarm probabilities arising
from incorrect threshold choices. Furthermore, the simulation
reveals the influence of varying the number of processed points
on both the optimal threshold and the probability of false
alarm. Notably, an increase in the number of processed points
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Fig. 2: The Pfa versus the selected threshold and for different number
of samples in case of an 8-PSK modulated signal
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Fig. 3: The Pd versus SNR in case of a 4-QAM modulated signal
when Pfa = 0.01.

reduces the range of impact that the selected threshold has on
the target Pfa. The number of treated samples significantly
affects sensing characteristics. As the number of processed
samples rises, so does both the complexity of the technique
and the sensing time, rendering the technique less feasible for
implementation. In this study, we set the number of samples
to 1000 and determined an optimal threshold value of 0.7.
These selections ensure processing time aligns with network
system requirements, where the desired probability of false
alarm (Pfa) is maintained below 5%, the maximum acceptable
value within network systems.

Figure 3 illustrates a comparison among various sensing
techniques’ probability of detection (Pd) with respect to
Signal-to-Noise Ratio (SNR) variation, while keeping Pfa

fixed at 0.01 and the number of samples at 1000. The ef-
fectiveness of the proposed method is contrasted with energy
detection, correlation at lag1, the Correlation Sum (lag0 and
lag1, CorrSum), and the technique based on the variance of
the autocorrelation coefficients (AutocorVar). The figure ini-
tially highlights the stability of the proposed autocorrelation-
based sensing detection through the convergence of Pd to
the target Pfa value under extremely low SNR conditions.
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Fig. 4: The Pd versus SNR in case of a 8-PSK modulated signal
when Pfa = 0.01.

Figure 3 further emphasizes the superior detection capability
of the proposed technique compared to all reference methods,
with the exception of the technique based on the variance
of autocorrelation function coefficients. This superiority is
especially pronounced for the 4-QAM modulated signal. Im-
portantly, across all communication system-required Pd values
(Pd ≥ 0.9), the SNR values corresponding to the proposed
method consistently remain 1 dB lower than those associated
with energy detection – a straightforward and extensively-used
narrowband sensing approach.

Figure 4 illustrates the comparison between the probabilities
of detection of the proposed method and those of the reference
techniques as the signal-to-noise ratio (SNR) varies. The figure
demonstrates that with increasing SNR, the detection probabil-
ity (Pd) also increases. Furthermore, the figure highlights the
superior detection performance of the autocorrelation average
sensing technique compared to energy detection, correlation
lags detection, and correlation sum-based sensing techniques.
As an example, for all Pd values greater than or equal to 90%,
the corresponding SNR values for the proposed method and
energy detection are -14 dB and -13 dB, respectively, resulting
in a detection improvement of 1 dB. Nevertheless, the Auto-
corVar approach exhibits the highest detection probability (Pd)
when contrasted with all of these sensing methodologies. It is
important to acknowledge that this method calculates a second-
order statistical parameter derived from another second-order
process, specifically the autocorrelation function.

V. RESULTS AND EVALUATIONS

This section provides the practice evaluation of the GNU
Radio implementation of the proposed autocorrelation average
based sensing technique. Where this method is implemented
the radio FM broadcasting receiver and another floor for
estimating the SNR.

A. Experimental test-bed setup

To validate the practical efficiency of the technique, experi-
ments were conducted using a laptop equipped with the GNU
Radio platform, along with an RTL-SDR dongle serving as
a wireless receiver. The implementation of the SDR test-bed

Fig. 5: The practical experiment test-bed .

was designed to evaluate the technique’s sensing capabilities in
real-world scenarios [5]. Figure 5 illustrates the configuration
of the experimental setup for the proposed SDR test-bed.
Leveraging the capabilities of the GNU Radio platform, wire-
less communication networks can be simulated and designed
to closely resemble real systems. Additionally, the flexibility
of the GNU Radio platform allows for the integration of
various hardware components, including the RTL-SDR dongle,
which is utilized in this implementation as an FM broadcasting
receiver [12]. The RTL-SDR receiver was consistently tuned
to a central frequency, providing coverage of the entire FM
bandwidth ranging from 88 MHz to 108 MHz.

