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Abstract—Using infrared imaging cameras mounted on un-
manned aerial vehicles to assist in search and rescue missions
by gathering and processing images can substantially improve
the chances of survival of missing people. Indeed, infrared
imaging cameras are well suited to support the detection of
heat signatures in dark and cloudy conditions. The critical point
herein is detecting heat signatures emitted by the human body.
This stresses feasibility of application of infrared small target
detection for search and rescue missions in wide areas. This
paper presents and discusses a deep learning and a low-rank
and sparse matrix decomposition approaches for infrared small
target detection. Further, a framework tailored for unmanned
aerial vehicles is developed. The proposed infrared small target
detection system is capable of detecting heat signatures in images
with complex backgrounds. Experimental results demonstrate
that an infrared small target detection method based on deep
learning is a valuable supporting system in search and rescue
missions.

Keywords—UAV; infrared imaging; object detection; computer
vision; machine learning.

I. INTRODUCTION

In recent years, several missing people have been located
by Unmanned Aerial Vehicles (UAVs) equipped with Infra-
Red (IR) imaging cameras [1][2]. Indeed, autonomous UAVs
are becoming very popular in applications such as surveillance
and search and rescue missions. Generally, search and rescue
missions are limited by time, area of coverage, costs, and
availability of UAV pilots. This work considers a system suited
for multi-rotor UAVs, as well as other vertical take-off and
landing UAVs. In comparison to helicopters, UAVs require
less traffic management, and are less expensive to operate and
easy to deploy. In addition, they offer a high degree of design
flexibility and can be equipped with a wide range of sensors.
Moreover, UAVs can access confined spaces that helicopters
cannot, including areas deemed hazardous to humans.

The use of automated object detection in search and rescue
missions can reduce human errors, which are likely to occur
in cases where the operator has to monitor a video stream for
hours. The obvious consequence of this in the case of search
and rescue missions is failure in locating the missing person.
Compared to automated object detection, human operators
have the advantage of understanding the context of a video and
recognizing where to search based on experience. However, a
challenging task for a human is to detect crucial details in a
high-definition video, because the human eye could potentially
be focusing only on a small section of the video frame.

The task of detecting missing victims is time-critical and
particularly challenging since parts of the victim might be
exceedingly small, and sometimes blend in with the surround-
ings. In natural disaster scenarios, using autonomous UAVs to
discover any human activity can save lives. Object detection
techniques and IR imaging are useful in automatizing the
process of detecting humans in adverse conditions, thereby
increasing the likelihood of survival. The combination of IR
and color imaging can provide a relatively short search time in
remote areas since IR small targets will appear as brighter than
the local background and therefore distinguishable from the
surroundings. IR imaging [3][4] is used in civilian and military
applications owing to its ability to operate in dark and low-
visibility conditions, such as cloudy and smoke-covered areas,
making IR imaging suitable for detecting humans in low light
situations. However, IR imaging cameras are not as effective in
supporting search and rescue teams in finding missing people
in warm areas because the heat from the surroundings might
mask the heat signature of the target. This issue becomes
exceptionally challenging when the target is covered by objects
with thermal radiation shielding properties, or when multiple
interfering heat sources are present.

In aerial IR images [3][5], IR targets occupy just a few
pixels on the imaging plane due to the long imaging distance.
An IR small target [6] can be defined as an object having
a total size of less than 0.15% of an image. As a result, the
target’s thermal radiation is likely to appear weak. This makes
the target difficult to recognize, as it lacks obvious shape, size,
and texture characteristics. Mid-wave IR and long-wave IR
cameras [7] are popularly known as thermal imaging cameras
because they are capable of detecting radiation emitted by
objects with a low surface temperature, typically around 25 °C.
These cameras detect IR radiation and produce a thermal
image that can be used to determine surface temperatures.
Thus, there is no need for an external light source to detect
an object. However, high-resolution IR imaging cameras are
prohibitively expensive and not widely available to the public.
Commercially available thermal imaging cameras typically
generate low-resolution images, which make them inept at
detecting small objects.

