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Abstract—Condition-Based Monitoring (CBM) systems have
grown in popularity in recent years owing to innovations in
areas, such as sensor-technology, communication systems, and
computing. That has fostered the development of more efficient
systems to monitor, analyze, and identify failures in industrial
plants, production lines, and machinery. Gas and oil industries
lose billions of dollars yearly related to abnormal events and
systems failures. Thus, Abnormal Event Management (AEM),
which aims at early detection and identification of these events,
has become their number one priority so that preventive actions
can be taken timely. This work addresses the issue of detection
and classification of faults in offshore oil wells. The aim is to
create a CBM system based on the random forest classifier to
support decision-making. The events used in this work are part
of the 3W database developed by Petrobras, Brazil, one of the
world’s largest oil producer. Seven events categorized as faulty
events are considered, as well as several instances labeled as
normal operation. We conducted two experiments related to two
different classification scenarios. The proposed systems achieved
an overall accuracy of 90%, indicating that the system is not
only able to detect faulty events but can also anticipate incoming
failures successfully.

Keywords - condition-based monitoring; machine learning; data-
driven detection and classification; random forest classifier.

I. INTRODUCTION

Recent advances in sensor technologies, communication
systems for data acquisition, storage, and computational capa-
bility gave birth to an era of massive automatic data gathering,
storage, and processing. This has resulted in a paradigm shift
bringing new opportunities for developing innovative solutions
and systems for a wide range of applications. As an example
of that, Germany launched recently a project known as “In-
dustry 4.0” to revitalize the industry based on such systems,
commonly referred to as smart technology. Today, Condition-
Based Monitoring (CBM) applies state-of-art technology and
is often related to solutions such as Cyber-Physical Systems
(CPS) and Internet of Things (IoT) [1], [2].

Systems for CBM are being widely adopted to monitor and
evaluate the condition of processes, machinery, and compo-
nents of interest. The goal is to anticipate and detect incoming
failures so that preventive actions can be taken minimize
downtime and guarantee a stable production. Such solutions
often involve data-driven analysis, where acoustic and vibra-
tion signatures, current, and temperature are examples of fea-
tures that are monitored to evaluate the condition of bearings,

motors, and other machinery [3]. In the oil and gas industry,
keeping a stable production is particularly important. This is
because undesirable abnormal events can cause production
losses for days and even weeks, not to mention potential
disasters with catastrophic consequences for the environment.
It is estimated that the oil and gas industries lose 20 billion
dollars every year due to abnormal events. Thus, they have
rated abnormal event management (AEM) as their number
one problem that needs to be addressed. Similarly to CBM
systems, AEM addresses fault detection and diagnosis, and has
as main objective timely detection, diagnose, and correction
of abnormal conditions or faults in a process [4].

Researchers and engineers have been studying and propos-
ing the application of detection and classification algorithms
in the oil and gas industry at the different stages, from as early
as drilling and construction stages to production and operation
phases of the oil well and its subsystems. An example is the
work of Ahmadi et al. [5] that investigates the issue of early
detection of flow influx during drilling. The authors present
an approach to determining underlying reservoir models from
noisy pressure data with the use of Random Forest (RF),
Support Vector Machine (SVM), Linear Regression (LR), and
Probabilistic Neural Networks (PNN) as classifiers for well-
testing model classification. Another example is the work of
Tang and S. Zhang, F. Zhang, and Venugopal [6], that presents
a method of applying statistical features on real-time drilling
data to automatically detect flow influx during drilling. The
authors report a reliable performance and claim to be able to
predict undesirable flow influx trends on average 10 minutes
before detection.

Other examples of detection algorithms in later stages
include the work of Liu et al. [7] which discusses an approach
for semi-supervised classification to detect failures in artificial
lift systems. Artificial lift systems are techniques to enhance
oil production by increasing the pressure within the reservoir,
which directly lifts fluids to the surface. The authors present a
framework that combines features with Decision Trees (DT),
SVM, and Bayes Net to enable learning and separation of
failures from normal patterns based on noisy and poorly
labeled multivariate time series. In addition, Liu, Li, and Xu
[8] present an integrated model for the detection and location
of leakages in pipelines. The authors investigate two modules:
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one that can detect larger leakages and another one for micro-
leakages. In [9], the authors present an approach to predict
valve failures in gas compressors from oil fields, with the
use of sensor data from multiple sensors. The authors’ ap-
proach consisted of the use of feature extraction and selection,
combined with DT. In [10], the authors present data-driven
models to predict failure rates and their influencing factors
of equipment based on data from six Norwegian oil and gas
facilities.

