
Towards Safety Methods for Unmanned Aerial Systems to achieve
Fail-Safe or Fail-Operational Behaviour

Philipp Stelzer
Graz University of Technology

Graz, Austria
Email: stelzer@tugraz.at

Raphael Schermann
Graz University of Technology &
Infineon Technologies Austria AG

Graz, Austria
Email: raphael.schermann@infineon.com

Felix Warmer
Graz University of Technology

Graz, Austria
Email: warmer@tugraz.at

Hannes Winkler
Graz University of Technology

Graz, Austria
Email: hannes.winkler@tugraz.at

Georg Macher
Graz University of Technology

Graz, Austria
Email: georg.macher@tugraz.at

Christian Steger
Graz University of Technology

Graz, Austria
Email: steger@tugraz.at

Abstract—Drones and Unmanned Aerial Systems (UAS’) in gen-
eral are slowly taking over more and more areas of our everyday
lives. They are already being used for cinematic productions,
photography, structural inspections and will take over even more
areas in the future like package delivery, surveillance tasks, or
rescue missions. This inevitably leads to more and more UAS’
occupying the airspace and therefore pose a danger to manned
aviation, buildings, infrastructure, uninvolved persons, and other
UAS’. In times of exponential growth of the Unmanned Aerial
System (UAS) industry, the safety and security measures for UAS’
becomes more and more significant. Until now, UAS safety has
largely been the responsibility of the pilot, who had to take action
if the UAS experienced any kind of failure. As the UAS industry
continues to drift towards autonomy, the responsibility no longer
lies with the pilot but instead, the UAS must have some sort
of fall-back performance or fail-safe routine implemented. In
our publication, we deal with such routines to establish fail-safe
respectively fail-operational behaviour in case of sensor failure
in an autonomously flying UAS beyond the visual line of sight of
the UAS operator.

Keywords–UAS; automated vehicles; safety; fail-operational;
fail-safe

I. INTRODUCTION

Unmanned Aerial Systems (UAS’) are already used in
many cases and will be increasingly important for various
missions and applications in the future [1], [2]. For example, in
the rescue or localisation of earthquake victims [3]. Nowadays,
UAS’ are still remotely controlled in many cases, but in the
future they should be able to fly autonomously to complete the
missions without an operator. For this purpose, however, it is
also important that these UAS’ are equipped with appropriate
safe and reliable systems. It must be possible to assume that
a Unmanned Aerial System (UAS) can complete the mission
with reduced functionality or at least establish a fail-safe status
in the event of failures in the systems on board, such as a
failure of an important sensor for environment perception. This
requires implemented safety strategies in the UAS that it is
able to be fail-operational or at least fail-safe. Research on
safe and robust UAS’ is already being carried out at a high

Figure 1. Airborne Data Collection on Resilient System Architectures [4].

level of intensity. The Airborne Data Collection on Resilient
System Architectures (ADACORSA) [4] project, for example,
whose representative cover image can be seen in the Figure 1,
is concerned with resilient architectures for flight systems,
among other things. The main vision of this project is to
provide technologies to render drones as a safe and efficient
component of the mobility mix, with differentiated, safe and
reliable capabilities in extended Beyond Visual Line Of Sight
(BVLOS) operations [4]. With this publication, we also want
to contribute to the improvement of the safety of autonomous
flying UAS’ and to establish a fail-safe respectively fail-
operational behaviour in UAS’ in case of sensor failures.
The remainder of the publication is structured as follows. An
overview of background and related work is given in Section II.
Subsequently, our novel methods and proposed solutions for
the reaction to a sensor failure will be introduced in detail
in Section III, and the achieved results, including a short
discussion, will be provided in Section V. A summary and
short discussion of the findings will conclude this publication
in Section VI.

