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Abstract— The identification of herbicide residues on crop 

foliage is necessary to make crop-management decisions for 

weed pest control and to monitor pesticide residue levels on 

food crops. Electronic-nose (e-nose) methods were tested as a 

cheaper, alternative means of discriminating between 

herbicide residue types (compared with conventional 

chromatography methods), by detection of headspace volatiles 

released from inert surfaces. Detection methods were 

developed for a conducting polymer (CP)-type electronic nose 

device, the Aromascan A32S, to identify and discriminate 

among eight herbicide types from five different herbicide 

organic chemical classes including: chlorophenoxy acids, 

cyclohexenones, dinitroanilines, organoarsenics, and 

phosphonoglycines. A herbicide-specific aroma signature 

library was developed from known herbicide residues. The 

A32S e-nose effectively distinguished between eight different 

herbicide residues, correctly identifying them at frequencies 

ranging from 81-98%. The distribution of aroma class 

components, based on artificial neural net (ANN) training and 

analysis, indicated the percentage membership of aroma 

classes shared by herbicide types. Principal component 

analysis (PCA) provided indications of the relatedness of 

herbicide types based on sensor array response patterns 

(aroma profiles) of individual herbicides. PCA generated 

precise statistical values (quality factors of significance) as 

numerical indications of chemical relatedness between 

herbicides based on pairwise comparisons of headspace 

volatiles from individual herbicide types. The potential 

applications, advantages and disadvantages of e-nose methods 

(compared to current chromatographic methods) for the 

detection and identification of herbicide residues on crop 

surfaces in agronomic fields are discussed. 

Keywords- artifician olfaction; electronic aroma detection; e-

nose; pesticide residue detection; volatile organic compounds. 

I. INTRODUCTION 

The presence of pesticide residues on food crops is a 
major health concern especially on fresh fruits and leafy 
vegetables. Environmental regulations specify pesticide 
residue levels that are allowed on food products in 
commercial markets. Consequently, there is a strong need to 
determine pre-harvest and postharvest pesticide residue 
levels on the surfaces of plant products using rapid chemical-
detection methods to effectively monitor and enforce 
pesticide residue regulatory requirements for plant products 
prior to fresh food introductions into commercial markets. 

Electronic chemical-detection methods are well suited for 
rapid detections of pesticide residue levels needed for 
making pesticide-management decisions and for monitoring 
pesticide levels on food crops and produce [1]. Portable 
electronic-nose (e-nose) devices are useful for these 
applications due to rapid detections, high reproducibility, 
accurate determinations, and high sensitivity to volatile 
organic compounds (VOCs), such as commercial pesticides. 
E-nose sensors produce unique electronic signature patterns 
in response to VOCs released from chemical sources [2]-[4]. 
Electronic noses, unlike other analytical instruments, are 
capable of identifying VOCs without having to identify 
individual chemical compounds present in volatile mixtures 
[5]-[7]. Many different types of e-nose sensors have been 
developed including optical sensors [8], metal oxides [9] 
[10], semi-conducting polymers [11]-[13], and conducting 
polymers [14]-[16] for different applications. The broad 
agricultural and food industries have utilized electronic 
aroma detection (EAD) technologies to evaluate food quality 
and freshness [17]-[21], detect industrial wastes [22][23], 
diagnose plant diseases [24], and many other applications 
[25][26], including the detection of environmentally 
hazardous agricultural chemicals [27]-[29]. 

The Aromascan A32S e-nose, selected for efficacy 
testing in this pilot study, currently is commercially available 
only for specialized applications following a recent 
instrument redesign after the current study was completed. 
This instrument contains 32 conducting polymer (CP) 
sensors in the sensor array that respond to changes in 
electrical resistance (ER) when pesticide molecules adsorb to 
the surface of each sensor. The resulting combined-sensor 
output from the sensor array generates a unique aroma 
signature pattern that is specific to the gaseous volatile 
organic compounds (VOCs) present in the headspace above 
the sample analyte. Alternative e-nose technologies, such as 
carbon nanofiber (CN) and metal oxide semiconductor 
(MOS) types, also operate by measuring ER, but other e-
nose types such as quartz crystal microbalance (QCM) and 
surface acoustic wave (SAW) operate by measuring mass 
changes or frequency shifts associated with gas-analyte 
adsorption to sensors [30]. 

