
Bacterial Wetwood Detection in Fagus grandifolia and Prunus serotina 

Sapwood using a Conducting Polymer Electronic-nose Device 

Alphus Dan Wilson 

Forest Insect and Disease Research 

USDA Forest Service, Southern Hardwoods Laboratory 

Stoneville, MS, USA 

e-mail: dwilson02@fs.fed.us 

 

 
Abstract— New electronic gas-detection methods were 

developed and tested for the diagnosis of bacterial wetwood 

disease in Fagus grandifolia (American beech) and Prunus 

serotina (black cherry) using a Conducting Polymer (CP)-type 

electronic nose (e-nose), the Aromascan A32S, based on 

detection of headspace volatile microbial and plant metabolites 

derived from sapwood. Diagnostic application-specific aroma 

signature patterns (profile databases), derived from e-nose 

analysis of known healthy and wetwood-infected sapwood 

cores of each hardwood tree species, were used to develop an 

aroma database library. The library was used as known 

references to screen aroma profiles of sapwood cores for the 

presence of wetwood in unknown samples. The Aromascan 

A32S e-nose effectively distinguished between headspace 

volatiles from tree cores of different wood types, correctly 

identifying them at frequencies ranging from 92.3-100%. 

Principal Component Analysis (PCA) and Quality Factor (QF) 

statistical values indicated the relatedness and significance of 

differences between headspace volatiles from aroma classes of 

each sample type. Significant differences were found between 

the aroma profiles of healthy vs. wetwood-infected sapwood of 

American beech and black cherry, and greater differences 

occurred between headspace wood volatiles released from 

healthy sapwoods of the two species. 

Keywords-artificial olfaction; disease diagnosis; electronic 

aroma detection; volatile organic compounds 

I. INTRODUCTION 

Bacterial wetwood is an important wood disease that is 
common primarily in bottomland hardwood tree species of 
seasonally-flooded forests of the lower Mississippi Delta 
region [1]. Wetwood bacteria are soil-inhabiting, facultative 
anaerobes that are taken up by trees via the roots in the water 
of the transpiration stream (xylem elements) where they 
attack the middle lamellae between wood cells and fibers in 
sapwood and heartwood in the main bole (trunk) by releasing 
pectolytic enzymes (pectolases) [2]. These enzymes damage 
the structural integrity of the wood and cause radial and 
lateral separations of wood fibers, resulting in cracks and 
splits (defects) in processed lumber during kiln drying [3]. 
The damage to processed kiln-dried lumber results in 
economic losses due to these defects that reduce lumber 
grade quality and the value of the lumber for commercial 
sale [4]. An electronic-nose (e-nose) instrument was first 
utilized to detect bacterial wetwood in the sapwood of 

Populus deltoides (cottonwood) plantation trees and to 
identify host plants of the disease [5]-[7]. The current 
research focused on the detection of wetwood in two 
hardwood species, Fagus grandifolia (American beech) and 
Prunus serotina (black cherry), that occasionally become 
infected with wetwood bacteria in low-lying, seasonally-
flood bottomland forest sites with anaerobic or water-
saturated soils. 

The objectives of this study were to 1) determine if an 
electronic-nose (e-nose) device, the Conducting Polymer 
(CP)-type Aromascan A32S e-nose, has the capability of 
detecting bacterial wetwood disease in the sapwood of two 
hardwood species, including Fagus grandifolia and Prunus 
serotina, and to 2) evaluate the effectiveness of this e-nose 
method to distinguished between the wood types (either 
healthy or uninfected and wetwood-infected sapwood) of 
these two species based on aroma signatures of Volatile 
Organic Compounds (VOCs) present in sample headspace 
derived from sapwood cores. 

This paper is composed of an introduction to the 
wetwood problem in section 1, followed by e-nose 
experimental methods used in section 2, describing the 
specific materials and methods used in associated with e-
nose run and analytical procedures, followed by results in 
section 3 that provide details of experimental research results 
and findings for CP e-nose analyses of wetwood samples, 
including sensor outputs, aroma map, and QF analysis of 
PCA data. Discussion and conclusions, based on the e-nose 
experimental results, are presented in section 4 to summarize 
the significance of findings and new discoveries resulting 
from this research. 

