
Application of a Conductive Polymer Electronic-nose  
Device to Identify Aged Woody Samples 

Alphus Dan Wilson 
Forest Insect and Disease Research 

USDA Forest Service, Southern Hardwoods Laboratory 
Stoneville, MS, USA 

e-mail: dwilson02@fs.fed.us 
 
 

Abstract— The identification of aged woody samples is often a 
difficult task as a result of weathering and physical 
deterioration over time which removes or obscures 
distinguishing anatomical features and characteristics required 
for visual taxonomic determinations. Fortunately, the chemical 
characteristics of aged woods usually are preserved better than 
physical characteristics if the wood remains dry in storage. All 
wood types, determined by the particular plant species from 
which woody samples are derived, produce and release a 
unique complex of volatile organic compounds that distinguish 
individual wood types when headspace volatiles (containing 
these unique chemical mixtures) are collectively analyzed using 
an electronic gas-sensing device such as an electronic nose. The 
advantage of electronic-nose devices over conventional 
analytical-chemistry instruments, typically used in laboratory 
chemical analyses, is that the woody source (plant species) 
from which headspace volatiles are derived may be identified 
without having to identify individual chemical compounds 
present in the headspace analyte mixture. Methods were 
developed for a conductive polymer type electronic nose gas-
sensing device, the Aromascan model A32S, to accurately 
identify aged woody samples derived from wood pieces held in 
dry storage for long periods of time. An aroma library was 
developed using diagnostic aroma profile databases (electronic 
aroma signature patterns) from known woods of numerous 
tree species. The A32S electronic nose was capable of 
distinguishing between 44 wood types, providing correct 
identification determinations at frequencies ranging from 92-
99%. The distribution of aroma class components, defined by 
wood type for each sample analyzed, also could be determined 
to indicate the relatedness of volatile aroma components that 
each sample analyte had in common with individual wood 
aroma classes. This information was useful for determining the 
taxonomic relatedness of wood types (plant species) based on 
the headspace volatiles that were produced. Furthermore, 
principal component analysis provided precise statistical 
numerical values (quality factors of significance) that indicated 
the chemical relatedness between wood volatiles based on 
pairwise comparisons of organic chemical mixtures from 
individual wood types. 
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I.  INTRODUCTION 
There are numerous situations where the identity of wood 

types must be known for many commercial or industrial 

applications, scientific research, or forensic analyses. 
Conventional methods used for the determination of wood 
type identities involve examinations of macroscopic and 
microscopic anatomical characteristics of wood tissues. The 
identification of wood types becomes more difficult if the 
wood is exposed to adverse environmental conditions (such 
as weathering) that result in physical deterioration of the 
wood, masking or diminishing diagnostic anatomical 
characteristics required for visual taxonomic determinations. 
By contrast, most chemical characteristics of wood are not 
lost during aging or weathering as long as the wood is stored 
in a dry state, even over extended periods of time. 
Traditional chemical and microscopic methods used for 
wood identification hitherto are cumbersome and less 
reliable because they often require extensive and expensive 
sample preparation and time-consuming analyses. Thus, 
there is a need for an analytical device that quickly identifies 
organic samples such as wood types without the high cost of 
conventional chemical analyses. 

Electronic-nose devices are designed to produce digital 
electronic signatures of volatile organic compounds (VOCs) 
released from any source [1-3]. Unlike other analytical 
instruments, these devices have the capability of identifying 
organic samples from the VOCs they release without having 
to identify individual chemical compounds present in volatile 
mixtures [4-6]. A variety of different sensor types have been 
developed for various applications including optical sensors 
[7], metal oxides [8, 9], semiconductive polymers [10-13], 
and conductive polymers [14-15]. The agricultural and food 
industries have utilized electronic aroma detection (EAD) 
technologies to evaluate food quality and product aromas 
[16-18], food storage life and freshness [19-20], detect 
industrial wastes [21-22], diagnose plant diseases [23], and 
for many other applications requiring gas-detection 
technologies [24-27]. 

