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Abstract—Electrochemical sensors are used in various gas mea-
surement applications and are available for different gases. De-
pending on the application, the sensor might need to be installed
far away from the actual measurement site, requiring the use
of long sampling lines. Examples are portable gas measurement
devices in which remote locations like tanks and chemical reactors
need to be monitored. But also medical applications, where the
sensors cannot be positioned in close vicinity to the patient, are
common like, e.g., the side-stream measurement of breathing
gas. Due to the characteristics of electrochemical sensors and
to the adsorption and desorption behavior of sampling lines for
different gases, the electrical sensor signal may indicate long
response times. In this paper, we propose an on-line signal
processing algorithm which is capable to significantly improve the
performance. After characterizing the dynamic behavior of the
sensor system, a properly designed deconvolution filter is used to
reduce response time and signal noise. Within this article, we also
provide an example of this algorithm for a novel electrochemical
sensor for the measurement of the anesthetic agent propofol in
exhaled air. For this application, the acceleration is prerequisite
for the measurement chain to be of practical use in a clinical
setting. Our goals, to establish a measurement three times faster
than the physiologic parameter might change and to reduce
non-physiological disturbances, were achieved with additional
reserves.

Keywords–deconvolution; electrochemical sensor; propofol; re-
sponse time; noise reduction.

I. INTRODUCTION

Electrochemical sensors [1] are widely used for measuring
gases in various industries, most notably process industry, oil
and gas, but also in medical applications. Various research
and development activities have gone into optimizing the
design, material and electrochemical properties of this type
of gas sensor in order to improve response time, selectivity,
accuracy, precision, minimizing the drift and other adverse
effects. However, a certain delay in the response due to the
diffusion, chemical reaction but also adsorption/desorption is
inherent in any sensor.

Referring to the topics ”Electrochemical Gas Sensors”,
”Signal Conditioning” and ”Signal Processing”, we will dis-
cuss a specific medical application for an electrochemical gas
sensor, but similar techniques may be used in other areas.

After describing the specific application and measurement
chain for the physiological signal considered for the remainder
of this article, we will discuss the design of a deconvolution
filter to accelerate the system response while filtering non-
physiological disturbances. The performance of the filter is
analyzed both theoretically and based on laboratory measure-
ment.

In Section II, the specific application and the experimental
setup are declared. Furthermore, mathematical explanations on
modeling and the design of the algorithm are given. Results
of the signal acceleration and noise reduction are presented
in Section III. At the end, the application of advanced signal
processing is discussed and concluded in Section IV.

II. MATERIAL AND METHODS

A. Specific application

As a practically relevant example, an electrochemical gas
sensor which is used to quantify the concentration of 2,6-
Diisopropylphenol, also known as propofol, is considered [2].
Propofol is applied as an anesthetic agent for humans and
animals. It is intravenously administered in the formulation
of a lipid emulsion. Its volatile characteristics allow detecting
propofol in the breathing gas after injection [3]. During anes-
thesia the exhaled concentration appears in the order of around
20 ppb (parts per billion) [4][5]. As a result, the required
sensitivity and accuracy of the sensor need to be suitable to
ensure a reliable measurement.

When handling substances in such low concentrations,
effects of adsorption and desorption along the measurement
chain have a particularly strong impact. In the case discussed
here, the carrier gas is drawn through a 2.5m long sampling
line from the propofol source which happened to be a gas
cylinder (carrier gas: N2, propofol concentration: 40 ppb±30%
rel. standard deviation). Since the true concentration of one
cylinder lies between 28 ppb and 52 ppb according to the
vendor, the sensitivity of the sensor cannot be stated based
on the actual data. The schematic of the setup is presented in
Figure 1. A sampling flow of 180ml/min is generated with
the help of a pump. Hence, the carrier gas is led through the
sampling line to interact with the sensor.
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Figure 1. Schematic of the experimental setup. The side stream is driven
through the sampling line to pass the electrochemical sensor for detection. A

T-piece connector is used for switching.