This work presents a proper CBM system using random
forest classifier to identify and detect undesirable events in
subsea oil wells. The aim is to create a CBM system based
on the random forest classifier to support decision-making.
Specifically, we propose two classification scenarios that have
shown promising results under testing. The rest of this paper
is organized as follows. Section II introduces background
knowledge about sub-sea oil wells and the eight different types
of faults characterized as undesirable abnormal events in oil
wells. Section III presents the test results related to model
performance. Section IV and Section V provide an in-depth
analysis, summarize the achieved results of the system and
propose ideas for future work.

II. DATA ANALYSIS

This section provides an overview of offshore oil wells,
followed by relevant details regarding the sensors used in this
work to detect undesirable events during oil production and
a description of the 3W dataset collected for the purpose of
this study. It also gives a general description of the eight fault
types contemplated in the 3W dataset.

A. Offshore Oil Wells

An oil well is a boring in the Earth, inshore or offshore,
build using traditional drilling, and designed with the finality
of extracting petroleum oil hydrocarbons from underground
reservoirs. Usually, associated petroleum gas is also released
in the process. The term “oil well” usually refers to a complex
system consisting of several subsystems: a production tubing,
which is the main path for the well fluid; a wellhead to
ensure structural safety during drilling and production; and
a “Christmas tree” installed on the top of the wellhead
giving access to the production tubing. The ‘Christmas tree”
controls the production with several valves and sensors that
can be accessed from the surface. Figure 1 illustrates a typical
offshore oil well set-up.

The communication link between the surface and the oil
well on the seabed is referred to as an “umbilical”. An “umbil-
ical” is an electro-hydraulic unit responsible for transmission
of electrical signals and hydraulic power. It is connected to
the Christmas tree and to the surface control system, i.e., a
nearby production platform [12].

B. 3W Dataset

The 3W dataset is a public dataset released by Petrobras,
the Brazilian state oil company [11]. The dataset consists of
real, simulated, and hand-drawn data of oil wells sensor data

Fig. 1: Simplified schematic of a typical offshore naturally
flowing well based on [11].

Fig. 2: Simplified schematic of a typical subsea Christmas
tree based on [11].

gathered during operation. The data is acquired during oil well
normal operation and featuring occurrences of undesired or
abnormal events in the oil. This is shown through the closure
mechanism of the Downhole Safety Valve (DHSV) and sensor
readings extracted from five monitored variables: Pressure
at the Permanent Downhole Gauge (PDG); Pressure at the
Temperature and Pressure Transducer (TPT); Temperature at
the TPT; Pressure upstream of the Production Choke Valve
(PCK); and the Temperature downstream of the PCK. The
PCK and DHSV and their impact are explained further on.
Figure 1 illustrates Simplified schematic of a typical offshore
oil well, whereas Figure 2 shows a simplified schematic of a
typical subsea Christmastree [11].

The 3W dataset was build targeting eight types of unde-
sirable events in oil wells. Factor such as Water, sediment,
natural gas, and flow rate are found to be correlated to the
undesirable events under consideration. As mentioned earlier,
there are real, simulated, and hand-drawn undesirable events in
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the dataset, where all real instances have been extracted from
the plant information system of Petrobras. Every undesirable
event in the dataset is a sequence of observations with three
states, namely normal, faulty transient, and faulty steady state.
A normal state is characterized by the absence of any evidence
of abnormal behavior, whereas in the faulty transient state the
dynamics caused by undesirable events are ongoing. When
these dynamics cease, the faulty steady state period begins.
These states are defined to allow early detection of a given
failure event. Properties considered when dining the events are
pressure in Pascal [Pa], volume flow in standard cubic meters
per second [sm3/s], and temperature in degree Celsius [◦C].

C. Fault Description

The reference in [11] defines eight types of fault as follows:
Class 1 - Abrupt Increase of Basic Sediment & Water:

Basic Sediment and Water (BSW) is defined as the ratio
between the water and sediment flow rate and the liquid flow
rate, both measured under Normal Temperature and Pressure
(NTP). During the life cycle of a well, its BSW is expected to
increase due to increased water production. However, a sudden
increase of BSW can lead to several problems related to flow
assurance, lower oil production, and incrustation.