The purposes of this study were to 1) determine if an 
electronic-nose (e-nose) device, the conductive polymer 
(CP)-type Aromascan A32S e-nose, has the capability of 
identifying and distinguishing between dried aged specimens 
of various temperate North American wood types based on 
headspace volatiles (given the reduced amount of volatiles 
released from aged wood), to 2) evaluate the effectiveness 
(accuracy) of  wood-type determinations, and to 3) assess 
whether e-nose aroma data outputs provide indications of 
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taxonomic-relatedness between aged specimens of various 
hardwood and conifer wood types. 

II. MATERIALS AND METHODS 

A. Collection and storage of woody samples 
Aged wood blocks (4 cm long × 2 cm wide × 2 cm 

thick), over 20 years old and derived from an archival 
reference collection of temperate North American wood 
types stored in the pathology herbarium collection at the 
Southern Hardwoods Laboratory (SHL), were utilized in this 
study. A subset of the collection selected for e-nose analysis 
included 44 wood types (plant species) from 16 genera, 
representing both hardwood and conifer tree species. These 
archival wood blocks were highly desiccated while in 
storage. Each sample was rehydrated by soaking (complete 
submersion) in sterile distilled water for 15 min, followed by 
blotting with Kimwipes tissue paper (Kimberly-Clark Inc., 
Roswell, GA) to remove any free moisture from the wood 
surfaces immediately prior to e-nose analysis. 

B. Sample preparation and prerun procedures 
Wood blocks from each wood type were analyzed 

separately in a 500 ml Pyrex sampling bottle no. 1395 
(Corning Inc., Corning, NY) fitted with reference air, 
sampling, and exhaust ports on a polypropylene bottle cap. 
Reference air entered the sampling bottle through a 3 mm 
polypropylene tube extending to just above the bottom of the 
sampling bottle. The sampling bottle was maintained at a 
constant air temperature of 25 C and was purged with 
filtered, moisture-conditioned reference air for 2 min prior to 
building headspace volatiles. The sampling bottle was sealed 
and volatiles from each wood type sample were allowed to 
build headspace and equilibrate for 30 min prior to each run. 
Reference air was maintained at 4% RH at 25 C. The 
sampling bottle was purged with conditioned reference air 
between runs to remove volatiles from the previous sample. 

C.  Instrument configuration and run parameters 
All e-nose analyses were conducted with an Aromascan 

A32S (Osmetech Inc.,Wobum, MA) CP e-nose instrument  
with 32 sensors in the sensor array and 15 V across sensor 
paths. The response sensitivities of individual sensors, 
measured as percent changes in electrical resistance response 
across sensor paths relative to base resistance (%∆R/Rbase), 
varied with the type of plastic polymer used in the sensor 
matrix coating, the type of ring substitutions used to modify 
its conductive properties, and the type of metal ions used to 
dope the matrix to improve and modulate sensor response. 
Detailed analyses containing calibration data for the sensor 
array were reported previously [23]. The block temperature 
of the sensor array was maintained at a constant 30 C. 
Reference air was preconditioned by passing room air 
sequentially through a carbon filter, silica gel beads, inline 
filter, and Hepa filter to remove organic compounds, 
moisture, particulates, and microbes, respectively, prior to 
humidity control and introduction into the sampling bottle. 
The flow rate (suction) of sample air at the sampling port 
was maintained at -702 ml/min using a calibrated ADM 3000 

flow meter (Agilent Technologies, Wilmington, DE). Sensor 
surfaces were purged between runs using a 2% isopropanol 
wash solution. The instrument was interfaced with a personal 
computer via an RS232 cable and controlled with 
Aromascan Version 3.51 software. The instrument plumbing 
was altered from conventional architecture and specifically 
configured for static sampling of the headspace by allowing 
air flow, maintained at 605 ml/min flow rate, coming out of 
the external vent port of the instrument during analytical 
runs, and closing the exhaust port on the sampling bottle so 
that headspace volatiles were taken from a homogeneous 
static air mass within the sampling bottle. 