II. MATERIALS AND METHODS 

A. Collection and storage of sapwood core samples 

Sapwood increment core samples (5 mm diameter × 5 cm 
length) were collected in spring from freshly-harvested 
Fagus grandifolia (American beech) and Prunus serotina 
(black cherry) logs deposited in piles within the Andersen 
Tully log and lumber mill yard at Vicksburg, Mississippi. A 
minimum of two core samples were extracted from the boles 
of at least twenty logs of each species using a Haglöf tree 
increment borer (Forest Suppliers, Inc., Jackson, MS) and 
placed into 14.8 mm glass vials. Increment cores were 
collected from healthy and bacterial wetwood-infected logs. 
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Wetwood logs were identified by the combined presence of 
water soaking, dark brown discoloration of sapwood tissue, 
and the acetic smell associated with this disease. Woody 
cores in all cases were frozen within 14.8 ml glass vials 
stored at -20 °C in long-term storage and thawed 
immediately prior to sample analysis. Cores that became 
desiccated in storage were rehydrated by soaking in sterile 
distilled water for 15 min followed by blotting on Chemwipe 
tissue paper to remove excess free moisture immediately 
prior to e-nose analysis.  

B. Sample preparation and prerun procedures 

Sapwood core samples in 14.8 ml glass vials were 
uncapped and placed into a 500 ml glass headspace sampling 
bottle fitted with reference air, sampling, and exhaust ports 
on a polypropylene bottle cap. Reference air entered the 
sampling bottle through a 3 mm polypropylene tube 
extending to the bottom of the sampling bottle. The sampling 

bottle was held at a constant air temperature of 25 °C. The 

sampling bottle was purged with filtered, reference air 

(relative humidity ≤  4%) for 2 min prior to building 

headspace. The sampling bottle was sealed and volatiles 
from the samples were allowed to build headspace and 
equilibrate for 30 min prior to each run. Prerun tests were 
performed as needed to determine sample air Relative 
Humidity (RH) compared with that of reference air. The 
sampling bottle cap and exhaust port were opened between 
runs to purge the previous sample with preconditioned 
reference air. 

C.  Instrument configuration and run parameters 

The Aromascan A32S Conducting Polymer (CP) e-nose 
(Osmetech Inc.,Wobum, MA) with a 32-sensor array and 15 
V across sensor paths was used for all analyses. Fourteen 
sensors, (including sensors 11, 12, 20-26, 28-32) that did not 
respond or did not contribute to the discrimination of 
sapwood volatiles, were turned off. The response 
sensitivities of the 18 active sensors used, measured as 
percent changes in electrical resistance responses across 
sensor paths relative to base resistance (%∆R/Rbase), varied 
with the type of polymer used in the sensor-matrix coating, 
the type of proprietary ring substitutions used, and the type 
of metal ions used to dope the matrix to improve and 
modulate sensor response. Detailed analyses containing 
calibration data for the sensor array were reported previously 
[5]. The block temperature of the sensor array was 
maintained at 30 °C. Reference air was preconditioned by 
passing room air sequentially through a carbon filter, silica 
gel beads, inline filter, and Hepa filter [5] to remove organic 
compounds, moisture, and particulates prior to humidity 
control and introduction into the sampling bottle. The flow 
rate (suction) was maintained at -702 ml/min using an air 
flow-calibrated ADM 3000 flow meter (Agilent 
Technologies,Wilmington, DE). Sensors were purged 
between runs using a 2% isopropanol wash solution. The 
instrument was interfaced with a personal computer via an 
RS232 cable and controlled with Aromascan Version 3.51 
software. The instrument plumbing was configured for static 
sampling of the headspace by allowing air flow out of the 

external vent port and closing the exhaust port on the 
sampling bottle so that headspace volatiles were taken from a 
homogeneous static air mass within the sampling bottle.  

D. Data acquisition parameters and run schedules 

Data from the sensor array were recorded at 1 s intervals 
using a 0.2 detection threshold (y-units), a 15–20 y-max 
graph scale, and pattern average of five data samples taken 
per run during data acquisition. A uniform run schedule 
consisted of reference air 20 s, sampling time 90 s, and wash 
20 s, followed by 90 s of reference air for a total run time of 
220 s. Data slices for processing and analysis were taken 
from a 20 s sampling interval (85–105 s) near the end of the 
sampling segment just before the sampling-valve closed. A 2 
min reference air purge followed by a 30 min equilibration 
period was allowed between runs.  

