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Abstract — A new method to measure sound velocity and 
distance simultaneously and locally resolved is applied in 
media with continuously changing properties. Instead of using 
reflectors at known positions the echoes of moving scattering 
particles are analysed to determine the focus position of an 
annular array. Systematic deviation between measurements 
and sound field simulations show that sound propagation has 
to be described with a modified wave equation. A new 
approach determining Green’s functions for a half space with 
continuously changing properties is presented. It combines the 
high frequency approximation with an integral transform 
method.  
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I.  INTRODUCTION 

A locally resolved monitoring of sound velocity allows 
estimating locally physical quantities like concentration or 
temperature or material properties like density or elasticity. 
This facilitates investigating and optimising many industrial 
processes, like mixing or chemical reactions, as well as 
medical therapy like hyperthermia for cancer treatment.  

In this contribution, a measurement technique is applied, 
which allows measuring sound velocity locally resolved 
using an ultrasound annular array with concentric rings. In 
contrast to conventional tomographic techniques, it works 
without any reflectors at known positions. Instead of 
evaluating different propagation paths, the focusing of the 
array is varied and the focus position and the sound velocity 
at the focus point are determined simultaneously by 
analysing the echoes of moving scattering particles. This is 
possible because the focus position depends on the sound 
velocity and the parameters of the used transducer. 
Therefore, the time of flight to the focus, which is equal to 
the maximum of the averaged amplitude of the echo signals, 
is used with calibration curves for the simultaneous 
determination of sound velocity and focus position.  

The examined medium has to contain scattering particles, 
much smaller than wavelength and in a sufficient low 
concentration, so that the properties of the propagation 
medium are not influenced. The emitted wave is reflected at 
each particle in which the amplitude of the reflected signal is 
proportional to the amplitude of the incident wave. Therefore 
the echoes from particles within the focus area are strongest. 

As particles are in movement it is possible to consider a 
uniform distribution of particles in average time. So the 
averaged echo signal amplitude becomes maximal for that 
time for flight to the focus and back. In preliminary work, 
media with constant sound velocity were investigated in-
depth and sound velocity was determined with a deviance of 
less than 1‰ [1] [2]. This was possible because the sound 
field simulations based on GREEN’s functions [3] represented 
the sound emission from the used array very well. To 
measure a sound velocity profile a static temperature 
gradient (heating at the top and cooling at the bottom) was 
generated in water because the dependence of temperature 
and sound velocity is well known [4] and can be generated in 
a stable state. To predict the focus position, the sound 
propagation was modelled with Fermat’s principle 
calculating curved propagation paths by calculus of 
variation. But a significant deviation of measurements and 
simulation had been observed [2].  

This contribution introduces a new method for modelling 
sound propagation in media with continuously changing 
material parameters. The modified wave equation caused by 
non-constant material parameters is solved for a point source 
with an integral transform method and a high frequency 
approximation. At the current state of this work the equation 
is solved for a point source in the transformed domain. 

This paper is divided in 4 sections. The sound 
propagation in media with non-constant material properties 
is discussed theoretically in Section II. Section III shows 
some measurement results for a linear temperature gradient 
in water. Section IV gives a summary and perspectives.  
 

II. SOUND PROPAGATION IN MEDIA WITH NON-CONSTANT 

PROPERTIES 

A. Derivation of the wave equation 

The sound propagation in liquids is based on two 
fundamental equations, the equations of motion and 
elasticity:  

vp   ,      v=pχ


  , (1) 

with pressure p, particle velocity v, and the material 
parameters mass density ρ0 and elasticity χ. If the material 
parameters are constant, differentiating these equations with 
respect to location and time leads to the well known wave 
equation. If these parameters are functions of location an 
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additional term appears in the derivative of (1) with respect 
to location. This additional term appears also in the wave 
equation: 
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Also the definition of potential Φ has to be modified: 

Φgrad=v

1

. (3) 

The following examination shall be done for a one-
dimensional dependence of the material properties in 
direction z. 

B. One-dimensional solution 

Considering a plane wave propagating in the direction of 
the gradient of the material properties the wave equation for 
the potential is obtained 
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If the mass density depends linearly on z this equation 
has a solution in the form of a generalized power series [5]: 
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However, there are already numerical problems 
evaluating the coefficients and the solution with respect to 
the convergence for this one-dimensional case. So it seems 
not to be feasible finding an exact solution for a two- or 
three-dimensional problem.  