The field of IR small target detection has been dominated by
model-driven methods. One of the highest performing [6] non-
learning model-driven methods using low rank and sparse ma-
trix decomposition is the Infrared Patch-Image (IPI) model [8].
Low-rank and sparse matrix decomposition methods [9] try to
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separate an image into a foreground component S and a back-
ground component L. A sparse matrix [10] has a considerable
majority of elements equal to zero. Thus, the IR small targets
are often the non-zero values in the sparse matrix, making
them easily identifiable. Conversely, a low-rank matrix [10]
has a small number of linearly independent rows and columns
compared to the matrix’s size. The background patch of an IR
image has a low rank, and the IR small targets of S are sparse
when compared to L.

Convolutional Neural Networks (CNNs), specifically Fea-
ture Pyramid Networks (FPNs) [11], outperform non-learning
model-driven methods [5], indicating that learning from data
can lead to high accuracy in IR small target detection. But,
most CNNs learn high-level features by downsampling feature
maps. As a result, the IR small targets become engulfed
by the background features in the deepest layers. To ensure
adequate detection results, a specialized network design is
required [5][6]. Using a pre-trained network for the task of
IR small target detection is not advised [3], but rather to train
the CNN’s weights from scratch using only IR small target
images.

Meta-architectures, such as Faster R-CNN [12] and
YOLO [13] only use the last layer’s feature map to localize
objects and make predictions. These models are ineffective
at localizing small objects due to the absence of low-level
features [14] at the last layer. The problem of detecting small
objects can be alleviated by using a more fitting feature
extractor (e.g., ResNet) [15]. According to [16], the main
drawback of employing a CNN for the task of IR small target
detection is that feature learning will become particularly chal-
lenging, as an IR small target generally lacks any prominent
shape. Further, extracting features from low resolution images
is difficult, and the IR small targets may disappear in the
deep layers of a network due to their small size. Dai et
al. [5] state that a high-resolution prediction map is crucial for
detecting IR small targets, and thus propose the Attentional
Local Contrast Network (ALCNet). ALCNet achieves better
results than the completely data- and model-driven methods on
the SIRST (Single-frame Infra-Red Small Target) dataset [17],
indicating that when detecting IR small targets, one should
prioritize combining CNNs with domain-specific knowledge,
e.g., methods for measuring local contrast. To conserve small
targets and extract feature maps, ALCNet employs a modified
ResNet as its feature extractor. Further, Wang et al. [3]
suggests restricting the number of downsampling operations in
the feature extractor, thus gaining a sufficiently large feature
map which conserves features of the IR small targets.

Having a deep network is desirable, as a deeper network can
learn more features. However, as the network gets deeper, there
may be instances where the accuracy saturates and then rapidly
decreases. This is known as degradation [18]. Moreover, a
deeper network leads to more parameters, which results in a
more resource intensive model. As a solution to this problem,
ResNet [19] introduced the residual block. The residual block
takes the output F(x) of one or more layers and combines
it with a shortcut connection containing the value x which is

feeding those layers. Since the residual block prevents degra-
dation, the network’s depth can increase, and the accuracy
will improve over time. Results from [19] demonstrate that
the effect of the residual connections increases proportionally
with the number of layers.

The remainder of this paper is organized as follows. Sec-
tion II outlines the methods employed in this work and the
rationale behind the selection of these methods. Further, Sec-
tion II describes the evaluation metrics and outlines the testing
process. Section III summarizes the test results and discusses
the significance of the results. Section IV provides a discussion
of the proposed system. Finally, Section V summarizes the
performance results of the proposed system, and presents
conclusions and future research opportunities on the topic.

II. METHODOLOGY

In this work, two different methodologies for detection of
IR small targets are proposed and tested, namely a data-driven
CNN-based method and a model-driven method using low-
rank and sparse matrix decomposition. These are discussed
next, beginning with some general considerations on the
dataset.