The system’s implementation is structured across three tiers,
as illustrated in Figure 6. The initial tier encompasses the re-
ception and processing of radio broadcast signals, culminating
in audio output via the loudspeaker (Audio Sink block). This
stage also facilitates the adjustment of the central reception
frequency of the RTL-SDR device, while enabling signal cate-
gorization into radio broadcast channel signals, radio broadcast
side signals, or noise.

The second tier is dedicated to the sensing process, involv-
ing signal reception from the RTL-SDR dongle and subse-
quent processing through the sensing block (correlation avrlag
block). The sensing block computes the average of the first
three lags of the autocorrelation function for each 1000-sample
set. This computed statistical parameter is then compared to
a predefined threshold, yielding three outputs: the statistical
parameter (lags mean), the threshold value, and the decision
(1 or -1) denoting the presence or absence of a primary user
signal.

Finally, the third tier focuses on estimating the signal-to-
noise ratio (SNR), primarily utilizing the MPSK SNR Esti-
mator block from the GNU Radio library. This stage aids in
the analysis of detection results obtained through the proposed
method. Notably, the presence of high-energy received signals
does not guarantee accuracy, as these signals could origi-
nate from distortions. Conversely, low-energy received signals
might exhibit high SNR values due to minimal interference.
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Fig. 6: GNU Radio flow-graph of the proposed autocorrelation average based sensing technique with the FM Receiver [4]
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B. Practical results analysis

Figure 7 provides a comprehensive overview of the ex-
perimental results, encompassing Radio FM band spectrum
scanning and analysis, SNR estimation, and practical sensing
decisions. Subfigure 7a visually represents the energy intensity
of received signals across the entire Radio FM spectrum,
enabling the identification of varying energy levels within 200
KHz-wide FM channels.

Subfigure 7b comprises two significant curves. The first
curve illustrates the signal-to-noise ratio (SNR) across all
channels, determined through the MPSK SNR Estimator
block. SNR values below -30 dB are capped at -30 dB,
highlighting the characteristics of received signals and differ-
entiating high-energy distortions from medium-to-low energy
signals with comparatively higher SNR values. The second
curve highlights practical sensing decisions, with a (1) denot-
ing the presence of FM broadcasting in the respective channel,
and a (0) indicating an unoccupied channel. This analysis
reinforces the effectiveness of the correlation average-based
sensing technique in detecting FM broadcasting activity.

While Subfigure 7a might suggest occupancy in only 6
frequency bands initially, a more detailed scrutiny of the SNR
curve reveals the existence of 7 distinct frequency bands.
These findings correlate with the detection outcomes of the
proposed method. Notably, FM broadcasting activity around
100 MHz is less prominent in Subfigure 7a due to low received
energy signals. However, this activity becomes evident in the
curves of Subfigure 7b, despite the relatively weak SNR in
this range. The audibility of this false broadcast activity from
the loudspeaker (Audio Sink block) on the first tier further
validates its presence.

VI. CONCLUSION

In this paper, a novel approach to spectrum sensing was
presented, utilizing the average of the initial three autocor-
relation lags. The aim was to tackle the issue of spectrum
sensing limitations. The technique underwent preliminary sim-
ulations to both assess its sensing capacity and recognize its
potential constraints. The simulation outcomes underscored the
technique’s exceptional detection proficiency, particularly in
scenarios characterized by low Signal-to-Noise Ratio (SNR),
outperforming various benchmark sensing techniques. How-
ever, it was worth noting that a notable limitation of this
method lied in formulating the mathematical relationships
required to establish an appropriate threshold, ensuring an
acceptable level of probability of false alarm.

Furthermore, the simulations affirmed the superiority of the
proposed approach by 1 dB compared to energy detection, both
in environments involving (8-PSK) modulation and 4-QAM
modulated received signals. Concluding the investigation, the
implementation of the autocorrelation average-based sensing
technique was demonstrated using the GNU Radio platform
and the RTL-SDR dongle. The implementation underscored
the simplicity of the technique and its efficient capability, as
evidenced by the minimal sensing time required to detect rapid
variations in radio FM broadcasting signals.
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