II. BACKGROUND AND RELATED WORK

Safety, whether for automated vehicles to the ground or for
automated UAS’ in the air, is a very sensitive issue [5], [6].
Unlike manually operated vehicles, automated vehicles must

43Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

be able to rely on the sensors for environment perception and
on the processing units to a certain extent. For this purpose, es-
tablished measures to increase safety are briefly discussed and
terminology is defined in the following subsections. UAS’ are
then dealt with specifically. However, several drone projects,
such as from Milhouse [7], have already been realised by
using open-source software and off-the-shelf hardware - this
is also our approach to evaluating our methods in this pub-
lication. Drones and other UAS have already been simulated
for scientific purposes by Ma et al. [8] and Megalingam et
al. [9], among others. Ebeid et al. [10], for instance, have
given a general survey of open-source UAS flight controllers
and flight simulators in their publication and highlighted their
importance. A general overview of safety approaches and
some State-of-the-Art safety measures in UAS’ is given below.
Furthermore, the role and use of a companion computer, which
can assist a flight controller with complex tasks and provide
further capabilities, will be discussed in more detail.

A. General Overview of Safety Approaches
To ensure safety, automated vehicles often rely on redun-

dancy and diversity. Whether in aviation or in the automotive
domain, similar concepts are applied with regard to diversity
and redundancy. In detail, these concepts usually differ in the
scope of execution [11]. A redundant approach relies on the
use of several components of the same type. There can be
various approaches how a faulty behaviour of a component
can be detected or compensated. A diverse approach is similar.
Here, however, different components are used instead of the
same type. For example, in the case of environment perception,
a sensor fusion of data from, e.g., Radio Detection And
Ranging (RADAR) and camera is used. In a redundant sensor
fusion approach, only data from similar RADARs could be
used [12], [13], [14]. Depending on the constellation of the
chosen approach, this leads to fail-safe or fail-operational
behaviour [15]. The definitions of fail-safe and fail-operational
are given below in order to clarify which properties are
attributed to the respective behaviour:

1) Fail-Safe: In the event of an intolerable failure, the sys-
tem is brought into a fail-safe status. The system differentiates
between the unimpaired continuation of operation or a stop
of the system. In case of a system stop, if the system has a
transient error, the system is restarted. Otherwise, the system
remains in stop state [15], [16]. In the case of a UAS, the UAS
is of course not immediately stopped and brought down, but
must be brought to a safe state, as described in Section III, for
example.

2) Fail-Operational: In contrast, with fail-operational, an
failure occurrence is tolerated and the system remains opera-
tional [15], [16]. In our publication, Section III also proposes
a method for UAS’ to achieve fail-operational behaviour.

B. State-of-the-Art Safety Measures for UAS’
Even though the use of highly automated UAS’ is only

just emerging, a lot of research has already been done to
strengthen the environment perception and control of these
systems. For example, Saxena et al. [17] have been working on
learning failure responses for autonomous, vision-based flying
of robust systems, and thus manage to learn simple failure
recovery manoeuvres based on experience. Another approach
that may also be interesting for UAS’ is the introduced

competence-aware path planning via introspective perception
by Rabiee et al. [18]. This is a framework that integrates
introspective perception into path planning to reduce robot
navigation failures. Furthermore, research was also conducted
on the robust control of UAS’. Vey and Lunze, for instance,
dealt with an active, fault-tolerant control framework in their
publication [19]. With this framework, it should be possible to
ensure that the diagnostic result is always unambiguous from
the point of view of control reconfiguration. Sharifi et al. [20]
also dealt with fault-tolerant control of UAS’ using a sliding
mode control for a quadrotor UAS. This shows that safety
measures for UAS’ have also been dealt with in the recent
past.