The objectives of this study were to 1) determine the 
capability and effectiveness of the Aromascan A32S e-nose 
to discriminate between eight different herbicide residue 
types in vitro based on analysis of headspace volatiles, 2) 
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assess the potential usefulness of these methods for making 
crop-management decisions involving detections of 
herbicide types on crop foliage for pest-control applications, 
and 3) a minor objective to determine whether principal 
component analysis (PCA) of herbicide e-nose aroma 
patterns (from the sensor array) can provide indications of 
chemical relatedness between herbicide types based on 
aroma characteristics and interactions with the sensor array. 
Six herbicide chemical classes were tested with 
representatives of each class including organoarsenics 
(cacodylic acid and MSMA), dinitroanilines (pendimethalin 
and trifluralin), a phosphoglycine (glyphosate), a cyclo- 
hexenone derivative (sethoxydim), a chlorophenoxy acid 
(2,4-D), and a chlorinated pyridine oxamic acid (triclopyr).  

This paper is composed of an introduction to pesticide 
residue detection on crops in Section 1, followed by e-nose 
experimental methods used in Section 2, describing the 
specific materials and methods used in associated with e-
nose run and analytical procedures, followed by results in 
Section 3 that provide details of experimental research 
results and findings for CP e-nose analyses of herbicide 
residues, including sensor outputs, aroma map, and QF 
analysis of PCA data. Discussion and conclusions (Section 
4) are based on e-nose experimental results, summarizing 
significant findings and efficacy compared with conventional 
chromatographic methods of pesticide residue identification. 

II. MATERIALS AND METHODS 

A. Herbicide residue samples collected for analysis 

Eight herbicides, having different chemical (pesticide) 
classes and modes of actions, were selected for this study. 
The herbicides analyzed via conductive polymer analysis 
(CPA) using an electronic-nose (e-nose), a type of electronic 
aroma detection (EAD) technology [24], included cacodylic 
acid (CA), dichlorophenoxy acetic acid (2,4-D), glyphosate 
(GL), pendimethalin (PM), sethoxydim (SE), monosodium 
acid methane arsonate (MA), triclopyr (TC), and trifluralin 
(TF). All herbicides were obtained in formulations that were 
commercially available from manufacturers, rather than from 
technical grade preparations to facilitate practical efficacy 
testing of formulations actually used in weed-control 
applications for agronomic crop production.  

B. Sample preparation and prerun procedures 

Small aliquots (10 µl) of each herbicide were analyzed 
separately at a standard concentration of 20 ppm by placing 
them into 14.8 cm3 uncapped glass vials inserted into a 500 
ml Pyrex glass sampling bottle no. 1395 (Corning Inc., 
Corning, NY) fitted with reference air, sampling, and 
exhaust ports on a polypropylene bottle cap. The sensitivity 
of CP e-noses range from 0.1 to 100 ppm [30]. Reference air 
entered the sampling bottle through a 3 mm polypropylene 
tube extending to just above the bottom of the sampling 
bottle. The sampling bottle was held in the sampling 
chamber at a constant air temperature of 25 °C and purged 
with moisture-conditioned reference air for 2 min prior to 
building headspace. The sampling bottle was sealed and 
volatiles from each herbicide analyte were allowed to build 

headspace and equilibrate for 30 min prior to each run.  
Prerun tests were performed as needed to determine sample 
air relative humidity compared with that of reference air. 
Reference air was set at 4% relative humidity at 25 °C. The 
sampling bottle cap and exhaust port were opened between 
runs to purge the previous sample with conditioned reference 
air. A reference library (recognition file) for pesticide types 
was constructed using artificial neural net training by 
defining aroma classes using reference databases of known 
pesticides. This recognition file was used to identify 
unknown samples. 