E. Construction of reference libraries and validation 

An aroma signature reference library was constructed 
from wood types of known reference woods of hardwoods 
(angiosperm) species included in this study. All database 
files were linked to specific (designated) aroma classes 
defining each sample type or category. The following 
recognition network options (neural net training parameters) 
were used for each training session: training threshold = 
0.60, recognition threshold = 0.60, number of elements 
allowed in error = 5, learning rate = 0.10, momentum = 0.60, 
error goal = 0.010 (P = 0.01), hidden nodes = 5, maximum 
iterations (epochs) = 10,000, using normalized input data, 
not actual intensity data. Some parameters were modified for 
improvement of recognition accuracy. A typical training 
required 2–35 min, depending on the size of the database 
applied, using an IBM-compatible personal computer with a 
minimum of 64 mb of RAM and 350 MHz run speed. Neural 
net trainings were validated by examining training results 
that compare individual database files for compatibility or by 
similarity matches to each specific odor classes by test-
assigned odor class distributions among related odor classes 
included in each library. The specific detailed analytical 
methods used for identification of unknowns, data 
processing, and statistical determinations followed the 
procedures and specifications indicated by Wilson et al. [5]. 

F. Principal component analysis 

Three-dimensional PCA was used to distinguish between 
headspace volatiles of all sapwood samples and to determine 
the relatedness of the four aroma classes derived from 
sapwood types of the two hardwood species, either healthy 
or wetwood-infected, based on PCA algorithms available 
with the Aromascan 3.51 software. The mapping parameters 
for three-dimensional PCA were: iterations = 30, units in 
Eigen values (%), and use of normalized input data. 

III. RESULTS 

A. Discrimination between e-nose aroma patterns of 

sapwood types 

The A32S CP e-nose provided correct identifications of 
the majority of sapwood types tested based on differences in 
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the aroma profiles of headspace wood volatiles. Correct 
identifications of unknown sapwood cores were determined 
at rates above 90% (range 92.3-100%) for the four samples 
types of healthy and wetwood-infected sapwood of 
American beech and black cherry. 

The sensor array of the Aromascan A32S electronic nose 
provided unique and significantly different aroma signature 
profiles for the four sapwood core types, representing 
healthy and wetwood-infected samples of the two hardwood 
species, including American beech (F. grandifolia) and 
Black Cherry (P. serotina) based on CP analysis of volatile 
organic compounds (Table 1). Sensor output values were 
statistically different (P<0.01) between sample types for each 
sensor with standard deviations for means generally <0.05 
for all normalized sensor values of each sample type. Sensors 
11, 12, 20-26, and 28-32 did not provide data values that 
significantly added to the discrimination of sample types in 
pretest runs, and therefore these sensors were turned off prior 
to analytical runs in order to exclude this data from the 
statistical analysis. Thus, 18 sensors were used in the data 
analysis of aroma profiles for each sensor type. 

TABLE I.  SENSOR OUTPUTS FROM THE A32S E-NOSE SENSOR ARRAY 

COMPARING HEALTHY AND WETWOOD-INFECTED SAPWOOD CORES OF TWO 

SPECIES 

E-nose F. grandifolia P. serotina 

Sensor Healthy Wetwood Healthy Wetwood 

1 6.83 6.74 7.45 7.15 

2 6.15 6.06 6.74 6.46 

3 6.94 6.86 7.54 7.31 

4 3.48 3.41 3.81 3.69 

5 3.46 3.39 3.78 3.67 

6 3.48 3.42 3.83 3.70 

7 3.84 6.88 7.20 7.13 

8 3.99 6.99 7.26 7.15 

9 5.46 5.53 5.57 5.51 

10 5.09 5.16 5.28 5.20 

13 4.93 4.91 5.05 4.89 

14 4.52 4.53 4.74 4.51 

15 5.09 5.15 5.36 5.14 

16 4.77 4.81 4.95 4.75 

17 6.09 6.09 4.47 5.12 

18 6.32 6.28 4.77 5.40 

19 6.10 6.09 4.68 5.24 

27 7.47 7.68 7.53 7.98 

 

 

Normalized sensor output values for wetwood cores were 
significantly lower than for healthy sapwood cores of both F. 
grandifolia and P. serotina species for sensors 1-6. Similar 
results were observed for sensors 7-27 in P. serotina, but 
these sensor output values were generally greater for 
wetwood cores than healthy cores of F. grandifolia. Sensor 
values 1-16 for P. serotina generally were greater than those 
of F. grandifolia for both wetwood and healthy cores, but the 
reverse was true for outputs of sensors 17-16. Normalized 
sensor output values for wetwood cores were significantly 
lower than for healthy sapwood cores of both F. grandifolia 
and P. serotina species for sensors 1-6. 