C. High frequency approximation and integral transform 

High frequency approximation had been developed in 
geophysics and is applied in techniques like ray tracing [6].  
In this contribution, harmonic GREEN's functions shall be 
derived with this approach in combination with an integral 
transform method. This allows calculating a transfer function 
for a point source for a specific geometry. Just the axially 
symmetric problem is solved because it is much easier 
manageable than the general problem. The wave equation in 
cylindrical coordinates (r, φ, z) is used: 
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The single derivative to r in the second term vanishes due 
to its scalar multiplication with the gradient of the mass 
density, having only a component in z direction. Applying a 
Hankel transform as described in [7] with respect to r  
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leads to an one-dimensional wave equation in the 
transformed domain, which is denoted by the index H0: 
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The high frequency approximation assumes that (8) can 
be solved with the following ansatz 

    zx,Ttjωezx,A=Φ  . (9) 

Now, Φ is replaced with this ansatz and the terms are 
arranged according to its powers of ω. 
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Assuming that ω is very high the first two lines are 
equated to zero independently and the frequency-
independent third line is neglected. So T can be determined 
directly from the first line and with this solution A is 
determined from the second line 
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with the solely free parameter A0. Note that this leads to 
the solution for a homogeneous medium if ρ and χ are 
constants. All methods of generalized ray theory explained in 
[7] like the derivation of source functions for a point source 
acting on an interface considering the boundary conditions 
can be applied to this solution. Finally, the inverse 
transformation has to be done:  
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Current work is on an evaluation of this integral with a 
steepest descent approximation as it is described in [3]. The 
approximation facilitates the integral into a solvable form. 
This causes a neglect of surface waves being not of interest 
for the presented application. However, the method is 
complicated because of the integral expression of T in the 
exponent. Though, the integral can be evaluated by a finite 
series expansion resulting in additional terms containing 
higher powers of ξ.  

III. MEASUREMENT RESULTS 

An evident way to achieve a sound velocity gradient is to 
generate a temperature gradient with water, because the 
sound velocity as a function of temperature is well known for 
water [4] and it can be generated in a stable state. Figure 1 
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shows the general set-up. Water in a basin located at the 
bottom is kept at a temperature of 6°C. A second smaller 
basin is placed above. It contains a metal plate at its bottom 
for good thermal conduction and a heat source at its top. This 
generates a vertical layered arrangement of warm water 
above cooler water, whereby a fluid flow is avoided. The 
temperature is measured by an array of temperature sensors 
to determine the sound velocity profile in the experimental 
set-up. The sound field for this gradient and the time of flight 
to the focus point were calculated applying Fermat's 
Principle [2]. 

 
Figure 1: Experimental set-up for a sound velocity gradient

Figure 2 shows the comparison of calculated and 
measured times of flight to the focus as a function of used set 
of delay times, corresponding with a focus point (Fok) in the 
calibration medium water of 20 °C (Sound velocity gradient 
in water from 40 °C at the transducer to 6 °C at a distance of 
50 mm).  

Figure 2: Comparison of measured and calculated times of flight as a 
function of used set of delay times 

Although the notable difference is just in the range of one 
microsecond this would cause an error of more than 100 m/s 
determining the sound velocity. 

For additional examinations, the sound velocity was 
measured conventionally via measuring the time of flight to 
a reflector at a known position. Moving the reflector along 
the acoustic axis allows a stepwise reconstruction of the 
sound velocity profile. Additionally sound velocity was 
determined from temperature sensors again. Figure 3 shows 
a comparison of two conventional methods to determine the 
mean sound velocity between the probe and a reflector at 
distance z. First the time of flight for different reflector 

distances is measured (blue line). Second the temperatures 
are measured at different locations and converted to a sound 
velocity according to [4] and averaged over the propagation 
path (green line). The systematic deviation can be seen here, 
too.  
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Figure 3: Comparison of two conventional methods to determine the 
mean sound velocity between the probe and a reflector at distance z 

 

Both deviations (see Figures 2 and 3) result from the 
deficient assumption that wave propagation can be described 
with the wave equation for homogeneous media.  

IV. SUMMARY AND PERSPECTIVE 

This contribution discusses a method to measure the 
sound velocity along the acoustic axis of the used annular 
array. The three-dimensional distribution of sound velocity is 
obtained by scanning.  

It has been shown that the continuous change of material 
properties has to be taken into account for the modelling of 
sound propagation. The potential of a point source has been 
calculated in the Hankel transformed domain. The inverse 
transform is actually realized and will allow calculating 
GREEN’s functions for media with continuously changing 
properties.  

Due to the assumed change of material properties in only 
one dimension a change of these properties in other 
dimensions would cause a lateral deviation of the focus 
position. This effect has to be examined in further works.  
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