C.  Instrument configuration and run parameters 

Electronic-nose analyses of herbicides were conducted 
with an Aromascan A32S (Osmetech Inc., Wobum, MA) 
intrinsically conducting polymer (ICP) e-nose instrument 
with 32 sensors in the sensor array consisting of polypyrrole, 
polyanaline, and polythiophene sensor types with 15 volts 
across sensor paths. Eight sensors, (including sensors 11, 12, 
21-24, 31 and 32) that did not respond or did not contribute 
to the discrimination of pesticide volatiles, were turned off. 
The response sensitivities of individual sensors, measured as 
percent changes in electrical resistance response across 
sensor paths relative to base resistance (%∆R/Rbase), varied 
with the type of polymer used in the sensor matrix coating, 
the type of proprietary ring substitutions used to modify its 
conductive properties, and the type of metal ions used to 
dope the matrix to improve and modulate sensor response. 
Detailed analyses indicating relative analyte sensitivities for 
individual sensors in the array to various analyte types 
(representative of different chemical classes) were reported 
previously [24]. The block temperature of the sensor array 
was maintained at 30 °C. Reference air was preconditioned 
by passing it sequentially through a carbon filter, silica gel 
beads, inline filter, and Hepa filter to remove organic 
compounds, moisture, solid particulates, and microbes, 
respectively (to prevent interference of these factors), prior 
to humidity control and introduction into the sampling bottle. 
The flow rate of sampled reference air was maintained at 702 
cm3 min-1 with a calibrated ADM 3000 flow meter (Agilent 
Technologies, Wilmington, DE). Sensor surfaces were 
purged between runs using a 2% isopropanol wash. The 
instrument was interfaced with a personal computer via an 
RS232 cable and controlled with Aromascan Version 3.51 
software. The instrument plumbing (reference air flow route 
through the instrument) was altered for static sampling of the 
headspace by allowing air flow, maintained at 605 cm3 min-
1 flow rate, to release out of the external vent port of the 
instrument during analytical runs, closing the exhaust port on 
the sampling bottle so that headspace volatiles were taken by 
vacuum suction from a homogeneous static air mass within 
the sampling bottle to minimize headspace-dilution effects.  

D. Data acquisition parameters and run schedules 

Data from the sensor array were collected at 1 s intervals 
using a 0.2 detection threshold (y-units), a 15–20 y-max 
graph scale, and with a pattern average of five data samples 
taken per run during data acquisition. A uniform run 
schedule was used consisting of reference air 20 s, sampling 
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time 90 s, and wash 20 s, followed by 90 s of reference air 
for a total run time of 220 s. A 2 min reference air purge was 
completed between runs after each sample was removed 
from the sampling bottle.  

E. Construction of reference libraries and validation 

An e-nose aroma reference library was constructed from 
the eight herbicides included in this study. Database files 
were linked to specific aroma classes defining each herbicide 
type. All databases were constructed from sensor output data 
collected during a 20 s interval, 85-105 s into the run cycle, 
immediately prior to closing of the reference air valve at the 
end of each run. The recognition network options (neural net 
training parameters) used for each training session were: 
training threshold = 0.60, recognition threshold = 0.60, 
number of elements allowed in error = 5, learning rate = 
0.10, momentum = 0.60, error goal = 0.010 (P = 0.01), 
hidden nodes = 5, maximum iterations (epochs) = 10,000, 
using normalized input data, not actual intensity data. A 
typical neural net training required 2–35 min, depending on 
database size, using an IBM-compatible personal computer 
with a minimum of 64 mb of RAM and 350 MHz run speed. 
Neural net trainings were validated by examining training 
results to compare individual database files for similarity 
matches to each specific aroma class by test-assigned aroma 
class distributions among related aroma classes included in 
each library. The specific detailed analytical methods used 
for identification of unknowns, data processing, and 
statistical determinations followed the procedures and 
specifications indicated by Wilson et al. [24]. 

F. Principal component analysis 

Detailed pairwise comparisons of herbicide types (aroma 
classes) were determined using principal component analysis 
(PCA) algorithms provided by the Aromascan 3.51 software. 
Three-dimensional PCA was used to distinguish between 
herbicide headspace volatiles. PCA mapping parameters 
were: iterations = 30, units in Eigen values (%), and use of 
normalized input data. PCA generated a quality factor 
(statistical significance value) for each aroma comparison. 
The relatedness (distance between data clusters) of mapped 
aroma profiles between herbicide types provided indications 
of similarity in aroma elements and chemical characteristics 
as well as interactions with the sensor array. 

III. RESULTS 

A.  Identification of herbicide analytes 

The Aromascan A32S electronic nose provided 
consistent correct identifications for all eight herbicide 
residue types analyzed based on differences in sensor-array 
responses to headspace volatiles (Table 1). Individual sensor 
responses to each herbicide varied widely within the 3 to 8 
percent sensor-intensity range (% change in sensor response 
relative to base resistance) with good precision as indicated 
by low standard deviations (SD) of mean normalized values. 
Sensors 25, 26, and 30 had no responses to some herbicides. 
In particular, sensor 26 could not detect any of the 
herbicides, whereas sensors 25 and 30 were unable to detect 

four herbicides including sethoxydim, monosodium acid 
methane arsonate , triclopyr and trifluralin. 