A. IR Small Target Dataset Analysis

The Single-frame IR Small Target (SIRST) dataset [17],
which contains 427 short-wave IR and mid-wave IR images,
is used for training and testing of the proposed methods. The
dataset sample size was augmented to improve the training of
the model. The main reason is that scarcity or low variance
in the training dataset will result in a model that performs
poorly on new data. Certain targets are difficult for humans to
discover as they require one to perform a focused and thorough
search discriminate whether they are a target or just noise.
Therefore, the classification task of IR small target detection
is binary [6]. Moreover, as most of the targets in the images
lack any definite features, they are all placed into a general
class called ”Target”.

B. Data-driven Approach

Numerous CNN models are available, and it is difficult to
differentiate between them. A model with a good trade-off
between accuracy and speed (i.e., inference time for a single
image) is desired. Based on suggestions from the literature
review, the final choice fell on CenterNet ResNet50 V1 FPN
(512×512) from the TensorFlow 2 Detection Model Zoo [20].

CenterNet [21] is a keypoint-based object detector, which
means that it represents an object as a single point in the
center of a generated bounding box. Other object properties,
such as size and dimension, are obtained by moving from the
center location towards the bounding box’s outline. First, an
input image is fed into a feature extractor (e.g., ResNet) in
order to create a key-point heatmap. Peaks in the heatmap are
mapped as object center points. An object’s bounding box size
is inferred from its center point.
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1) Modified ResNet: The ResNet50 V1 FPN (512 × 512)
is used as the object detector’s feature extractor. The SIRST
dataset contains images that are smaller than the original
512× 512 pixels input size to the network. Thus, instead of
upscaling the input images to 512× 512 pixels, which would
distort them, they are resized to 224 × 224 pixels. This is
performed for the original ResNet50 as well.

We followed the general consensus reflected in most current
research in the field that the downsampling operations of the
feature extractor should be reduced to improve the detection
of small objects. To achieve satisfactory results in terms of
accuracy, the depth of the ResNet is maintained at 50 layers.
The downsampling is reduced by changing the stride from 2
to 1 in the first convolutional layer of the original ResNet50.
The output shape of the modified ResNet’s last convolutional
layer has an output shape of 14×14, whereas the output shape
of the original ResNet’s last convolutional layer has an output
shape of 7× 7.

2) Training the Data-driven Method: Training CNNs relies
a great deal on matrix multiplications. GPUs (Graphics Pro-
cessing Units) are well-suited for this type of computation, as
their architecture allows for 100× greater speed than CPUs
(Central Processing Units) at this task [22].

The data-driven models are trained from scratch. The learn-
ing rate determines how fast the network learns. Goodfellow et
al. [23] states that a high learning rate increases the training
loss, while a low learning rate increases the risk of a slow
training process, which, potentially, could become stuck at
a high training loss. The original hyperparameters listed in
Table I were used for training the data-driven methods, as these
hyperparameters are commonly fine-tuned by the model’s
developers.

TABLE I: PIPELINE VALUES USED FOR TRAINING THE DATA-
DRIVEN METHODS.

Pipeline values

Warmup learning rate 2.5× 10−4

Base learning rate 0.001
Batch size 64 / 32

Warmup steps 5000

The batch size [23] is the number of training-samples from
the dataset used in a single forward-pass. Typically, the batch
size is less than the total number of training samples in the
dataset. A large batch size consumes more memory. The data-
driven method based on the original ResNet uses a batch
size of 64. The modified ResNet uses a batch size of 32 due
to the reduced downsampling which requires additional GPU
memory. The training is stopped when the loss is stagnating.
The training of the modified ResNet50 was stopped when
the total training loss reached approximately 0.3, requiring
significantly more steps than the original ResNet50, which had
a training loss of approximately 0.15.