The saturation of propofol on the inner surface of the line
leads to a major dynamic delay in time before the electro-
chemical sensor is able to detect the absolute concentration.
Besides the delay caused by the sampling system, the response
characteristics of the electrochemical sensor itself adds further
major delay. It is assumed that these two effects are responsible
for the main delay. Another cause refers to the volume of
the line which the gas has to pass before reaching the sensor
leading to a constant, non-dynamic delay. Considering an inner
tubing diameter of 3.2mm, given flow rate and given length of
the sampling line, a dead time of 5.4 sec is created. However,
5.4 sec are negligible in contrast to the major dynamic delay
reasons. Recorded signals are usually corrupted by noise.
Owing to the pump, to thermal noise within the electronic
components and other effects, all measured values possess a
specific variance. Besides the minimization of the response
time, another objective of the signal processing algorithm
proposed in this article is to increase signal quality in real-time.
We have been aware of the fact that signal acceleration might
lead to over-proportional amplification of non-physiological
disturbances. In the light of the aforesaid, it is mandatory to
seek for this goal.

B. System identification
Any signal processing procedure needs to be tailored to the

specific application. This can be either done heuristically by
following tuning rules or by using a model-based procedure.
In this publication we follow the latter route. System identi-
fication is the necessary first step to identify the underlying
system model.

1) Recording the step response: A step change of propofol
gas was applied in order to excite the measurement system.
Data was recorded using the setup illustrated in Figure 1. At
defined times the propofol-free sampling line was connected
and disconnected to the main stream which contained propofol-
saturated gas of approximately 40 ppb. One standardized cy-

Figure 2. Result of one measurement cycle. Excitation sequence is shown in
green and sensor signal in blue. 90% of the ultimate value is reached within

401 sec after connecting to the main stream.

cle consists of three minutes of recording the baseline with
propofol-free room air, followed by 30 minutes of connection
to the main stream. And finally, the system was purged for
30 minutes with room air by disconnection from the T-piece
connector. In Figure 2, the input excitation is shown in green
and the resulting step response of the sensor system in blue.
Dotted lines indicate the 90% value and the steady state of the
response. In this particular measurement it takes

t90 = 401 sec (1)

to reach 90% of the steady state value.

To quantify the precision of each measurement the signal
to noise ratio (SNR), here defined as

SNR =
amplitude

standard deviation
(2)

is calculated. The amplitude derives from the mean value of
a short time period towards the end of exposure to propofol
gas and is thus equal to the steady state value. The SNR
may be understood as an intra-measurement precision, whereas
the evaluation of a set of multiple measurements leads to the
overall precision of the sensor system. A higher SNR reflects
a better precision. For the measurement shown in Figure 2 the
resulting ratio appears as 367, indicating a rather low noise
situation. Again, the actual noise situation is not the reason for
seeking a better SNR, but the signal acceleration, explained in
what follows, makes it mandatory.

2) Modeling and parameter identification: System identi-
fication can be done using different methods, ranging from
white box modeling based on first-principles with parameters
derived using physically measures to black box modeling,
where no prior knowledge about the model is available. We
will follow the latter approach with two assumptions on the
model structure. The step response from Figure 2 suggests
a first or second order response, without overshoot and no
oscillatory components. A reasonable model structure (second
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order) in the time domain is thus given by

fmodel (t) = k

(
1 + e−

t
T1

Tz − T1

T1 − T2
+ e−

t
T2

Tz − T2

T2 − T1

)
. (3)

Therein k represents the static gain. T1, T2 and Tz characterize
the dynamics of the system and t is set to be the time variable.
By means of the Laplace transformation [6] the same relation-
ship may be stated in the frequency domain as

fmodel (t) c sFmodel (s) (4)

Fmodel (s) = k
Tz

T1 T2

s+ 1
Tz(

s+ 1
T1

)(
s+ 1

T2

) (5)

= k
Tz s+ 1

(T1 s+ 1) (T2 s+ 1)
, (6)

wherein s is defined as the complex angular frequency.
The parameters of this model are computed using an

optimized fitting procedure. With the help of a least squares
method the set of parameters k, Tz , T1 and T2 are determined
which yield the smallest sum of squares error between the
modeled and the actual response. The best values found for
this particular setup are as follows:

k = 1 (7)
Tz = 413.03 sec (8)
T1 = 536.95 sec (9)
T2 = 52.49 sec (10)

In Figure 3 the result of the modeling and parameter identifi-
cation is illustrated. The blue line represents the measurement
as displayed in Figure 2. After finding an appropriate model
structure and reasonable parameters the modeled signal, drawn
in orange, can be calculated. The visual matching indicates
that the fitted curve agrees well with the measurement. The
remaining mismatch is likely to be a result of the inher-
ent non-linearity of different dynamics for rising and falling
concentrations. With a hybrid model including two switching
dynamics for rising and falling signal response respectively the
fitting curve would show a better match, albeit at the price of
mathematical complexity and a non-linear behavior.