TABLE I.  SENSOR OUTPUT RESPONSE PATTERNS FROM THE A32S E-NOSE 

SENSOR ARRAY DERIVED FROM EIGHT HERBICIDE RESIDUE TYPES 

E-nose                  Herbicide residue sensor responsesa 

Sensor CA 2,4-D GL PM SE MS TC TF 

1 4.76 4.22 5.16 5.05 3.54 4.75 6.87 3.97 

2 4.31 3.87 4.70 4.60 3.15 4.32 6.20 3.59 

3 4.92 4.49 5.35 5.21 3.74 5.02 7.08 4.22 

4 2.34 2.46 2.53 2.84 2.96 2.60 3.57 4.27 

5 2.34 2.39 2.53 2.86 2.93 2.59 3.56 4.21 

6 2.34 2.45 2.53 2.84 2.98 2.61 3.58 4.30 

7 5.19 5.34 5.31 4.88 4.83 5.83 6.84 4.64 

8 5.25 5.12 5.40 5.11 4.74 5.61 6.65 4.33 

9 4.47 4.83 4.42 4.07 4.75 4.79 5.33 3.86 

10 3.84 4.60 3.80 3.38 5.39 5.04 5.19 4.30 

13 3.54 3.66 3.43 3.37 4.67 3.89 3.77 4.67 

14 3.30 3.26 3.23 3.15 4.21 3.44 3.79 4.38 

15 3.61 3.98 3.57 3.33 4.65 4.14 4.27 4.52 

16 3.36 3.49 3.34 3.28 4.50 3.65 3.80 4.64 

17 4.59 4.49 4.06 4.36 5.65 5.27 0.42 5.15 

18 4.74 4.57 4.30 4.58 5.70 5.30 0.88 5.17 

19 4.45 4.32 4.08 4.37 5.31 5.09 0.94 4.91 

20 3.49 4.21 2.53 3.50 6.55 3.71 -2.51 5.40 

25 5.38 5.16 5.63 5.78 NR NR NR NR 

26 NR NR NR NR NR NR NR NR 

27 6.45 6.71 6.75 5.85 6.82 8.11 8.47 6.98 

28 6.38 6.21 6.58 6.01 6.63 7.49 8.27 6.60 

29 6.21 5.78 6.47 6.50 6.31 6.76 8.00 5.91 

30 4.76 4.40 4.32 5.08 NR NR NR NR 

a. Values are mean sensor response intensities; herbicide type abbrevia-
tions: cacodylic acid (CA), dichlorophenoxy acetic acid (2,4-D), glyphosate 

(GL), pendimethalin (PM), sethoxydim (SE), monosodium acid methane 

arsonate (MA), triclopyr (TC), and trifluralin (TF). 

Normalized output values from individual sensors were 
significantly different between herbicides types at the P < 
0.001 level of significance. The resulting electronic aroma 
signature patterns (EASPs) or aroma profiles for individual 
herbicides, composed of the collective outputs of all the 
sensors in the sensor array, were different and unique for 
each herbicide type. The high level of significant differences 
between sensor outputs for all of the sensors (in each aroma 
profile) provided a highly unique electronic signature to 
identify and discriminate herbicide residue types on inert 
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surfaces (in vitro) without the presence of plant volatiles 
when on crop surfaces of the same plant species.  

The instrument correctly identified individual herbicide 

residues at frequencies ranging from 81-98% among all 

herbicide residue types tested. None of the herbicides from 

any of the six chemical classes was incorrectly identified. 

Also, no herbicide from the five chemical classes was 

unsuccessfully identified or classified as unknown due to 

variations in aroma signature patterns. All of the herbicides 

were clearly assigned an aroma profile with a majority 

aroma class present in the reference library. None of the 

herbicides determinations were found to be incorrect or 

ambiguous, defined as determinations that resulted in a 

herbicide residue type being assigned to a different majority 

aroma class from separate analyses of sample replications. 

B. Discrimination between herbicide residues 

 The discrimination of herbicide residue types was further 

evaluated by determining the aroma class distributions of 

principal components of VOCs in headspace volatiles of the 

herbicide types (Table 2). Aroma class distributions indicate 

percentage components in common between herbicides 

residue types. 