C. Model-driven Approach

The IPI model proposed by Gao et al. [8] is capable of
producing accurate results even when confronted with complex

scenes [9]. However, background edges, corners, or blobs
infiltrate the sparse matrix, resulting in multiple discrepancies
that the IPI model could treat as targets. In the IPI model,
image patches from an IR image are rearranged using a sliding
window to form a data matrix D. The data matrix is then
decomposed into a low-rank matrix L and a sparse matrix
S using the Robust Principal Component Analysis (RPCA)
algorithm in conjunction with the Principal Component Pur-
suit (PCP) [24]. Continuing with the IPI model, D can be
decomposed into three components:

D = L+ S+N, (1)

where N is the noise. PCP can recover L and S from D by
solving the following optimization problem [8]:

min
L,S

(
∥L∥∗ + λ ∥S∥1 +

1

2µ
∥D− L− S∥2F

)
, (2)

where µ and λ are positive-valued parameters.
The problem stated in Equation (2) can be solved through

the Accelerated Proximal Gradient (APG). Solving RPCA-
PCP via APG requires a significant amount of time to converge
for a single IR small target image. Fortunately, however,
several algorithms are available in the literature that solve
the PCP. The proposed model-driven method is based on the
IPI model [8] and RPCA-PCP via the Inexact Augmented
Lagrangian Method (IALM) [25]. IALM is at least five times
faster than APG and has a higher precision [26].

D. Evaluation Metrics

In the context of search and rescue missions, missed detec-
tion is more costly than false alarms, and this should be taken
into account in the performance evaluation of the system. For
the model-driven method, the sparse matrix S is the prediction.
The center of a predicted target will be the location of pixels
with a value higher than a certain threshold. The accuracy
of the model-driven method is measured by checking if the
center of the ground truth target intersects with the center
of the predicted target. Additionally, the True Positive (TP ),
False Positive (FP ), False Negative (FN ), and True Negative
(TN ) outcomes are recorded after testing each method. To
deem a prediction to be TP , the predicted location must be
within proximity of the ground truth location. This includes
situations where the predicted bounding box and the ground
truth bounding box are proper subsets of one another.

An applicable evaluation metric is the F-score given by

Fβ =
(1 + β2)(PPV )(TPR)

β2PPV + TPR
, (3)

where PPV is the Positive Predictive Value, also known as
precision, and TPR is the True Positive Rate, also known as
recall. Precision is a measure of how many of the predicted
targets correspond to ground truth targets, and recall is the
number of ground truth targets detected. For the proposed
system, it is preferable to select a β = 2 in Equation (3), as
the recall is more critical for evaluating the proposed methods.

Another applicable metric is the Matthews Correlation Co-
efficient (MCC), which returns a value in the range [−1, 1].
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The modified SIRST dataset is unbalanced, as it contains
268 positive samples plus 210 negative samples. Chicco and
Jurman [27] recommend using the MCC rather than Fβ=1

when evaluating predictions from a binary classifier, as F1

can produce inaccurate results when applied to unbalanced
datasets. MCC can resolve this issue by assimilating the
imbalance. The proposed methods should have a high recall,
a high F2, and a high MCC score.

E. Testing

The modified SIRST dataset was used for experimental
evaluation of the model- and data-driven approaches. The
dataset has 210 negative images and 214 positive images
containing 268 IR small targets.

The model-driven methods MD-v1 and MD-v2 are eval-
uated by adjusting the parameters listed in Table II. The
tolerance ϵ1 is required by the stopping criterion. If the value
of the stopping criterion is below ϵ1 the solution of RPCA-
PCP via IALM has converged. The iteration parameter is used
to forcibly stop the IALM if it has not converged. Further,
adjacent pixels with a value above the threshold produce an
IR small target. A high threshold removes false positives, but
it could also exclude true positive predictions.
TABLE II: MODEL-DRIVEN METHODS AND THEIR PARAMETERS.