Class 2 - Spurious Closure of DHSV: The Downhole Safety
Valve (DHSV) is placed in the production tubing, where its
purpose is to ensure the closing of the oil well. It provides
safety by shutting off the well in situations in which the
production unit and well are physically disconnected or in
the event of an emergency or catastrophic failure of surface
equipment. However, the closing mechanism will eventually
fail in a spurious manner. This kind of failure is problematic
because there are often no indications of the failure on the
surface, which causes production losses and additional cost.

Class 3 - Severe Slugging: This type of undesirable event
occurs frequently at irregular intervals, on mature oil fields.
Severe slugging takes place when “slugs” of liquid separate
bubbles of gas through the pipeline. In the 3W dataset, it is
considered a critical type of instability and can result in stress
or even damage to equipment in the well and/or the industrial
plant.

Class 4 - Flow Instability: During flow instability, there is a
periodical change of pressure but with acceptable amplitudes.
Flow instability is not necessarily equal to slugging, what
separates those two anomalies is the lack of periodicity.
Though flow instability can result in slugging. As instability
can progress to severe slugging, its prognosis avoids all the
negative aspects associated with this more severe anomaly.

Class 5 - Rapid Productivity Loss: There are several factors
that can change the productivity of a naturally flowing well,
the factors consist of the diameter of the production line,
percentage between water and basic sediment, static pressure
of the reservoir, and the viscosity of the produced fluid. When
any of these factors are changed to the extent that the system’s
energy is not sufficient enough to overcome the losses, the
flow of the well will slow down or even stop, which causes
productivity loss.

Class 6 - Quick Restriction in PCK: Production Choke
(PCK) is a control valve located at the beginning of the
production unit. It is responsible for well control and can
restrict, control, and regulate the flow. The choke can be
controlled from the surface and when operated manually
problems may occur.

Class 7 - Scaling in PCK: Inorganic deposits will occur
during production. Therefore, it is important to monitor the
Production Choke since it significantly reduces oil and gas
production. If detected, losses of oil and gas production can
be avoided. Thus, detecting it a early stage is favorable, so
actions can be taken.

Class 8 - Hydrate in Production Line: This undesirable
event occurs when water and natural gas form a crystalline
compound, which happens under extreme pressure and tem-
perature conditions. This crystalline compound resembles ice
and when it is formed in production lines it can stop production
for days and weeks. This is one of the biggest problems in
the oil industry. Thus, avoiding this is desirable.

D. Data Review and Challenges

Despite its great technical value, the 3W dataset includes
many of missing and frozen variables and unlabeled observa-
tions. In this case, a ’variable’ refers to the monitored opera-
tional settings and sensor readings. Furthermore, an ’instance’
refers to a recorded event of one of the eight fault types
in the 3W dataset, while an ’observation’ is a sample from
an instance, showing the true label, timestamp, operational
settings, and sensor readings. These definitions are used in
the following subsections, which review challenges related to
the 3W dataset.

1) Unlabeled Observations: An observation is considered
unlabeled when there is no label of the fault type for a
given sample of an instance. A total of 5,130 (0.01% of all
50,913,215 observations of all 15,872 variables of all 1,984
instances) observations are considered unlabeled in the 3W
dataset.

2) Missing and Frozen Variables: A variable is considered
missing when all observations of that particular variable in an
instance have a missing value. 4,947 (31.17% of all 15,872
variables of all 1,984 instances) variables are considered
missing in the 3W dataset. In the case of frozen variables, they
are considered frozen when all observations of that particular
variable in an instance have the same constant value. 1,535
(9.67% of all 15,872 variables of all 1,984 instances). variables
in the 3W dataset is considered frozen.

3) Hand-drawn Instances: A challenge of this dataset is
related to hand-drawn instances because the behavior varies
a lot compared to real instances. The hand-drawn instances
are too artificial and are quite distinct from the real ones.
Therefore, the subsequent analysis omits fault type seven
(Scaling in PCK) since 10 of all 14 instances are hand-drawn.

III. EXPERIMENTS AND RESULTS

This section presents a comprehensive analysis of system
performance. The analysis has been conducted by approaching
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this as a binary classification problem under two classification
scenarios. In this work, these classification scenarios are
characterized as Fault versus Normal Operation and Fault
versus Not Fault.