C. Companion Computers on UAS’
For safety tasks on UAS’, so-called companion computers

are also often used. But in theory, nothing more than a flight
controller is needed for the UAS to be able to fly in terms
of control devices. The flight controller is responsible for
operating the hardware of the UAS, for example keeping the
UAS permanently levelled and stable, and must not have any
time delays as this would be fatal for the flight. Although
the UAS could fly without any additional hardware, with
just a State-of-the-Art and common flight controller, however,
it would not be capable of handling any highly complex
tasks [21]. An additional companion computer is used to
perform difficult tasks, send commands to the flight controller
and execute higher-level scripts. Another advantage of using a
companion computer, like a Raspberry Pi, is that it provides
an interface between the UAS itself and other hardware like
environment perception sensors. In 2019 a new method for
victim detection after disastrous events like earthquakes was
published [3]. After such events, victims are usually buried
under debris and can therefore not be detected by UAS’ that
use cameras for visual identification. The idea was, that a flight
controller is connected to a Raspberry Pi, which in turn will be
equipped with a microphone and a speaker. The UAS hovers
above the debris and uses the speaker to draw the attention
of the victims for them to know that someone is listening and
that they have to make aware of themselves now. In case, the
UAS records a scream for help it is going to be stored with the
corresponding geographical coordinates and sent to the rescue
teams. In this particular use case, the Raspberry Pi is needed to
activate the speaker, record everything the microphone detects,
filter out the permanent noise of the UAS, read out the data
from the connected GPS module and send everything to a
predefined receiver. All these things could not be accomplished
with just a flight controller, but the portability of the Raspberry
Pi makes it possible to perform all these complex operations on
the UAS and forward only the final result [3]. The computing
power of the Raspberry Pi allows also to mount a camera
on the UAS and perform a precision landing based on real-
time visual landing pad detection. The algorithm is executed
on the Raspberry Pi, it receives a snapshot from the camera
as input, processes the image, tries to find the landing pad,
calculates the UAS’s position and orientation according to
the landing pad and sends manoeuvring commands to the
flight controller via the serial port. Algorithms like this have
achieved landing accuracy of up to 98.5% at a frame rate of
approximately 13 Hz [22]. All the above-mentioned scenarios
and functions prove that companion computers add further
valuable capabilities to UAS’.

44Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

III. NOVEL SAFETY METHODS FOR UAS’
In this section, three methods are proposed to achieve

feasibility of preventing a crash of an autonomously flying
UAS in the event of a sensor failure outside the pilot’s Field
of View. It is assumed that a faulty behaviour of the sensors can
be detected by monitors of a companion computer on board
of the UAS and thus the flight controller can be informed that
the sensor concerned is no longer functioning reliably. In the
simplest case, the UAS is equipped with four distance sensors,
one on each side of the UAS. The worst case scenario would
be if the sensor in the direction of flight would fail, as shown in
Figure 2. The best case would be if the sensor in the opposite

Figure 2. Simplified visualization of a sensor failure.

direction would fail. In the latter case, no immediate action
would be required, as this sensor has virtually no effect on
the UAS’s airworthiness, under the condition that the UAS is
not rotated. A reaction would be needed in case of a failure
of one of the lateral sensors, but the required manoeuvre is
the same as in the worst case, with only minor adjustments.
During investigation, we came up with three different solutions
on how the UAS should react in case of a sensor failure. The
solutions are kept simple and straightforward, yet they are very
effective and can even result in a fail-operational behaviour like
completing the flight mission with a semi-functioning vehicle.

A. Fail-Safe and Fail-Operational Methods
In the following the three investigated safety methods for

UAS’ are presented.
1) Immediate Landing from UAS: The first approach we

came up with is the most obvious one. In the event of a
sensor failure, it does not matter which sensor fails, the UAS is
simply landed right on the spot where the failure happened. A

Figure 3. Immediately landing in case of sensor failure.

conceptual overview of this scenario is shown in Figure 3. This
is the simplest solution but is not necessarily applicable at all
times. For example, the failure could happen in a place where
it is known nothing about the underlying surface, it could be a
river where the UAS would be lost, or even worse, it could be
right above a crowd of people where the rotating rotor blades
of the UAS could cause serious injuries. If the UAS is used in
a densely populated city, this solution would not be the first
choice due to the potential risk of landing near people or in
traffic. However, if the UAS is used for flights between cities
over open countryside or in predefined areas, the UAS could
simply land in the event of a failure to be accessible for quick
repair of the sensor.