D. Data acquisition parameters and run schedules 
Data from the sensor array were collected at 1 s intervals 

using a 0.2 detection threshold (y-units), a 15–20 y-max 
graph scale, and with a pattern average of five data samples 
taken per run during data acquisition. A uniform run 
schedule was used consisting of reference air 20 s, sampling 
time 90 s, and wash 20 s, followed by 90 s of reference air 
for a total run time of 220 s. A 2 min reference air purge was 
completed between runs after each sample was removed 
from the sampling bottle. 

E. Construction of reference libraries and validation 
An aroma signature reference library was constructed 

from wood types of known reference woods of angiosperm 
and gymnosperm species included in this study. All database 
files were linked to specific (designated) aroma classes 
defining each sample type or category. The following 
recognition network options (neural net training parameters) 
were used for each training session: training threshold = 
0.60, recognition threshold = 0.60, number of elements 
allowed in error = 5, learning rate = 0.10, momentum = 0.60, 
error goal = 0.010 (P = 0.01), hidden nodes = 5, maximum 
iterations (epochs) = 10,000, using normalized input data, 
not actual intensity data. Some parameters were modified for 
improvement of recognition accuracy. A typical training 
required 2–35 min, depending on the size of the database 
applied, using an IBM-compatible personal computer with a 
minimum of 64 mb of RAM and 350 MHz run speed. Neural 
net trainings were validated by examining training results 
that compare individual database files for compatibility or by 
similarity matches to each specific odor classes by test-
assigned odor class distributions among related odor classes 
included in each library. The specific detailed analytical 
methods used for identification of unknowns, data 
processing, and statistical determinations followed the 
procedures and specifications indicated by Wilson et al. [28]. 

F. Principal component analysis 
Detailed comparisons of relatedness of odor classes 

(wood types) were determined using principal component 
analysis (PCA) algorithms provided by Aromascan 3.51 
software. Three-dimensional PCA was used to distinguish 
between wood headspace volatiles released from 12 woody 
conifer plant species. The mapping parameters for three-
dimensional PCA were: iterations = 30, units in Eigen values 
(%), and use of normalized input data. 
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III. RESULTS 

A. Identification of wood sample types 
The A32S conductive polymer e-nose correctly identified 

the vast majority of the 44 wood types tested based on 
differences in the aroma profiles of headspace wood volatiles 
derived from woody samples from the SHL archival wood 
collection. Correct identifications of unknown wood samples 
were determined at rates well above 90% (range 92-99%) for 
all wood types tested except for Pseudotsuga menziesii. 
Wood samples of this tree species were determined to be 
unknown, indicating that the e-nose could not assign the 
aroma profile to a specific aroma class, present in the aroma 
reference library, because the majority of the aroma 
components within the volatiles from this species did not fall 
into a single aroma class. The aroma components of P. 
menziesii were distributed more evenly among several aroma 
classes. However, none of the wood sample identifications 
were determined to be incorrect or ambiguous, defined as 
determinations for different wood samples of the same type 
that were assigned to different aroma classes or wood-
identification types in separate runs. 

B. Discrimination between wood types 
The A32S e-nose also effectively discriminated between 

the headspace volatiles (aroma profiles) of most wood types 
tested among twelve conifer species. The aroma profiles of 
each wood type were further evaluated by neural net training 
validation during the process of creating a diagnostic aroma 
library for conifer woods.  Following neural-net training, 
analysis of data for each aroma class (defined by the 
principal components present in aroma profiles from each 
wood type) provided a precise breakdown of the aroma class 
distribution of these principal aroma components present in 
volatiles among the twelve coniferous wood types as 
summarized in Table I. The aroma class distribution 
indicates (on a percentage bases) the proportion of aroma 
components, present in the headspace volatiles from each 
wood type, that are in common with principal aroma 
elements of volatiles from other wood types present in the 
reference library. Thus, the degree of overlap among 
principal aroma elements from volatiles of each wood type 
provides an indication of relatedness between plant species 
based on the chemical nature of volatiles released from 
individual wood types.  All of the wood types that were 
identified correctly among the 12 conifer woods had a 
majority proportion of the aroma profile that was assigned to 
the principal aroma element characteristic of each individual 
wood type or plant species. The range of aroma class 
distributions attributed to an individual principal aroma 
element characteristic of each wood type ranged from 79.7% 
in Abies concolor to 95.8% in Pinus ponderosa.  Only aged 
wood from Pseudotsuga menziesii (Douglas fir) had an 
exceptionally low proportion (15.8%) of aroma components 
that were attributed to its principal aroma element.  
Consequently, P. menziesii was determined as an unknown 
aroma profile and could not be identified. The proportion of 
secondary aroma elements attributed to aroma classes 
besides the principal aroma element ranged from <1% with 