C. Design of algorithm
In [7], the physiological lung dynamics regarding the

propofol exchange from blood plasma to breathing gas are
described by a first order differential equation. Its time constant
T , which is defined as the time to reach 63% of the final propo-
fol concentration in the lung due to a sudden change in the
blood plasma propofol level, is estimated using clinical patient
data to be T = 414 sec in mean, approximately corresponding
to a respond time of t90,breath = 952 sec. We expect that a
proper metering for anesthesia monitoring is performed when
the detection happens three times faster than the parameter
might change. Considering this, the sensing system should not
exceed a maximal response time of t90,max = 317 sec for a
clinically relevant measurement of propofol in breath.

As mentioned before, the main issue of the electrochemical
measurement system for propofol is its long response time.
Major causes for this are adsorption/desorption effects in
the sampling system as well as the inherent measurement
dynamics of the electrochemical sensor itself. All of these

elements lead to a delayed response between the propofol
concentration in breath and the signal provided by the sensor
with a typical response time of t90 = 401 sec. Fortunately
in a clinical environment most of the factors determining the
delay are almost constant over time and depend only on the
measurement chain. The delay can thus be compensated by
using linear signal processing. The design of such an algorithm
is the content of this section.

1) Deconvolution: The measured signals ϕ(t) are the re-
sult of the time course of the propofol concentration in the
breathing gas cbreath(t) and fsystem(t), which is meant to be
the unknown response characteristic of the measuring system,

ϕ(t) = fsystem(t) ∗ cbreath(t), (11)

where ∗ denotes the convolution operator.
During a measurement, fmodel(t) (identified in Section

II-B2) and all past values of ϕ(t) are known. The aim is to
compute the original source signal cbreath(t) with these known
information. It is possible to estimate the delayed signal by
inverting the slow dynamic components of the measurement
chain. Mathematically, this means that we need to invert
the effect of the convolution through deconvolution with all
transfer elements between source and electrical signal of the
sensor. Deconvolution is best understood in frequency domain.
Each frequency component is delayed and damped individually
by the measurement chain

Φ(s) = Fsystem(s)Cbreath(s). (12)

The idea of deconvolution is simply to shift and amplify each
frequency component accordingly to reverse this effect. Based
on the model identified in Section II-B2, we can approximate
Cbreath(s) through deconvolution as

Ĉbreath(s) = Φ(s) · inv (Fmodel(s)) (13)

= Fsystem(s)Cbreath(s)
1

Fmodel(s)
, (14)

where Φ(s) denotes the frequency transform of the measured
signal, Fmodel(s) is the model identified in the previous section

Figure 3. Result of the modeling and parameter identification. The measured
time course is displayed in blue and the modeled signal in orange.
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and Ĉbreath(s) provides the estimated propofol concentration.
This procedure, however, is not realizable for a number of
reasons in practical setting requiring real-time computation in a
medical device. First and foremost, the deconvolution equation
(14) as given above cannot be realized, at least not without
modification. Any causal system satisfies the property that its
numerator order is equal or lower than its denominator order.
This translates into the fact that at each point in time we only
measure the next signal value but not its time derivatives.

inv (Fmodel(s)) =
1

Fmodel(s)

=
(T1 s+ 1) (T2 s+ 1)

k (Tz s+ 1)
(15)

Not keeping causality would incorrectly imply that an effect
may appear before its cause.

Another potential issue of a simple inversion is noise. In
reality, (12) can be rewritten as

Φ(s) = Fsystem(s)Cbreath(s) +R(s), (16)

where R(s) denotes the Laplace transform of the noise. The
estimation of Ĉbreath(s) considering the noise term results in

Ĉbreath(s) =
Fsystem(s)Cbreath(s)

Fmodel(s)
+

R(s)

Fmodel(s)
. (17)

Most real systems, including the measurement chain in
question, have a low-pass behavior which dampens high
frequency noise. Inverting the transfer function of such a
system would result in a high-pass behavior which highly
amplifies non-physiological signal components such as noise
and distorts the actual propofol signal. Our aim, to increase
the SNR, addresses this over-proportional amplification of
noise during deconvolution.