Abbreviation Tolerance (ϵ1) Iterations Stride Patch size Threshold

MD-v1 0.1 500 20 80 150
MD-v2 0.01 1000 20 80 150

According to [8], a patch size of 80×80 pixels, and a sliding
step or stride of 14 in the sliding window produces acceptable
results. However, a stride of 20 was selected for MD-v1 and
MD-v2 as this decreases the required computational time.
Furthermore, if the patch size exceeds 80 × 80, performance
degrades.

The score threshold Sth is adjusted when evaluating the
data-driven methods. The score threshold discards predictions
which have a confidence score less than Sth. Table III contains
abbreviations used for the various data-driven methods.

TABLE III: ABBREVIATIONS FOR DATA-DRIVEN METHODS.

Abbreviation Stride Batch size Score threshold (Sth)

DD-v1-03 2 64 0.3
DD-v1-05 2 64 0.5
DD-v2-03 1 32 0.3
DD-v2-05 1 32 0.5

III. RESULTS

All results from evaluating the data-driven and model-driven
methods on the modified SIRST dataset are shown in Table IV.
The DD-v1 methods are clearly the fastest methods, with an
average time of 0.2 seconds per image. A set of predictions
performed by the proposed methods are shown in Figure 1.
None of the methods are able to detect all five IR small targets
in Figure 1a. However, four IR small targets were detected
by MD-v2 and DD-v1-03, as shown in Figure 1c and 1e,
respectively.

A. Analysis of the Model-driven Methods

As expected, and demonstrated in Table IV, the model-
driven methods are inaccurate when compared to the data-
driven methods. MD-v1 (F2 = 0.604, MCC = 0.224,
PPV = 0.585) outperforms MD-v2 (F2 = 0.586, MCC =
−0.024, PPV = 0.345) in terms of F2, MCC and precision.
In comparison to MD-v1, MD-v2 performs a meticulous
decomposition, which may account for the low precision value,
i.e., the large share of FP predictions.

MD-v2 with a reduced patch size and stride extracts excess
noise from the image. In addition, a low patch size and stride
results in a longer processing time.

To summarize, the MD-v1 and MD-v2 cannot compete
with the data-driven methods in terms of accuracy. Also,
MD-v1 and MD-v2 have an excessive computational time,
requiring approximately 5 seconds per image. The lengthy
computation time is primarily caused by the sliding window
and singular value decomposition used for solving RPCA-PCP
via IALM. The model-driven methods are, however, effective
at identifying targets in complex environments.

B. Analysis of the Data-driven Methods

As illustrated in Table IV, all data-driven methods have
a high precision, with the best scores going to DD-v2-05
(PPV = 0.990). A Sth of 0.3 results in a high recall, MCC
and F2. A Sth < 0.3 will introduce additional FP predictions.
A Sth equal to 0.5 discards a portion of the false predictions,
however, this also reduces the TP predictions. Further, an even
higher Sth increases the amount of FN predictions. This is not
desirable, as the system should aim at detecting all potential
targets.

DD-v1-03 (F2 = 0.908, MCC = 0.817, TPR = 0.904)
and DD-v2-03 (F2 = 0.900, MCC = 0.842, TPR = 0.885)
are the most accurate methods. DD-v2-03 has a marginally
lower F2 than DD-v1-03. DD-v1-03 has the highest recall
and F2, and is the most appropriate approach for IR small
target detection when considering the average time required
to process a single image. DD-v1-03 processes a single image
in approximately 0.2 seconds. However, this is not comparable
to running object detection on a continuous video stream. The
processing speed would, however, be higher if the methods
were deployed on a GPU-equipped machine.

There is no statistically significant difference between the
modified (stride = 1) and original (stride = 2) ResNet50 in
terms of performance. This might originate from the modified
ResNet50 not being downsampled sufficiently, or alternatively,
the original ResNet50 already had suitable feature map sizes.
Further reduction of the downsampling operations results
in a slower system. As shown in Table IV, the modified
ResNet models (i.e., DD-v2-03 and DD-v2-05) run slower
due to the increased parameter count caused by the reduced
downsampling.