several species to as high as 15.3% in Tsuga heterophylla 
with Abies concolor aroma elements and 18.1% in Abies 
concolor with P. menziesii aroma elements. 

Intensity differences, using the difference-mode software 
option for displaying aroma signature patterns, between 
sensor outputs of individual sensors in the sensor array 
provided clues to differences in VOCs that distinguish 
headspace volatiles of different wood types. For example, a 
comparison of the differences in sensor outputs in response 
to volatiles from Quercus alba and Tsuga canadensis woods 
may indicate differences in the types of chemical 
constituents that are present in one wood type, but not the 
other (Fig. 1). These differences can be deduced from the 
chemical classes of VOCs that individual sensors in the array 
are known to be most sensitive to – as determined by direct 
comparison tests using single-chemical e-nose analyses. The 
organic chemical classes that individual sensors (within the 
A32S sensor array) are most sensitive to were determined 
and reported previously [23]. The strong positive differences 
between sensor output responses for sensors 1-3 indicate that 
Q. alba wood volatiles may contain short-chain alcohols, 
carboxylic acids, or aliphatic amines that are absent in T. 
canadensis wood volatiles. Similar deductions are possible 
to a lesser extend for sensors 4-16 with the exception of 
sensors 10-12. The strong negative difference between 
sensor output responses of sensors 20, 23, and 24 indicate 
that T. canadensis wood volatiles may contain long-chain 
alcohols, short- or long-chain esters, aliphatic ketones, or 
aromatic hydrocarbons that are absent in Q. alba wood 
volatiles. Further deductions also may be inferred for 
negative differences observed for sensors 25-32 with the 
exception of sensors 29 and 31. 

C. Principal component analysis 
An analysis of seven pine (Pinus) species using PCA by 

pairwise comparisons of headspace wood volatiles in all 
possible combinations provided greater details of chemical 
relatedness between species within a single woody plant 
genus.  The results of relatedness of wood volatiles between 
these pine species were measured using a statistical 
algorithm called quality factor (QF) analysis that determines 
the distance between aroma profiles using Euclidean distance 
units of measurement. The greater the QF value determined 
from pairwise comparisons of volatiles, the greater the 
difference (or distance) between the aroma signature profiles 
of the two aromas being compared.  In terms of statistical 
determinations, a QF value of 2.0 is roughly equivalent to a 
statistical difference at P = 0.10 level of significance. The 
relatedness among the seven pine taxa varied greatly based 
on Euclidean distance as indicated in Table II.  QF values 
ranged from 0.1 to >70, indicating a very wide range of 
chemical relatedness between individual pine species. 
Among the seven species compared, a QF of 0.1 indicated a 
very close chemical relationship between P. strobus and P. 
contorta, whereas a QF >70 indicated a very wide difference 
between the volatile VOCs from woods of P. palustris 
compared with P. lambertiana. Relatively low levels of 
relatedness were found between P. strobus, P. resinosa, and 
P. palustris as a group. Intermediate levels of chemical
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TABLE I.  DISTRIBUTION OF ELECTRONIC-NOSE AROMA CLASS COMPONENTS AMONG TWELVE CONIFER WOOD TYPES 

 Aroma Class Distribution (%)a 

Wood Type 
Wood Types (Plant species abbreviations) 