 The occurrence of secondary aroma elements within the 

aroma class distribution provided some indications of 

chemical relatedness between herbicides. Cacodylic acid 

residues had a relatively large proportion of secondary 

aroma elements in common with pendimethalin (16.6%) and 

sethoxydim (11.5%). Similarly, glyphosate shared 

secondary elements of 12.5% with MSMA, while 

pendimethalin shared secondary elements of 11.9% with 

trifluralin. The proportion of secondary aroma elements 

attributed to aroma classes besides the principal aroma 

elements ranged from <1% for MSMA to highs of >16% for 

cacodylic acid. 

TABLE II.  DISTRIBUTION OF ELECTRONIC-NOSE AROMA CLASS 

COMPONENTS AMONG EIGHT HERBICIDE RESIDUE TYPES 

 
                        Aroma class distribution (%)a 

                             Herbicide residues types 

Herbicide CA 
2,4-

D 
GL PM SE MS TC TF 

CA 88.5   9.4   4.2 16.6 11.5  —  —  — 

2,4-D  9.6 92.8 —  —   2.9 12.5  —  — 

GL 4.7  3.4 87.9  —  —   5.2  —  — 

PM 2.6 —   6.5 94.4   2.3  —  — 11.0 

SE 7.2 — — — 95.0  —  —   2.9 

MS  —  0.7   2.2 —   6.1 94.3   2.8   0.6 

TC 2.9 —   2.5  1.5  —   1.4 98.4 — 

TF  —  3.3 —  5.9  —   4.6  — 98.7 

 
a. Values indicate mean percent aroma class distributions indicated for each 
herbicide type; read from left to right (by row), not top to bottom. Herbicide 
abbreviations correspond to those given in the materials and methods section 
(herbicide residue sample types) and in Table I. 

 The number of principal and secondary aroma elements 

present in the aroma profiles of individual herbicide 

residues ranged from three in sethoxydim to six in MSMA, 

with the majority having four to five total aroma elements in 

common between herbicide residues. The total percentage 

of secondary aroma elements in common between herbicide 

residues contributed to ≤ 25.0% of the aroma class 

distribution for most herbicide types with cacodylic acid 

being the exception (41.7%). The lowest total secondary 

elements in common with other herbicides occurred for 

trichlopyr (8.3%); while intermediate totals were recorded 

for sethoxydim (10.1%), MSMA (12.4%), glyphosate 

(13.3%), trifluralin (13.8%) and higher totals for 

pendimethalin (22.4%) and 2,4-D (25.0%). 

C. Principal component analysis 

Analysis of eight herbicide residues using PCA by 
pairwise comparisons of headspace volatiles (in all possible 
combinations) provided greater details of possible chemical 
relatedness and differences between individual herbicide 
types based on sensor response patterns (aroma profiles). 
The relatedness among the eight herbicide types varied 
greatly based on Euclidean distance as indicated in Table 3. 
The larger the QF value, the greater the significant 
differences for pairwise herbicide comparisons. 

TABLE III.  PAIRWISE-COMPARISONS BETWEEN AROMA PROFILES OF 

EIGHT HERBICIDE RESIDUE TYPES BASED ON 3-DIMENSIONAL PCA 

Aroma 

class 

Aroma 

class  
QF valuea 

Aroma 

class 

Aroma 

class 
QF valuea 

CA 2,4-D   1.4 2,4-D GL 1.6 

 GL   9.5*  PM 1.8 

 PM   7.1*  SE 11.5* 

 SE 35.6**  MS 69.2*** 

 MS 95.5***  TC 17.7* 

 TC 88.2***  TF 15.0* 

 TF 34.4** GL PM 11.2* 

GL SE 3.8* PM SE 22.0** 

 MS >300****  MS 231.6**** 

 TC 62.3***  TC >300**** 

 TF 15.1**  TF >300**** 

MS TC 15.3** SE MS 43.3** 

 TF 3.3*  TC 42.2** 

TC TF 31.2**  TF 7.1* 

 
 a. Statistical analysis symbols for quality factor (QF) significant 
difference levels between aroma classes were as follows: * = P < 0.05; ** = 

P < 0.01; *** = P < 0.001; **** = P < 0.0001. The percentages of the total 

variance, accounting for the variability explained by each orthogonal 
principal component (PC), were as follows: PC 1 = 91.3%; PC 2 = 7.7%. 