2) UAS Return to Launch Position: The second approach
to handle a sensor failure is to return the UAS to its launch
position where it started from. The applicability of this solu-
tion, like in the first one, is not always guaranteed, it works
best if the sensor in direction of the flight crashes. In that case,
it would not be necessary to rotate the UAS, if a lateral sensor
crashes it would be necessary to turn the UAS around in order
to be able to return safely to the launch position. In contrast
to the option of simply landing, in this scenario, it is known
everything about the condition of the landing site, since the
UAS have already taken off from there. In addition, the UAS
could fly back the exact same route it took on the way to the
location of the failure. In that case, the UAS could be almost
certain that the path should be free of obstacles unless there are
other flying objects or moving parts involved. Figure 4 depicts
this approach. Whether the use of this solution makes sense or

Figure 4. Return to launch position in case of sensor failure.

not is also depending on the location of the sensor failure. In
case, the event occurs shortly after the departure of the UAS,
it clearly would be the first choice, since the UAS would not
have to travel much distance to safe position. However, when
the flight has progressed to the point where you are closer to
the destination than to the take-off, it should be considered if
a different solution would be more practical.

3) UAS Rotation: In the third and last approach investi-
gated, the UAS is rotated in the event of a sensor failure. This
approach is a temporary solution to maintain the airworthiness

45Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

of the UAS in order to finish the already started mission. The
idea is that depending on which sensor fails, the UAS is simply
rotated to the position in which the failed sensor is looking
backwards as seen in the direction of flight in Figure 5. The

Figure 5. Rotate the UAS and finish the mission in case of sensor failure.

sensor opposite the direction of flight is not necessary most of
the time, since we do not expect things or obstacles to approach
the UAS from behind. If other UAS or flying vehicles get close
to the according damaged UAS from behind they have their
own sensors on board to become aware of the according UAS
in their path. The remaining three sensors should be sufficient
to complete the mission and land safely before the sensor
can be replaced. This solution could be used in almost any
situation, as the potential risk is kept as low as possible and
thus there is no immediate danger to people or other things.
With this approach, the UAS remains operable to a reduced
extent, but still fail-operational.

B. Decision Graph for Method
In Figure 6, the decision flow during the mission of the

UAS is depicted. It shows how the companion computer works
from the definition of the way-points that the UAS should
approach during the mission to a possible sensor failure and the
corresponding fail-safe respectively fail-operational method or
the successful completion of the mission. At the beginning, it
is determined which method is to be used in the event of a
sensor failure. Then the mission is started and it is continuously
checked whether the sensor is still working correctly. This
can be done by monitors, for example, which then notify
the companion computer accordingly. As long as no sensor
failure is detected, the mission can continue as usual. When the
mission is completed, the mission stops and it is not checked
for sensor failures until a new mission is started. However, if
the mission is still in progress, it will be continuously checked
for sensor failures and, in case of a sensor failure, the safety
method defined at the beginning will be activated. When one of
the two methods ”Immediate Landing from UAS” and ”UAS
Return to Launch Position” are used, they are executed and
the mission is stopped when the respective target position
is reached. In case the method ”UAS Rotation” has been

Figure 6. Decision graph of the companion computer for the three possible
methods in the event of a sensor failure.

chosen, the UAS is first rotated so that a functioning sensor
is positioned in front and the mission can then be continued.
Here, the system will continue to check for sensor failures and
if the current front sensor also fails, the method will be used
again. Otherwise, the mission continues until it can be stopped.

IV. SETUP OF DEVELOPMENT

In this section, the development and evaluation setup is
presented. Since our intention was to investigate and test
new methods to ensure safety, a corresponding concept of
a development environment was designed. For this purpose,
a UAS, in our case a drone, was simulated using open-
source software and hardware, such as a Raspberry Pi [23]
as companion computer, a Position2Go RADAR Sensor [24]
from Infineon Technologies AG and a remote PC as GCS,
as shown in Figure 7. The Raspberry Pi is the core of the

Figure 7. Concept of the development environment setup.

46Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

drone. It is running MAVProxy for the communication with
the GCS, various Python scripts including the mission script
and PX4 autopliot for operating the drone. The Postion2Go
sensor is connected to the Raspberry Pi via USB. The mission
script uses the Radar Host Communication Library for the
status check of the Position2Go. The remote PC, the GCS,
also runs MAVProxy and a Mission Planner/QGroundControl
to track the progress of the mission in real time. The messages
from MAVProxy are sent via UDP connection between the
simulated drone and the remote PC. More detailed information
on the hard- and software used is given in the following
subsections.