2) Causality and noise treatment: One potential solution
to overcome the issues mentioned above is to augment the
deconvolution filter in (17) by a low-pass filter

Ĉbreath(s)︸ ︷︷ ︸
estimation

= Fsystem(s)Cbreath(s)
Ffilter(s)

Fmodel(s)
+

R(s)
Ffilter(s)

Fmodel(s)
(18)

= (Fsystem(s)Cbreath(s) +R(s))
Ffilter(s)

Fmodel(s)
(19)

= Φ(s)︸︷︷︸
measurement

Ffilter(s)

Fmodel(s)︸ ︷︷ ︸
algorithm

. (20)

If the filter order is chosen high enough, the causality of the
overall system is satisfied. Since inv (Fmodel(s)), see Equation
15, has a numerator order of two and a denominator order of
one, a low-pass filter Ffilter(s) with an order of at least one
would therefore fulfill the need for causality.

3) Low-pass filter: Dedicated to the electrochemical mea-
surement system and to the application requirements the fol-
lowing low-pass filter –a second order Butterworth filter [8]–
has shown sufficient performance. Its flatness and linearity in
the pass band and the uncomplicated design are beneficial

in our case. Other types of filtering may be more favorable
depending on the application.

In order to determine a suitable cut-off frequency we
considered the appearing dynamics. The dynamics of propofol
exhalation in breathing gas can be derived from [7][9]. In a
subsequent adjustment procedure our filter parameters have
been fine-tuned during application to obtain a satisfying com-
promise between noise rejection and response time. With the
resulting cut-off angular frequency of

ω = 2π f = 4 · 10−2 rad
sec

(21)

the transfer function of the Butterworth filter is given as

Ffilter =
0.0016 rad2

sec2

s2 + 0.05657 s rad
sec + 0.0016 rad2

sec2
. (22)

4) The resulting algorithm and its software implementation:
As implied in (20), the algorithm for the signal processing is
composed as

Falgorithm(s) =
Ffilter(s)

Fmodel(s)
. (23)

For our particular case, the algorithm results in

Falgorithm(s) =
(T1 s+ 1) (T2 s+ 1)

k (Tz s+ 1)
·

0.0016 rad2
sec2

s2 + 0.05657 s rad
sec + 0.0016 rad2

sec2
(24)

due to the model characterized in Section II-B2 and due to the
filter described in Section II-C3. All poles of Falgorithm(s) are
negative, thus stability is ensured. The continuous frequency
domain is helpful for design matters. But for the implemen-
tation as a real-time capable algorithm few more steps are
required. Since the sensors output is available digitally it exists
of discrete values appearing in a specific rate. Therefore, it is
necessary to transform into the discrete time domain. With the
use of the bilinear transform [10] and the properties of the z-
transform [11] the algorithms output at a certain point in time
can be stated as a sum. (25) depicts a general description.
Therein, y(k) expresses the algorithms output and x(k) the
measured value, while k denotes the discrete time variable.

y(k) =
1

a0
[b0 x(k) + b1 x(k − 1) + ...+ bn x(k − n)−

a1 y(k − 1)− ...− an y(k − n)] (25)

Hence, y(k) is calculated as a linear combination of previ-
ous calculations and measurements, whereas a0...n and b0...n
denote the coefficients characterizing the algorithm.

Applied on Falgorithm of (24), we find a compact descrip-
tion to be implemented in any software as a real-time capable
signal processing algorithm:

y(k) =
1

a0
[b0 x(k) + b1 x(k − 1) + b2 x(k − 2)+

b3 x(k − 3)− a1 y(k − 1)−
a2 y(k − 2)− a3 y(k − 3) ] (26)

After transformation for a sampling rate of 1Hz the coef-
ficients can be found in Table I. The given precisions of
decimal places are required for stability, when the algorithm
is programmed to perform.
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III. RESULTS

Due to the concise description of the algorithm presented
in the previous section it is possible to calculate an accelerated
signal in real-time as well as retrospectively. Further on, results
are presented for a step change of the propofol concentration
as displayed in Figure 2 of Section II-B2 and for repeated
measurements.

In Figure 4, the post-processed signal is illustrated in red.
This example visualizes the improvement possible through
signal processing. In this particular case, the response time
t90 is notably reduced from 401 seconds to 104 seconds. In
Section II-C, the maximal tolerated response time is mentioned
to be t90,max = 317 sec. Therefore, this requirement is fulfilled
with an additional reserve. The secondary objective stated is an
increase of precision. By noise treatment consideration during
the filter design the SNR is enhanced from 367 to remarkably
1482. As the measuring system is afflicted with non-linearity
the algorithm shows a different result for rising and falling
signals. Both overshooting and undershooting lead to higher
(102.3%) and lower (−1.1%) values. However, the error stays
below ±5%, which is an acceptable result compared to the
enhancements in response time and noise reduction.