 

 QF values ranged from 1.4 between cacodylic acid and 

2,4-D (indicating close relatedness) to >300 between 

glyphosate and MSMA, and between pendimethalin and 

both triclopyr and trifluralin, indicating low relatedness 

between pairs. The small QF values for 2,4-D compared 
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with glyphosate (1.6) and pendimethalin (1.8) indicated 

close relationships based on aroma characteristics even 

though these herbicides are from different chemical classes. 

Cacodylic acid vs. MSMA (both organoarsenics), had a high 

QF value (95.5) suggesting low relatedness in aroma 

profiles. The comparison of the two dinitroanilines, 

pendimethalin and trifluralin, also resulted in a high QF 

value (>300) despite their chemical relatedness. Significant 

differences in R-groups may account for aroma profile 

differences between herbicides in the same chemical class. 

The relatedness between the aroma profiles of eight 

herbicide residue types, based on 3-dimensional PCA, was 

graphed as an aroma map (Figure 1). 

 
Figure 1.  E-nose aroma map showing the chemical relatedness between 

eight herbicide residue types using Principal Component Analysis (PCA). 

The percentages of the total variance for this analysis, 

accounting for the variability explained by each orthogonal 

principal component (PC), are as follows: PC 1 = 91.3%; 

PC 2 = 7.7%; and PC 3 < 0.5%, representing the x-, y-, and 

z-axis of the aroma map, respectively. A high proportion 

(99.0%) of the variation was explained by the first two 

principal components (PC 1 and PC 2). Data points of each 

herbicide type clustered closely on the aroma map with the 

exception of trifluralin. As expected, data points of 2,4-D 

were closely clustered with those of cacodylic acid, 

indicating a very close relationship based on aroma 

characteristics. 

IV. DISCUSSION AND CONCLUSIONS 

Electronic-nose devices previously have been used to 
detect pesticides including fungicides, insecticides, and 
miticides [1][31]. Déjous et al. [32] used a surface acoustic 
wave (SAW) e-nose to detect organophosphates in ambient 
air. Literature on e-nose detection of pesticides residues on 
fruits, crops, and other plant surfaces is quite limited [33]. E-
nose aroma signature libraries developed for detection of 
pesticides on crop and plant surfaces for field use must 
necessarily include the specific types of VOCs that are 

characteristic of those released from the types of plant and 
parts upon which pesticide residues are being detected.  
Previous research has demonstrated the capability of e-noses 
to discriminate between VOCs from different plant species 
and various tissue types from woody plants [34]-[36], and in 
the crop environment [37]-[39]. 

Further research on the e-nose detection of pesticides 
residues on plant surfaces, following efficacy testing in vitro 
in the present pilot study, will be required to determine 
efficacy for field crops and fresh produce subject to 
Environmental Protection Agency (EPA) pesticide residue 
regulations. E-nose data of crop pesticide residues are 
primarily qualitative and only semi-quantitative, a possible 
limitation for EPA residue testing. The detection limit for 
CP-type e-nose devices is approximately 0.1 ppm, which is 
low enough for pesticide residue testing in most countries. 
Pesticide residue concentrations do not affect aroma 
signature patterns, but only intensity of sensor responses. 
Analyses of data indicating unique aroma signature patterns, 
based on output results from the sensor array of the A32S CP 
electronic-nose, provided effective discriminations between 
headspace volatiles from herbicide residues. Discriminations 
and correct identification of herbicide sample types in vitro 
were determined at high levels of statistical confidence.  

The discrimination of pesticide residues on crop plants is 
an important function in crop management to assure that the 
appropriate active ingredient has been applied to a crop for 
pest control and harvesting operations. Herbicides are used 
for weed control and as chemical defoliants to facilitate crop 
harvesting operations. Thus, detection of herbicide residues 
is necessary to confirm application of appropriate chemicals 
to achieve desired results for specific crops. 

The use of e-nose devices for pesticide residue detection 
has several advantages over conventional methods such as 
gas chromatography (GC), liquid chromatography (LC), and 
mass spectrometry (MS). These expensive chemical analysis 
methods require laborious and time-consuming sample 
preparations, solvent extractions, reference standards of each 
pesticide, and costly analytical equipment. By comparison, 
electronic-nose methods do not require expensive sample 
preparations, chemical solvents, or pesticide standards and 
may potentially consist of relatively cheap instruments such 
as handheld portable e-nose devices for field use. 
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