A. Hardware
As already mentioned in Section II-C, a Raspberry Pi can

be used as a companion computer. Due to the fact that we used
a Raspberry Pi [23] and the Position2Go Development Kit [24]
from Infineon Technologies AG as a RADAR sensor for our
experiments, these two hardware components are described in
more detail below. Although other hardware components - like
the remote PC and a monitor - were also used, these two were
the most essential to show that our fail-safe and fail-operational
methods are relevant and essential for a companion computer
for UAS’.

1) Raspberry Pi 4 Model B: For the experiments in this
publication, the Raspberry Pi 4 Model B, depicted in Figure 8,
was used. As with all earlier models in the Raspberry series,
the operating system must be written onto a memory card. Due
to the software used for our experiments, which is explained
in more detail in Section IV-B, the choice of the operating
system fell on a standard version of Ubuntu (Ubuntu 20.10,
to be specific), which in contrast to Raspbian OS already
has most of the used packages and libraries preinstalled. The

Figure 8. Raspberry Pi 4 Model B.

Raspberry Pi 4 Model B is far superior to its predecessors in
terms of hardware. For this work the model with the following
specifications was used [23]:

• Broadcom BCM2711, Quad core Cortex-A72 (ARM
v8) 64-bit SoC @1.5GHz

• 4GB LPDDR4-3200 SDRAM
• 2.4GHz and 5.0GHz IEEE 802.11ac wireless, Blue-

tooth 5.0, BLE
• Gigabit Ethernet
• 2 USB 3.0 ports, 2 USB 2.0 ports

• 40 pin GPIO header
• 2 micro-HDMI ports (supporting two 4k displays)
• USB-C power supply (5V/3A)

2) Position2Go RADAR Sensor: The Position2Go RADAR
sensor from Infineon Technologies AG, depicted in Figure 9,
can be used to track multiple objects including humans, to
detect angle and distance of moving and static targets, and
to detect motion, speed, and direction of movement [24]. For

Figure 9. Position2Go board with main components and dimensions.

testing our methods, however, it is not relevant which sensor is
used. In this publication, the focus is on the methods in the case
of a sensor failure itself and not on how the sensor failure can
be detected or what data is delivered. Another environmental
perception sensor could also be used for this purpose. In our
case, it is only important that we can inject a sensor failure in
order to test whether our methods and whether they are applied
correctly in the case of a sensor failure.

B. Software
In this section, the most important software parts that

were used during our experiments are discussed. The focus
is on open-source projects that are already well established
for drones and UAS’.

1) MAVProxy: The originally intended use of MAVProxy
was to operate as fully-functional Ground Control Station
(GCS) [25]. It was designed as a minimalist, command line
based software, which can be extended via add-on modules.
Due to the light-weighted design and the portability to every
commonly used operating system (Linux, Windows, OS X) it
can run on almost every device, including smaller and less
powerful ones like the Raspberry Pi. One feature is the ability
to connect with other GCS, even if they are running on other
devices in the same network or with the help of a VPN
connection to devices outside the network.

2) PX4 Autopilot/Flight Controller: The PX4 autopi-
lot [26] is an open-source project of the Dronecode Founda-
tion, a US-based non-profit organization that also developed
MAVLink (a communication protocol between companion
computers like a Raspberry Pi, autopilots like the PX4 and
GCS’) and QGroundControl. The PX4 autopilot is basically a
flight control software for operating UAS and other unmanned
vehicles, such as rovers, fixed-wing aircraft, and many other
experimental types, such as balloons and even boats and

47Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

submarines. The software needed to build the autopilot can
be found for free in a GitHub repository [26]. It is operating
system independent and highly portable. After cloning the code
to the device where the autopilot will run, it can be built the
software by using the provided Makefile depending on the
needed configuration. No specific hardware requirements have
to be met, the jMAVSim simulator has to be used to simulate
the UAS respectively drone. jMAVSim is already included in
the source code, it has not to be installed.