Acon Cdec Claw Jvir Locc Pgla Ppon Pmen Ssem Tdis Tocc Thet 

Abies concolor 
 

79.7 – 10.4 4.7 7.1 4.6 – 18.1 – – 0.1 12.8 

Calocedrus decurrens – 85.0 7.1 – – 1.3 5.3 – 6.9 – 5.5 12.8 

Chamaecyparis lawsoniana 10.1 7.6 88.8 – – 2.2 3.6 – 4.3 – 3.2 – 

Juniperus virginiana 3.1 – – 94.3 0.9 3.6 1.8 3.4 2.7 2.3 – 3.8 

Larix occidentalis 9.0 – 3.5 1.1 87.0 – 8.5 14.9 8.1 1.5 5.5 – 

Picea glauca – 1.4 2.4 3.7 1.3 91.0 – 6.9 3.9 – – – 

Pinus ponderosa – 0.7 3.4 0.9 1.6 – 95.8 3.4 – – – – 

Pseudotsuga menziesii 11.5 – – – 6.8 2.7 0.1 15.8 – 6.3 7.1 4.9 

Sequoia sempervirens – 11.7 3.3 5.4 6.8 5.1 – – 86.9 10.5 – – 

Taxodium distichum – – – – 0.9 3.3 3.0 14.7 8.4 85.6 6.5 7.8 

Thuja occidentalis 0.6 4.9 – – 4.4 3.0 0.9 10.9 – 12.8 88.3 – 

Tsuga heterophylla 12.0 15.3 – 4.6 – 2.4 3.5 10.9 – 8.5 – 80.9 
a. Mean percent aroma class distributions indicated for each wood type; read from left to right (by row), not top to bottom. Plant species abbreviations correspond to wood types (column 1). 

 
relatedness were found between P. strobus, P. monticola, P. 
lambertiana, and P. ponderosa, but not between P. 
monticola and P. lambertiana that are fairly closely related 
chemically based on wood volatiles. 
 

Figure 1.  Percentage differences in e-nose sensor output intensity between 
wood volatiles of Quercus alba and Tsuga canadensis species. 

The relatedness between aroma profiles of wood volatiles 
from the seven Pinus species, based on 3-dimensional CPA, 
was graphed in the form of an aroma map that indicates 
Euclidean distances among the seven pine species (Fig. 2). 
The percentages of the total variance for this analysis, 
accounting for the variability explained by each orthogonal 
principal component (PC), are as follows: PC 1 = 54.5%; PC 
2 = 31.8%; and PC 3 = 13.4%, representing the x-, y-, and z-
axis of the aroma map, respectively. A high proportion 
(86.3%) of the variation was explained by the first two 
principal components (PC 1 and PC 2). Notice that the data 

points for P. strobus are very close to one of the P. contorta 
points and indicate a close chemical relationship based on 
wood volatiles. Pinus resinosa is also fairly closely related to 
P. strobus and P. contorta. However, there are very large 
chemical differences between P. lambertiana and P. 
palustris, and between P. palustris and P. contorta. 

IV. DISCUSSION AND CONCLUSIONS 
An electronic-nose correct-identification rate above 90% 

generally is considered quite acceptable for unknown sample 
sizes greater than n=30 for any one aroma class. The rate of 
correct identifications can be significantly increased through 
neural net training to a higher level of specificity and thus 
lower error rate for e-noses that provide neural net training 
features in their operating software. The level of 
discrimination is largely determined by how long the neural 
net training is allowed to proceed before it is terminated. 
Specific levels of error rates may be specified and set via 
training parameters prior to training to reach specific target 
levels of discrimination for different applications. For 
example, sample types that have relatively small variations 
in aroma profiles must be trained to higher levels of 
discrimination to achieve effective differences between 
sample types. However, too much training specificity can 
result in the inability to determine distinctions between 
sample types.  The level of discrimination desired for sample 
identifications is defined and specified by the specific 
reference aroma library used for sample identifications 
which are defined by the level of neural net training used to 
create each aroma library. 
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TABLE II.  RELATEDNESS OF SEVEN PINE (PINUS SPP.) WOOD TYPES 
BASED ON 3-DIMENSIONAL PCA OF WOOD VOLATILES 