In the scenario of fault versus normal operation, each binary
classifier is designed to discriminate and identify between
normal operation and a single specific class, categorized as
a fault event. Thus, seven individual uncorrelated classifiers
are required (one for each event representing an anomaly).
Furthermore, all samples from normal operation (event/class
0) are combined to a single unique class, with the samples that
show normal dynamic behavior preceding the given fault class
(initial normal). For the classification scenario of fault versus
not fault, each binary classifier discriminates and identifies
between a single specific fault against everything that does not
belong to that specific fault. This is done by designing seven
uncorrelated classifiers, one for each fault, and combining the
remaining events into a single unique class.

The experiments above have been conducted to achieve
a greater understanding of the system and to acquire more
information about each fault class. Besides, this continues and
contributes to the work of Marins et al. [13], which have shown
that a CBM system can be used to classify the faults, with
binary and multiclass classifiers. This work introduces a new
classification scenario (fault versus not fault). The samples
that belong to the faulty transient and faulty steady states
for each fault are combined to one unique class in the two
classification scenarios described above. In this work, the
model performance is assessed in detail: firstly, by measuring
the overall model performance; secondly, by measuring the
capability to discriminate between normal operation and each
transitional state; and lastly, by individually measuring the
simulated and real instances of the latter two metrics.

A. Experiment 1: Fault versus Normal Operation

This section reviews the experiment characterized as fault
versus normal operation. In this experiment, each classifier is
fit on data from normal operation (class 0) and their respective
fault. The only change in any hyperparameter relates to the
subsampling factor. In this case, fault events with less than
20 real instances apply a subsampling factor of 1 for real
instances. This is with the intent to balance the distribution
ratio, between simulated and real instances. Moreover, the
window sizes related to the feature extraction of each classifier
consist of 900, 400, 1200 samples for classes 1, 2, and 8,
respectively; and, 300 samples for the remaining classes. These
specific window sizes represent the best performance for their
given classifier.

The test results of the 3W dataset for the transitional states
and overall accuracy can be seen in Table I. In this table,
’Transitional ACC’ denotes the overall accuracy for the tran-
sitional states, i.e., initial normal (normal operation preceding
an anomaly event), faulty transient state, and faulty steady-
state. Additionally, ’Overall ACC’ represents the accuracy for
all transitional states combined with samples from class 0.
The reason for showing the overall and transitional accuracy

separately is because approximately 30% of all instances from
the complete 3W dataset belongs to Class 0. Thus, the overall
accuracy is not sufficient alone and may misrepresent the
performance of the classifier. More details can be seen in Table
II, which shows real and simulated test results for class 0 and
each transitional state.

TABLE I: TEST RESULTS OF CLASSIFICATION SCE-
NARIO FAULT VERSUS NORMAL OPERATION.

Fault Window
Size Type Transitional

ACC
Overall
ACC

Class 1 900 Real 0.214 0.989
Simulated 0.999 0.999

Class 2 400 Real 0.986 0.999
Simulated 0.996 0.996

Class 3 300 Real 0.998 0.999
Simulated 0.998 0.998

Class 4 300 Real 0.967 0.986
Simulated - -

Class 5 300 Real 0.888 0.992
Simulated 0.993 0.993

Class 6 300 Real 0.972 0.999
Simulated 0.951 0.951

Class 8 1200 Real 0.892 0.999
Simulated 0.956 0.956

TABLE II: TEST RESULTS OF CLASSIFICATION SCE-
NARIO FAULT VERSUS NORMAL OPERATION.

Fault Window
Size Type Normal

(Class 0)
Initial

Normal
Transient

State
Steady
State

Class 1 900 Real 1.000 0.779 0.098 0.011
Simulated - 0.999 0.999 0.999

Class 2 400 Real 0.999 0.952 0.996 1.000
Simulated - 1.000 0.970 1.000

Class 3 300 Real 0.999 - - 0.998
Simulated - - - 0.998

Class 4 300 Real 0.990 - - 0.967
Simulated - - - -

Class 5 300 Real 0.999 0.514 0.904 -
Simulated - 0.134 0.999 1.000

Class 6 300 Real 0.999 0.981 0.882 1.000
Simulated - 0.876 0.955 0.956

Class 8 1200 Real 0.999 0.000 1.000 1.000
Simulated - 0.258 0.996 0.999

The imbalance of 3W dataset reflects on the performance
of each classifier. This is evident in the case of classes 1
and 8, where both classifiers seem to struggle with real data.
These two classes have less than 10 real instances combined,
in contrast to classes 2, 3, and 4, which have 22, 34, and 344
instances, respectively. One can also observe that class 5 has
difficulties correctly classifying samples of the initial state.
This applies to the case of both real and simulated instances.
On the other hand, the classifier achieves satisfactory accuracy
in correctly classifying samples belonging to normal operation
and the transient state. In this case, the results show an
accuracy of over 90% for the latter two events.