Each sensor in the sensor array was coated with a 
different conducting polymer composed of polypyrrole, 
polyanaline, or polythiophene derivatives. Values for 

normalized and standard deviations of all means were ≤
0.05, indicating high precision and a high level of statistical 
significant difference (P<0.01) between means of individual 
sensor outputs. 

B. Principal component analysis 

 Principal Component Analysis (PCA) tests showed 

significant differences between wetwood-infected and 

healthy aroma profiles of beech and black cherry sapwood 

based on differences between headspace volatiles released 

from the two wood types of each species. PCA generated 

precise statistical numerical QF values (quality factors of 

significance) that provided precise indications of relatedness 

between aroma profiles of the four sapwood sample types. 

These QF values indicate the statistical differences between 

data clusters of all sapwood sample types, plotted as an 

aroma map in Figure 1. The aroma data plots of healthy and 

wetwood-infected beech (F. grandifolia) sapwood were 

closer together than healthy and wetwood-infected black 

cherry (P. serotina), although healthy sapwood was 

significantly different from wetwood-infected profiles for 

both species. These data plots for healthy black cherry were 

somewhat separated because one of the samples was 

considerably dryer and older that other samples of this 

species. The variability between samples likely indicates 

differences in the moisture content and amount of wood 

volatiles released from sapwood cores of healthy black 

cherry. PCA of this 3-dimensional aroma-map model, as 

indicated by the principal components in the sapwood 

volatiles, showed that principal component 1 (PC 1), 

represented by the x-axis, accounted for 96.4% of the 

sample variability in the data, while principal component 2 

(PC 2), represented by the y-axis, accounted for only 3.5% 

of the sample variability. Thus, the percentages of the total 

variance, accounting for by PC 1 and PC 2, explained over 

99% of the sample variability in these two orthogonal 

principal components. The percentage of the variance 

attributed to principal component 3 (PC 3), represented by 

the z axis, was negligible and explained less that 0.1% of the 

sample variance. 

 The clustering patterns of data points in the aroma for 

each sample type indicate the precision of the e-nose in 
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providing consistent data for multiple sample replications. 

The greater the distance between data clusters of each 

sample type, the less related the aroma signatures of 

headspace volatiles associated with each sample type. 

 
 

Figure 1.  E-nose aroma map showing the differences in aroma profiles of 

headspace volatiles from healthy vs. wetwood-infected sapwood of Fagus 

grandifolia and Prunus serotina using Principal Component Analysis 

(PCA) of Volatile Organic Compounds (VOCs). 

Pairwise comparisons of healthy and wetwood-infected 
sapwood aroma classes of the two wood types using Quality 
Factor (QF) significance values provided indications of 
levels of relatedness between the aroma profiles of healthy 
and wetwood-infected core types of the two wood species. 
The e-nose aroma profiles of healthy sapwood cores of 
American beech were highly significantly different from 
healthy black cherry (QF=1905.4) at P<0.0001 (Table II).  

TABLE II.  RELATEDNESS OF HEADSPACE VOLATILES RELEASED FROM 

HEALTHY AND WETWOOD-INFECTED SAPWOOD CORES OF TWO SPECIES 

Aroma class Aroma class  QF value 

F. grandifolia 

healthy 

F. grandifolia 

wetwood 
5.7*** 

 
P. serotina 
healthy 

1905.4**** 

 
P. serotina 

wetwood 
4.5** 

F. grandifolia 

wetwood 

P. serotina 

healthy 
32.3*** 

 
P. serotina 
wetwood 

12.3*** 

P. serotina 

healthy 

P. serotina 

wetwood 
256.4**** 

 

 Statistical analysis symbols for quality factor (QF) 

significant difference levels between aroma classes were as 

follows: * = P < 0.05; ** = P < 0.01; *** = P < 0.001; **** 

= P < 0.0001. The percentages of the total variance, 

accounting for the variability explained by each orthogonal 

principal component (PC), were as follows: PC 1 = 96.40%; 

PC 2 = 3.51%; and PC 3 < 0.05%. 