Aroma class Aroma class  QF valuea 

P. strobus P. monticola 17.5*** 

 P. lambertiana 15.3*** 

 P. resinosa 4.6* 

 P. palustris 5.1* 

 P. ponderosa 10.3** 

 P. contorta 0.1 

P. monticola P. lambertiana 2.1 

 P. resinosa 6.0* 

 P. palustris 20.7*** 

 P. ponderosa 18.6*** 

 P. contorta 5.9* 

P. lambertiana P. resinosa 9.2** 

 P. palustris > 70**** 

 P. ponderosa 37.7 

 P. contorta 3.8* 

P. resinosa P. palustris 4.2* 

 P. ponderosa 22.2*** 

 P. contorta 5.3* 

P. palustris P. ponderosa 4.6* 

 P. contorta 66.5**** 

P. ponderosa P. contorta 14.9*** 
a. Quality factor significant difference levels between aroma classes: * = P < 0.05; ** = P < 0.01; 

*** = P < 0.001; **** = P < 0.0001. The percentages of the total variance, accounting for the 
variability explained by each orthogonal principal component (PC), are as follows: PC 1 = 95.26%; 

PC 2 = 4.27%; and PC 3 = 0.43%. 
 

 
Because none of the wood sample identifications in this 

study were determined to be incorrect or ambiguous, the 
absence of false positives is an advantage for a diagnostic 
gas-sensing analysis method. Generally, e-noses are set to a 
level of specificity that preclude false positives and result in 
unknown determinations for samples that cannot be 
recognized or that have aroma profiles that are missing from 
the reference aroma library.  The diagnostic specificity can 
be improved even further by building e-nose methods and 
libraries that are specific to particular sample types so that 
false positive determination are exceedingly rare. 

The results of e-nose analyses of wood types in the 
current study were similar to those obtained in other related 
studies, but with fresh wood samples and similar or different 
e-nose technologies based on several different gas-sensing 
principles [28, 29]. Wilson et al. [28] identified and 
distinguished between twenty-three different angiosperm and 
gymnosperm wood types using fresh tree cores frozen at -20 
C and thawed immediately prior to analysis with a A32S CP 
e-nose. Baietto et al. [29] utilized and compared the 

performance of three different e-nose instruments, including 
the PEN3 metal-oxide (MOS) e-nose, the LibraNose quartz 
microbalance (QMB) e-nose, and the Aromascan A32S CP 
e-nose to effectively discriminate between different healthy 
wood types and wood decayed by various wood-rot fungi.  

Aroma data profiles from e-nose analyses that provide 
some indications of chemical relatedness between plant 
species may be a new tool and means for studying 
chemotaxonomic relationships between woody plants based 
on their wood volatiles as well as relationships between non-
woody plants based on leaf, stem, or floral volatiles. 
 

 
Figure 2.  Aroma map showing the relatedness of wood volatiles from 

seven Pinus spp. using conductive polymer analysis (CPA). 

Some possible reasons why the P. menziesii wood type 
could not be identified may include insufficient wood 
volatiles for analysis, the lack of sufficient principal 
components in adequate quantities to make up a 
representative aroma signature profile for this particular 
wood type, or the presence of particular wood VOCs to 
which the A32S e-nose sensors were not sufficiently 
sensitive, thus unable to generate a distinctive pattern of 
sensory outputs.  This problem would no doubt be resolved 
with a fresher sample, but applying moisture to the sample 
surface and building headspace volatiles longer might help 
generate enough wood VOCs for analysis. 

This study has demonstrated that a CP e-nose has the 
capability of identifying and discriminating wood types even 
when wood samples are aged in storage for long periods of 
time. The critical treatment of aged woods during sample 
preparation that made e-nose analysis possible was to wet the 
surface of the wood for a minimum of 15 min (followed by 
blotting) to facilitate the release of wood volatiles. Without 
wetting the wood sample surfaces, insufficient volatiles were 
generated to build headspace for an effective e-nose analysis. 
However, the wetting procedure should have no effect on the 
accuracy of results as long as sufficient volatiles are released 
to produce a sensory output (pattern) from the sensor array. 
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