1) System Efficiency and Reliability Evaluation: This sec-
tion reviews the system in a real-world scenario as a CBM
system. To be a reliable CBM system, the system must have
the capability to detect any event as soon as possible. To assess
how reliable and efficient the system is to anticipate incoming
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failures, three time-intervals have been applied. These time
intervals (in seconds) are defined as following: how fast each
classifier is to detect the transient state (time of detection); how
many consecutive correct predictions are made after the time
of detection; and how long time there is to take action before
the incoming failure occurs, respectively denoted as t1, t2, and
t3. Table III shows the average values of the time-intervals t1,
t2, and t3 for each classifier and their respective faults, where
each number designated in parenthesis is the percentage of
the corresponding time-interval concerning the transient state.
Classes 0, 3, and 4 are not included as their transient phase is
absent in the 3W dataset.

TABLE III: EFFICIENCY AND RELIABILITY ANALYSIS
OF FAULT VERSUS NORMAL OPERATION.

Fault Type t1 [s] t2 [s] t3 [s]

Class 1 Real 2463.0 (11.73%) 2710.0 (12.90%) 18530.0 (88.26%)
Class 2 Real 15.5 (0.33%) 4700.1 (99.67%) 4700.1 (99.67%)
Class 5 Real 564.2 (1.06%) 41879.0 (78.87%) 52533.7 (98.93%)
Class 6 Real 73.5 (11.87%) 546.0 (88.20%) 546.0 (88.20%)
Class 8 Real 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)

B. Experiment 2: Fault versus Not Fault
In the the classification scenario fault versus not fault, each

classifier is fit on data from all classes. The same settings
from the latter classification scenario apply in this case, with
regards to hyperparameter selection and training routine. As
for the training routine, the subsampling factor had to be
increased, since each classifier is fit on data from every class.
Each classifier under training applied a subsampling factor of
100 for instances that did not belong to their given class (Not
Fault). Also, real instances belonging to their given class were
not subsampled, but simulated instances applied a subsampling
factor of 10.

The test results of this classification scenario of the 3W
dataset can be seen in Tables IV and V, where empty entries
indicate the absence of data for that given fault type. The clas-
sification method shows satisfactory results with the classifiers
of classes 2, 3, and 4. These classes are correctly classified
with an average accuracy of over 90% of Class 0 and all
transitional states when it comes to real instances. Simulated
instances of these classes indicate to be harder to predict,
where the accuracy drops as low as 80% for the transient state
and 93% for the steady-state for classes 2 and 3, respectively.

1) System Efficiency and Reliability Evaluation: The as-
sessment of each classifier based on the time-intervals t1, t2,
and t3 can be seen in Table VI, where the time-intervals are
given in seconds and the designated numbers in parenthesis are
the percentage of the corresponding time-interval concerning
the total transient state. Besides Class 5, the system shows
similar results when compared to Experiment 1. In particular,
Class 5 performs poorly in the transitional states t1 and t2 due
to the appearance of inconsistent classification behavior.

IV. DISCUSSION

The results achieved from Experiment 1 and Experiment
2 show that the system is capable of correctly classifying

TABLE IV: TEST RESULTS OF CLASSIFICATION SCE-
NARIO FAULT VERSUS NOT FAULT.

Fault Window
Size Type Transitional

ACC
Overall
ACC

Class 1 900 Real 0.213 0.992
Simulated 0.999 0.999

Class 2 400 Real 0.991 0.999
Simulated 0.862 0.997

Class 3 300 Real 0.995 0.980
Simulated 0.936 0.990

Class 4 300 Real 0.977 0.985
Simulated - 1.000

Class 5 300 Real 0.373 0.966
Simulated 0.993 0.996

Class 6 300 Real 0.868 0.999
Simulated 0.925 0.987

Class 8 1200 Real 0.892 0.999
Simulated 0.972 0.982

TABLE V: TEST RESULTS OF CLASSIFICATION SCE-
NARIO FAULT VERSUS NOT FAULT.

