
Consistency and Distributed Sensor Data Processing

Laurent-Frédéric Ducreux, Suzanne Lesecq, François Pacull, Stéphanie Riché
CEA-LETI MINATEC Campus

17 rue des Martyrs, 38000 Grenoble, France
Email: surname.name@cea.fr

Abstract—This paper proposes a framework dedicated to
the management of data processing within a geographically
distributed system made of heterogeneous software and hard-
ware components. The integration and coordination of these
different components is easily performed thanks to a uni-
form abstraction level proposed here. The resource-oriented
approach combined with a rule-based system allowing trans-
actional manipulation of these resources provides a unified
view of the distributed system. An example will show the
powerfulness of the proposed middleware.

Keywords-Middleware; rule-based language.

I. INTRODUCTION

When dealing with distributed sensors data processing,
from co-located sensors to sensors spread over different
continents, the problem to solve at the application level
always remains the same:

• to share data;
• to synchronize ”entities”;
• to manage concurrent accesses;
• to define conditions, and
• to ensure consistency on the system ”global state”.
Until now, each level was defining its own way to solve

(or sometimes not!) its own issues, with different specific
points of view and mechanisms.

The proposition in this paper is to provide a uniform
abstraction layer that eases the integration and coordination
of the different components (software and hardware) that
compose the network of sensors and actuators. It is based
on a resource-oriented approach combined with a rule-
based system allowing transactional manipulation of these
resources. This results in a unified view of the system,
whatever its size and its geographical distribution.

Chaski is rooted in previous projects conducted at XRCE
(Xerox Research Centre Europe), in particular the Coordina-
tion Language Facilities (CLF) project [1], [2] and STITCH
[3] developed from 1995 to 2003. Chaski may be seen as a
natural evolution, based on the lessons learned and the will
to reduce the middleware footprint in order to better fit with
a large number of small devices and appliances.

Chaski, is the combination of three paradigms, namely
associative memory, distributed transaction and production
rules presented in Section 2. Put together they offer a
powerful framework to address distributed (sensor) data
processing with properties that are up to our knowledge

novel in this field. Section 3 presents the Chaski rule-based
language, an intermediate coordination layer that can be used
by application programmers or automatically generated from
Domain Specific Languages or graphical user interfaces.
This rule-based language offers in addition the possibility
to dynamically modify the application to adapt not only
to changes induced by the user, but also changes due to
the self adaptation of the system to the context (both for
planned modifications and failures). Section 4 demonstrates
the Chaski expressiveness through an application.

II. PARADIGMS

A. Associative Memory

An abstraction layer is highly desirable to unify the view
of the various components usually involved in distributed
sensor processing: the sensors, the sensed data, the actuators,
the software components responsible for the data fusion, the
software components used to interact with the system either
for application or monitoring purpose, etc.

The option chosen is to consider these entities as ”re-
sources” managed in an associative memory. The associative
memory is implemented with a tuple-space, following the
concept introduced by Linda in the 80s [4] and resurrected
several times since in the middleware field [5], [6]. An
associative memory provides a repository of tuples that can
be concurrently accessed by a set of software components
that may either insert resources (data) as tuples in the space
or retrieve or consume resources from the space according
to a matching given pattern. This tuple-space may be seen
as a distributed shared memory.

Figure 1. Associative memory and basic operations

From original Linda, only 3 operations are retained (see
Figure 1) to manipulate tuples: rd() which verifies the
presence of a tuple matching a given pattern, get() which
consumes a tuple, and put() which inserts a tuple (the

171

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

original Linda operations in() and out() have been
renamed to make their semantic less ambiguous).

In Chaski, the associative memory is split into distinct
units called bags. Unlike in the original Linda, bags may be
distributed over different hosts, offering a fully distributed
associative memory. Moreover, the bags are typed. Distinct
types introduce specific differentiations in the semantic and
operation of the rd(), get() and put() methods. For
instance, the bag may be a set, or a multiset with an impact
on the put() operation. When a resource is put() in a bag
already containing an identical resource, then it is inserted
when the bag is a multiset but inserted if it is a set.

The abstraction of bags completely hide the data dis-
tribution thus it matches the first problem that is how to
share data. It is also well suited to encapsulate sensors
and actuators. Actually, a sensor is a ”virtual” bag in
which the resources are the different sensed information
that can be accessed one by one through the rd() and
get() operations. An actuator is a ”virtual” bag where each
inserted resource through the put() may trigger actions.

B. Distributed transactions

A distributed transaction is a set of operations in which at
least 2 geographically distributed clients are involved. Trans-
actions usually ensure the so-called Atomicity, Consistency,
Isolation, Durability (ACID) properties. In Chaski, only
atomicity is managed, to ensure all-or-nothing outcomes
for each unit of work (operations set). The atomicity is
implemented using a two-phase commit protocol (2PC) [7]
to ensure that each participant in the transaction agrees on
whether the transaction should be committed or not. In the
first phase, the participants involved in the transaction are
queried. In the second phase, when all participants replied
they are ready, the coordinator formalizes the transaction.

In order to allow transactional manipulation at the re-
sources level, the rd(), get() and put() basic oper-
ations are divided into 2 phases. The first one prepares the
operation and locks the resources. The second phase per-
forms the operation if the transaction has to be committed or
it unlocks the resources otherwise. Distributed transactions
tackle two problems raised in the introduction, i.e. ”entities”
synchronization and concurrent accesses management.