3) Ground Control Station: A GCS is usually software that
can be used to monitor and control the flights of UAS [27]. It

Figure 10. Screenshot from QGroundControl.

is typically linked to the vehicle via a wireless communication
method but is running on a ground-based computer. On a
virtual map displayed in the program, the user is able to
define way-points for an autonomous mission. The user is
also able to track the progress of the mission and check in on
the real-time flight information like speed, altitude or distance
to the next target through the program. A well known GCS
is QGroundControl [28], which is developed by the same
company as the PX4 autopilot. In Figure 10 a screenshot from
the user interface of the QGroundControl is depicted.

V. RESULTS

In this section, we provide the results of the implemented
methods from our functionally safe system for UAS, which

Figure 11. Evaluation and development environment setup in use.

have been introduced in Section III.

A. Evaluation and Development Environment
The development environment used for this, according to

the concept in Figure 7, was also used for the evaluation of the
methods. The development and evaluation environment in use
can be seen in Figure 11. The laptop (remote PC) is running
the GCS, while everything on the right screen is running on
the Raspberry Pi. Three different shells can be seen on the
screen, one is running the PX4 autopilot, one is running the
MAVProxy and one shell is running the mission script. In front
of the remote PC, the Raspberry Pi can be seen, to which the
Position2Go sensor is connected.

B. Method Examination
In the Figures 12, 13 and 14 parts of a single simulation

run are depicted. The small window shows a shell running
on the Raspberry Pi that outputs text-based information about
the status of the mission. The map in the background is the
GCS running on the remote PC to monitor the progress of
the mission. The top red circle highlights the current output
of the mission script to the Raspberry Pi, the leftmost circle
shows the drone’s orientation and position, and the bottom
circle shows the drone’s current altitude. The fall-back routine
for this simulation run is described in Section III-A3, the drone
will turn around in case of a failure. At the beginning, the
system waits until a mission or a target position is known.
This is shown in Figure 12. While waiting, the drone is on the
ground. As soon as the drone receives a mission or a target
position, it begins its flight. In order to check the required
functionality of the predefined method, the Position2Go sensor

Figure 12. Drone on the ground at the beginning of the mission.

Figure 13. Drone in the air immediately after sensor failure.

48Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

Figure 14. Rotated drone on the ground after the finished mission.

was unplugged during the simulation run and so a sensor
failure was initiated. A monitor in the companion computer
then detects that no more data from the sensor is arriving at
the companion computer and reports a sensor fault. To detect
more complex sensor faults, more sophisticated monitors must
be used - but sensor fault detection was not the main focus
here. However, in this case the predefined method was the
”UAS rotation”. Thus, in Figure 13 it can also be seen that the
drone is already rotating immediately after the sensor failure.
Figure 14 shows that the mission was successfully completed
and the drone landed at the target point rotated 180°. If one of
the two other methods is selected in advance, the simulation
will run as described above in the event of a sensor failure.
But in contrast to the drone rotation, the drone either lands
immediately or flies back to the starting point and lands there.
This depends on the chosen method at the beginning.

VI. CONCLUSION

As already mentioned in this publication, the research
and development regarding UAS’ becomes more and more
important in our everyday lives and will play a major role in
the future. We have discussed the given problem and presented
possible solutions, in the form of investigated methods, for
the scenario when a sensor fails during an ongoing mission.
The simplest of them, landing immediately after sensor failure,
has advantages, such as the low risk for other flying objects,
but also has disadvantages like the requirement to fly over
open terrain and to know the surface beneath. The second
solution, returning to the launch position, is probably the least
efficient solution of them all, as flying backwards with the
remaining sensors is quite similar to the third solution. But
with the third proposed solution, it is possible to finish the
current mission. Despite that, depending on the location of the
failure, the second solution is also worth to be considered.
However, if strong wind or other influencing factors prevent
rotation or make it impossible, the second solution must still
be chosen. Considering the above, the most promising solution
is probably the third and last one, where the UAS is rotated to
the point where the broken sensor has the least impact on the
flying behaviour of the UAS and finish the current mission.
With this solution, the mission is not only finished, but also
the risk of a partially uncontrolled landing for the people under
the UAS or an abrupt change of direction for other flying
objects in the immediate vicinity is avoided. Considering all of