 The aroma profile of healthy black cherry also was very 

significantly different from wetwood-infected black cherry 

(QF=256.4). However, differences in aroma profiles of 

sapwood headspace volatiles between healthy cores of 

American beech and wetwood-infected beech and black 

cherry were much less significantly different at P < 0.001 

and P < 0.01, respectively. By comparison, aroma profiles 

of wetwood-infected beech sapwood were different than 

healthy and wetwood-infected black cherry sapwood 

volatiles at intermediate levels of statistical difference 

(P<0.001). The lowest level of difference between sapwood 

aroma profiles occurred between healthy American beech 

and wetwood-infected black cherry (QF=4.5) at P < 0.01. 
The large significant differences between healthy and 

wetwood-infected sapwood of both species provide evidence 
that the headspace volatiles derived from wetwood bacteria 
have a large effect on the aroma signature pattern, but not as 
great as the differences in healthy sapwood volatiles between 
the two hardwood species. 

IV. DISCUSSION AND CONCLUSIONS 

Analyses of data indicating unique aroma signature 
patterns, based on output results from the sensor array of the 
Aromascan A32S CP electronic-nose, provided effective 
discriminations between headspace volatiles derived from 
sapwood core samples of American beech and black cherry.  
Discriminations and correct identification of samples types 
were determined at high levels of statistical confidence. 

These results are similar to those found for previous 
studies involving detections of plant disease infections using 
comparable e-nose analyses for bacterial diseases of onion 
[8][9], blueberry diseases [10], grain spoilage [11], mango 
fruit rot [12], wood decay [13]-[16], and other diseases 
[17][18]. 

E-nose analysis results of sapwood types in the current 
study were similar to those obtained from sapwood cores in 
related studies using different types of e-nose gas-detection 
technologies based on several different gas-sensing 
principles as summarized previously [19]-[22]. Wilson et al. 
[6] was able to distinguished between angiosperm and 
gymnosperm sapwood types using fresh tree cores frozen at -
20 C and thawed immediately prior to analysis with a A32S 
CP e-nose. Baietto et al. [13] compared the performance of 
three different e-noses, including the PEN3 metal-oxide 
(MOS) e-nose, the LibraNose Quartz Microbalance (QMB) 
e-nose, and the Aromascan A32S CP e-nose to discriminate 
between healthy and decayed wood of different wood types, 
decayed by various wood-decay fungi. Other potential 
agricultural applications of e-nose instruments have been 
found in pesticide-residue identifications [23][24], 
environmental monitoring for agricultural wastes and 
pollutants [25], and disease-detection in fish culture [26]. 

The large differences between healthy sapwood of 
American beech and black cherry provide evidence that the 
headspace volatiles derived from healthy sapwood of these 
two species have a larger effect on the aroma signature 
pattern than do differences between wetwood-infected and 
healthy sapwood of the two hardwood species. 

The aromascan A32S CP e-nose has been shown here to 
have the capability of identifying and discriminating between 
sapwood types and between healthy and wetwood-infected 
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sapwood of American beech and black cherry. These results 
provide additional corroborative evidence of the utility that 
e-nose devises provide for the diagnosis of bacterial 
wetwood in bottomland hardwood species. Previously, no 
consistently reliable methods for detecting the presence of 
wetwood in hardwoods have been developed [4]. The use of 
ultrasonic devices for wetwood detection [27] are unreliable 
and unfeasible due to the requirement for destructive 
sampling of sapwood logs to obtain measurements, the slow 
device recovery and setup time between log tests, and 
difficulties of distinguishing between wetwood and healthy 
sapwood, because wetwood does not significantly alter wood 
density unlike decayed wood that does physically soften 
woods, slowing the transmission rate of sound waves. 

The diagnosis of bacterial wetwood in logs of hardwood 
species is an important first step for log and lumber 
processing in hardwood lumber mills. Wetwood can be 
effectively and rapidly detected with e-nose technologies in 
raw logs prior to cutting into lumber so that all boards 
derived from wetwood-infected logs can be treated with a 
different (slower) kiln-drying schedule to mitigate damage to 
wetwood lumber that results from damaged by shakes and 
splits during rapid kiln drying. This adjustment in the kiln 
drying schedule to a slower drying process is essential to 
preserve lumber value and minimize lumber defects to avoid 
commercial losses when the lumber is marketed. 
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