The modified ResNet was trained with a batch size of 32,
which is likely to be the reason why the training process
is slower than the training of the original ResNet. A low
batch size should result in a model that generalizes well
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TABLE IV: RESULTS FROM EVALUATING THE DATA-DRIVEN AND MODEL-DRIVEN METHODS.

Metric MD-v1 MD-v2 DD-v2-03 DD-v2-05 DD-v1-03 DD-v1-05

Recall 0.610 0.711 0.885 0.722 0.904 0.800
Precision 0.585 0.345 0.966 0.990 0.926 0.963
MCC 0.224 −0.024 0.842 0.720 0.817 0.760
F2 0.604 0.586 0.900 0.763 0.908 0.828

Avg. time [s] 4.98 5.04 0.85 0.8 0.2 0.2

(a) Raw image

(b) MD-v1 (c) MD-v2

(d) DD-v1-05 (e) DD-v1-03

(f) DD-v2-05 (g) DD-v2-03

Figure 1: Predictions performed by proposed methods. Red boxes represent the ground truth targets. Green boxes represent predictions. (a) raw
image from the dataset. (b) obtained using MD-v1. (c) obtained using MD-v2. (d) obtained using DD-v1-05. (e) obtained using DD-v1-03.
(f) obtained using DD-v2-05. (g) obtained using DD-v2-03.

to previously unobserved data. Yet, there are no significant
differences between using a batch size of 64 or 32 in terms of
accuracy. The high accuracy of the data-driven methods could
be the result of using the CenterNet meta-architecture with the
ResNet feature extractor. CenterNet appears to perform well
at the task of IR small target detection as it extracts peaks
from keypoint heatmaps generated by ResNet.

IV. DISCUSSION

What should the system do when a target or multiple targets
are detected? Further, how can the location of a target be
determined? Another challenge is to define how the system

should behave in response to previously predicted targets. The
system could register specific GPS positions. Moreover, the
system should ignore heat signatures coming from the ground
crew. Computational cost of CNNs results in slow inference
on computationally constrained devices. Due to physical con-
straints, the system proposed in this work will have limited on-
board computational power. To accelerate intensive tasks, edge
computing can be used. Edge computing requires data transfer
from the UAV to the edge, where required computations are
carried out, then the results are relayed back to the UAV. This
is a challenging task, and will likely result in unacceptable
latency [28]. With edge computing, a collection of computing
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devices brings the capability to solve computationally intensive
tasks closer to the UAVs, thereby reducing latency [28].
However, the computers located at the edge may be insufficient
to perform real-time (e.g., more than 20 frames per second)
inference due to restricted memory and processing power.

V. CONCLUSION AND FUTURE WORK

This work investigates the detection of IR small targets. The
results of using autonomous UAVs, IR imaging, and object
detection to assist search and rescue missions are promising.
In particular, a model-driven approach based on low-rank
and sparse matrix decomposition which employs RPCA-PCP
via IALM, and a deep learning-based data-driven approach
using CenterNet with ResNet proved to be suitable choices
towards solving this problem. Despite the limitations of the
dataset, experimental results indicate that the proposed system
is effective at detecting IR small targets. As expected, the data-
driven approach outperformed the model-driven approach.
Although accurate, however, the data-driven methods are slow.
Training the data-driven methods on additional IR small target
samples will further improve their accuracy.

The results of this work establish unequivocally that CNN-
based object detection methods are accurate at IR small target
detection. Conclusively, the proposed system can make a
substantial impact by assisting search and rescue missions.
Several areas are worth investigating further. The IR small
target detection system remains incomplete. Validation of the
proposed system in real-world circumstances should be given
considerable attention. Furthermore, target tracking methods
should be researched as they could increase the system’s
ability to locate missing victims and allow the system to focus
on a single target if necessary.
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