these aspects, the best solution for UAS’ used in safety-critical
applications would be a combination of all above mentioned
options. However, the companion computer could either be
developed in a manner that the operator of the UAS sets a fail-
safe or fail-operational method when the UAS is launched, or
that the UAS is developed to the point where it can apply one
of the given solutions independently. This in turn would be
more difficult, as the UAS would have to know everything
of the surface beneath, other flying objects in the air, the
already covered and remaining flight path, the task of the
mission that is currently going on, and many other aspects.
In conclusion, however, these methods can contribute to safe,
highly automated UAS’ for safety-critical applications in the
future. Thus, safety in the immediate vicinity of such UAS’
will also be ensured.

ACKNOWLEDGMENT

The authors would like to thank all national funding
authorities and the ECSEL Joint Undertaking, which funded
the ADACORSA project under the grant agreement number
876019.

ADACORSA is funded by the Austrian Federal Min-
istry of Transport, Innovation and Technology (BMVIT) un-
der the program ICT of the Future between May 2020
and April 2023 (grant number 877585). More information:
https://iktderzukunft.at/en/.

REFERENCES

[1] D. Bamburry, “Drones: Designed for product delivery,” Design Man-
agement Review, vol. 26, no. 1, 2015, pp. 40–48.

[2] D. Câmara, “Cavalry to the rescue: Drones fleet to help rescuers
operations over disasters scenarios,” in 2014 IEEE Conference on
Antenna Measurements & Applications (CAMA). IEEE, 2014, pp.
1–4.

[3] Y. Yamazaki, M. Tamaki, C. Premachandra, C. Perera, S. Sumathipala,
and B. Sudantha, “Victim detection using UAV with on-board voice
recognition system,” in 2019 Third IEEE International Conference on
Robotic Computing (IRC). IEEE, 2019, pp. 555–559.

[4] ADACORSA Project. Airborne Data Collection on Resilient System
Architectures. https://www.adacorsa.eu. Retrieved: July, 2022.

[5] R. Altawy and A. M. Youssef, “Security, privacy, and safety aspects
of civilian drones: A survey,” ACM Transactions on Cyber-Physical
Systems, vol. 1, no. 2, 2016, pp. 1–25.

[6] S. Riedmaier, T. Ponn, D. Ludwig, B. Schick, and F. Diermeyer,
“Survey on scenario-based safety assessment of automated vehicles,”
IEEE access, vol. 8, 2020, pp. 87 456–87 477.

[7] M. O. Milhouse, “Framework for autonomous delivery drones,” in
Proceedings of the 4th Annual ACM Conference on Research in
Information Technology, 2015, pp. 1–4.

[8] C. Ma, Y. Zhou, and Z. Li, “A New Simulation Environment Based
on Airsim, ROS, and PX4 for Quadcopter Aircrafts,” in 2020 6th In-
ternational Conference on Control, Automation and Robotics (ICCAR).
IEEE, 2020, pp. 486–490.

[9] R. K. Megalingam, D. V. Prithvi, N. C. S. Kumar, and V. Egumadiri,
“Drone Stability Simulation Using ROS and Gazebo,” in Advanced
Computing and Intelligent Technologies. Springer, 2022, pp. 131–
143.

[10] E. Ebeid, M. Skriver, K. H. Terkildsen, K. Jensen, and U. P. Schultz,
“A survey of open-source UAV flight controllers and flight simulators,”
Microprocessors and Microsystems, vol. 61, 2018, pp. 11–20.

[11] V. Kharchenko, “Diversity for safety and security of embedded and
cyber physical systems: Fundamentals review and industrial cases,” in
2016 15th Biennial Baltic Electronics Conference (BEC). IEEE, 2016,
pp. 17–26.

49Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

[12] J. Steinbaeck, C. Steger, G. Holweg, and N. Druml, “Next generation
radar sensors in automotive sensor fusion systems,” in 2017 Sensor Data
Fusion: Trends, Solutions, Applications (SDF). IEEE, 2017, pp. 1–6.