Fault Window
Size Type Not Fault

(Class 0)
Initial

Normal
Transient

State
Steady
State

Class 1 900 Real 1.000 0.779 0.098 0.001
Simulated 0.999 0.999 0.999 0.999

Class 2 400 Real 0.999 0.970 0.998 1.000
Simulated 0.999 1.000 0.821 0.848

Class 3 300 Real 0.979 - - 0.995
Simulated 0.998 - - 0.936

Class 4 300 Real 0.987 - - 0.977
Simulated 1.000 - - -

Class 5 300 Real 0.999 0.396 0.372 -
Simulated 0.997 0.103 0.999 0.999

Class 6 300 Real 1.000 0.997 0.384 0.150
Simulated 0.999 0.813 0.936 0.930

Class 8 1200 Real 0.999 0.000 1.000 1.000
Simulated 0.983 0.939 0.961 0.999

faults but also capable of predicting incoming faults from
their transient state. These incoming faults are often predicted
in an early stage, such that it is possible to take necessary
preventive action. The amount of data at disposal for each
class tends to reflect the system performance for the given
classifier. This applies to both classification methods, and in
particular, to real instances of classes 1 and 8. Neither of the
two classification methods can correctly classify any sample
related to the initial normal state of Class 8. Classes 2, 3,
and 4 achieves great accuracy for their respective transitional
states and Class 0, for both classification scenarios. On the
other hand, the fault versus normal classification scenario
accomplishes better results for classes 5 and 6 compared to
its counterpart, fault versus not fault.

Comparing these results with the work of Marins et al.
[13], it is noticeable that their binary classification method
achieved better results when classifying the initial normal state
for each class on real instances. However, when comparing
their multiclass classification method, the method proposed in
this work for each class exhibits higher accuracy in average
on real instances over all transitional states for most classes.
This can be seen in the results of the classification scenario
’fault versus normal’.
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TABLE VI: EFFICIENCY AND RELIABILITY ANALYSIS
OF FAULT VERSUS NOT FAULT.

Fault Type t1 [s] t2 [s] t3 [s]

Class 1 Real 2463.0 (11.73%) 2707.0 (12.90%) 18530.0 (88.26%)
Class 2 Real 9.3 (0.19%) 4706.4 (99.81%) 4706.4 (99.81%)
Class 5 Real 1.0 (0.00%) 822.3 (1.55%) 53097.3 (99.9%)
Class 6 Real 318.5 (51.5%) 237.5 (38.4%) 300.5(48.54%)
Class 8 Real 1.0 (0.00%) 20078.0 (100%) 20078.0 (100%)

A. Inconsistency

A limitations of this system is tied to the observed fluctu-
ations in the classifications of Classes 4 and 5. To mitigate
that, we suggest the use of a simple filter to smoothen
these fluctuations that occur during inconsistent classifications,
referred to as “time-consistency filter”. The filter strides over
the system classifications using a window and removes the
class with the fewest output classifications in that window.
Figure 3 shows an example of a real instance of Class 4,
along with the system classifications and the outputs of the
time-consistency filter. Here, the purple marker shows the
output of the filter. In this case, the window size of the time-
consistency filter is 120 samples. The filter is unable to prevent
all classification oscillations, but it does smoothen out the
majority of them. The filtering process may be more efficient
if the window size is increased, but this also increases the
delay, which is undesirable.

Fig. 3: Example of a real instance of Class 4 along with
the inconsistent system classifications and with the time-
consistency filter. Event values ’1’ and ’0’ denote normal and
faulty states.

V. CONCLUSION AND FUTURE WORK

This work develops a CBM system to detect and identify
real abnormal events in offshore oil wells. The CBM system
is tested in two different classification scenarios. Either case
includes preprocessing of raw-sensor data, feature extraction,
dimensionality reduction, and classification using the random
forest algorithm. However, analysis of the results indicates
that inconsistent classifications may occur for Classes 4 and 5.
These inconsistent classifications occur predominantly during

faulty states. That means that the system would still be able
to detect the fault, which is a positive feature.

As future work, we would suggest further investigation of
additional features, e.g, other second-order features that have
not been considered at this stage of this work. It is also
interesting to explore other promising machine learning clas-
sification algorithms such as the XGBoost algorithm, which
attempts to exploit the advantages of Random Forest and
gradient boosting, and the Light Gradient Boosting Machine
(LGBM), which has a similar architecture to the Random
Forest and the XGBoosts algorithms.
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