To express the performance and the repeatability of the
algorithm, repeated measurements were evaluated. The same
setup was used at different times whereas the algorithm was
executed online in real-time. As an example, the results for
three repetitions are displayed in Figure 5. Pairwise-colored
curves denote sensor signals and their related real-time pro-
cessed estimation of the input excitation. It might be that a
drift of the propofol source concentration or of the sensor
sensitivity have occurred during the repetitions. Even though,
the algorithm has performed stable and with expected results.
Summarized, we observe that results are highly reproducible
and that the algorithm performs similarly in real-time as long
as main parameters of the system do not significantly change
and linearity is given for the tolerated concentration range. This
result is valid for the discussed clinical practice and also for
several other applications of electrochemical and other sensors.

IV. DISCUSSION AND CONCLUSION

In various practical applications of electrochemical sensors
a sampling line is required to transport the gas from the
sampling site to the sensor. This together with the dynamics
of the sensor itself might lead to significant delays and
adverse measurement dynamics, rendering the electrochemical
measurement signal useless for the application. To overcome
this obstacle, a solution in form of an accelerating algorithm
is presented.

TABLE I. DISCRETE TIME COEFFICIENTS FOR A 1 HZ-CLOCKED
DECONVOLUTION FILTER

coefficient value

a0 1
a1 -2.9551616730526264
a2 2.9113070363222864
a3 -0.95614323255658584
b0 0
b1 0.060676477761667597
b2 -0.12009490846751848
b3 0.059420561418924996

Figure 4. The result of the signal post-processing is displayed in red, the
sensor signal used for the calculation in blue.

In this article, we have demonstrated that the application
of advanced signal processing can help to optimize the per-
formance of electrochemical measurement systems with long
sampling lines. For the example of an electrochemical propofol
sensor, the response time could significantly be reduced by a
factor of 9.2 while the SNR could be increased at the same time
by a factor of 4. Furthermore, the proposed procedure involves
only straight forward model-based design steps and should
thus easily be transferable to other applications. Starting with a
modeling and system identification step, the characteristics of
the sensor system are identified. Here, a second order equation
is used to model the sensor response. Noise considerations lead
to the specification of a second order low-pass Butterworth
filter and to the design of a deconvolution algorithm.

Figure 5. Three reproduced measurements 1-3 are illustrated to express the
repeatability. The algorithm was applied in real-time during each

measurement. Pairs of the same color represent related sensor and algorithm
signals.
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Our primary objective has been to realize a detecting
system able to observe the propofol concentration in patients
exhaled breath at least three times faster than this physiological
parameter might change. With the help of the presented
algorithm the accelerated response time of t90 = 104 sec
is 9.2 times faster than the patients average breath propofol
concentration change with t90,breath = 952 sec.

The patient with the fastest exhalation dynamic observed
in [7] does have a time constant of T = 227 sec. This implies
a maximal permitted response time of t90,max = 174 sec for
the measuring device. Thus, using the presented acceleration
algorithm the propofol sensors system is even suitable to
monitor such, probably exceptional, fast exhalation dynamics.

Another issue discussed in the paper relates to noise.
On the one hand more accurate signals are advantageous in
general and on the other hand we are aware of the fact that
deconvolution might lead to exceedingly higher noise levels.
With a proper choice of a low-pass filter, this effect could be
coped with, resulting in a significantly improved SNR, albeit
the SNR has been acceptable before processing. The results of
a bad-dimensioned filter for comparison would show nothing
but noise.

It is worth mentioning that the application of the pre-
sented signal processing is not limited to the clinical setting.
Especially, portable gas detection devices are often used in
conjunction with long samplings reaching up to 30m and thus
leading to remarkable delays beside the dead time delays due
to volume.

Technologically, other more advanced signal processing al-
gorithms come to mind such as Wiener Filter [12], (linear/non-
linear) Kalman Filter [13] or moving horizon estimation,
however at a price of a higher complexity. It will be part of
ongoing research activities to evaluate these techniques in the
context of electrochemical sensors with long sampling lines
and to compare the results against the surprisingly simple and
effective solution provided here.

One difference to a clinical setup is regarded to the
relative humidity conditions of the gas, which appear much
higher when patients’ breathing gas is sampled. Influences of
humidity were not observable during other investigation. Thus,
the impact is not part of this work and might be a topic to

address in future.
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