[13] Y. Luo, A. K. Saberi, T. Bijlsma, J. J. Lukkien, and M. van den
Brand, “An architecture pattern for safety critical automated driving
applications: Design and analysis,” in 2017 Annual IEEE International
Systems Conference (SysCon). IEEE, 2017, pp. 1–7.

[14] A. Armoush, “Design patterns for safety-critical embedded systems.”
Ph.D. dissertation, RWTH Aachen University, 2010.

[15] A. Kohn, M. Käßmeyer, R. Schneider, A. Roger, C. Stellwag, and
A. Herkersdorf, “Fail-operational in safety-related automotive multi-
core systems,” in 10th IEEE International Symposium on Industrial
Embedded Systems (SIES). IEEE, 2015, pp. 1–4.

[16] P. Stelzer, A. Strasser, C. Steger, and N. Druml, “Fail-operational shock
detection and correction of MEMS-based micro-scanning LiDAR sys-
tems,” in 2020 IEEE Sensors Applications Symposium (SAS). IEEE,
2020, pp. 1–6.

[17] D. M. Saxena, V. Kurtz, and M. Hebert, “Learning robust failure re-
sponse for autonomous vision based flight,” in 2017 IEEE International
Conference on Robotics and Automation (ICRA). IEEE, 2017, pp.
5824–5829.

[18] S. Rabiee, C. Basich, K. Wray, S. Zilberstein, and J. Biswas,
“Competence-Aware Path Planning via Introspective Perception,” IEEE
Robotics and Automation Letters, 2022.

[19] D. Vey and J. Lunze, “Experimental evaluation of an active fault-tolerant
control scheme for multirotor UAVs,” in 2016 3rd conference on control
and fault-tolerant systems (systol). IEEE, 2016, pp. 125–132.

[20] F. Sharifi, M. Mirzaei, B. W. Gordon, and Y. Zhang, “Fault tolerant
control of a quadrotor UAV using sliding mode control,” in 2010
conference on control and Fault-Tolerant Systems (SysTol). IEEE,
2010, pp. 239–244.

[21] V. Marojevic, I. Guvenc, M. Sichitiu, and R. Dutta, “An experimental re-
search platform architecture for UAS communications and networking,”
in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall).
IEEE, 2019, pp. 1–5.

[22] H. Jiaxin, G. Yanning, F. Zhen, and G. Yuqing, “Vision-based au-
tonomous landing of unmanned aerial vehicles,” in 2017 Chinese
Automation Congress (CAC). IEEE, 2017, pp. 3464–3469.

[23] Raspberry Pi Foundation. Raspberry Pi 4 Model B. https://www.
raspberrypi.com/products/raspberry-pi-4-model-b/specifications/.
Retrieved: July, 2022.

[24] Infineon Technologies AG. Position2Go Development Kit.
https://www.infineon.com/dgdl/Infineon-AN553 BGT24MTR12
XMC4700 Position2Go DemoBoard-ApplicationNotesv01 03-EN.
pdf?fileId=5546d4626cb27db2016d44631adb021f. Retrieved: July,
2022.

[25] ArduPilot Dev Team. Mavproxy documentation. https://ardupilot.org/
mavproxy/. Retrieved: July, 2022.

[26] PX4 Dev Team. PX4 Autopilot: Open Source Autopilot for Drones.
https://px4.io/. Retrieved: July, 2022.

[27] D. Perez, I. Maza, F. Caballero, D. Scarlatti, E. Casado, and A. Ollero,
“A ground control station for a multi-uav surveillance system,” Journal
of Intelligent & Robotic Systems, vol. 69, no. 1, 2013, pp. 119–130.

[28] Dronecode Project. QGroundControl. http://qgroundcontrol.com/. Re-
trieved: July, 2022.

50Copyright (c) IARIA, 2022. ISBN: 978-1-68558-006-3

SENSORDEVICES 2022 : The Thirteenth International Conference on Sensor Device Technologies and Applications