C. Production rule system

A production rule consists in 2 parts: a precondition part
and a performance/action part. If a precondition matches
the current system state, then the action is performed. A
production system can be seen as a mechanism that executes
productions in order to achieve some goals. An example of
production rule system is, e.g. OPS5 [8].

The production rules in Chaski use only the 3 basic
operations defined on top of the associative memory. The
system state is kept and managed through the associative
memory (tuple-space). So, rd() operations are naturally

used to access and evaluate this state. The precondition
of a rule is a set of rd() operations. The distinct rd()
operations required to evaluate the precondition are per-
formed sequentially, with a right propagation following logic
programming approach [9]. This will be developed in details
in Section III. The performance phase of a rule is a set of
rd(), get() and put() operations embedded in one or
more transactions. Broadly speaking:

• rd() operations are used to ensure that the conditions
which triggered the rule are still valid when the rule is
actually executed. If the conditions are no longer valid,
then the transaction is aborted. This ensures that a rule
cannot be performed when conditions were fulfilled at
some point in the past, but this is no longer the case;

• get() operations are used to validate the resources ex-
istence (e.g. resources involved in the definition of the
precondition) but, in addition, to ensure the resources
will be consumed when the transaction is committed.
Therefore, if different transactions depend on the same
resource availability, only one is committed;

• put() operations are used to insert new resources in
the associative memory, as combinations of resources
returned by rd() operations of the precondition phase.

When a performance phase contains multiple transactions,
they are executed in sequential order. Then, if the distinct
transactions perform a get() over the same ”token” re-
source, it is very easy to formalize alternative treatments for
a given precondition with the insurance that only the first
possible treatment will be performed. This provides a natural
and very elegant way to solve various difficult problems
(e.g. graceful degradation, redundancy or dispatching) that
arise in a distributed environment. The full picture of this
mechanism is described in Section III.

The Chaski production rule system answers the two last
problems, that is how to verify distributed conditions and to
ensure consistency on the ”global state” of the ”system”.

III. RULE-BASED LANGUAGES

One of the key features of Chaski relies on its coordination
language which is an evolution of the STITCH language. In
this section, the basis of the Chaski language are introduced.

A. Writing of Chaski rules

In a Chaski rule, the precondition and a performance parts
are separated by the symbol ”::”.

The associative memory is split into bags. These bags may
be grouped into objects according to the application design.
For instance, bags may be grouped for location reasons
(hosted by the same machine) or for semantic reasons (all
the bags used to manage a given sensor network are grouped
in the same object).

A bag is uniquely defined among the overall sys-
tem with syntax [<objectname>,<bagname>] where
<objectname> and <bagname> respectively define the

172

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

names by which the object and the bag are known within
the system. As an example, "Zigbee" and "Sensors"
could uniquely define the bag containing tuples built as
(<sensorid>, <value>) and corresponding to all the
measurements done by the sensors currently connected to
the system through the zigbee protocol.

Then, applying an operation on this bag (e.g. rd())
is noted ["Zigbee","Sensors"].rd(id,value).
A ["Zigbee","Sensors"].rd(id,value) opera-
tion in the precondition returns one by one the tuples
matching the given pattern (id,value), that is, in the
present example, all the sensed informations collected by
the system through the zigbee protocol. When the last
corresponding tuple is returned, the rd() is blocked until
a new matching tuple becomes available.

This mechanism is similar to the one a software program
that is reading a file on which one or several other software
programs are appending data. The read operation blocks
when the pointer reaches the current end of the file and is
automatically unblocked when new data become available,
as the result of append operations performed by the other
software programs. If one or several fields (e.g. id) are set
with the identity of a specific sensor (e.g. "Zig001") then
["Zigbee","Sensors"].rd("Zig001",value)
only returns the current value associated to this particular
sensor. As soon as the sensor reads a new measurement,
the corresponding new tuple is added to the bag and then
will be returned by the pending rd("Zig001",value).

In the precondition part, several reads can be sequentially
invoked and the related instantiated variables are instantly
right propagated, as it would be done in a classical logic
programming approach. For instance, the following precon-
dition will be true each time a new temperature is read by
any of the temperature sensors in the system.
["Directory","SensorNetworks"].rd(network) &
[network,"Type"].rd(id, "temperature") &
[network,"Sensors"].rd(id, value)

The first rd() returns all the wireless sensor networks
known by the system. Obviously, if a new wireless network
is integrated in the system, and if the resource defining its
availability is inserted in the bag "SensorNetworks",
then it will be automatically taken into account in the
evaluation of the precondition. Each returned value will
be instantly propagated in order to define the variable
network used to designate the object name in which the
"Sensors" and "Type" bags have to be queried. The
second rd() gets the id of all the temperature sensors
while the last rd() gets, for each of them, their mesured
value. As a result, we obtain the search tree of Figure 2.
Here, the computation item is seen as a ”virtual bag”
that, each time a rd() is done, takes the first field of
the tuple as input parameter, computes the consign =
compute_consign(value) function, and then returns
a tuple containing the result in the updated second field.

Figure 2. Evaluation tree

From the system side, it is seen exactly as any other bag.
In the same way, it is possible to map assertions:
ASSERT: lib.lowerthan(value,threshold)

Here too, a virtual bag generates the expected resource if
the condition is true. If the condition is not met, no resource
is generated and the rd() is blocked.

The last facility allows to define of temporization in seconds:
TIMEOUT: 30

Here, the virtual bag waits the given delay before returning a
tuple allowing the evaluation of the rest of the precondition.

For instance, if supplemented with an assert condition,
the rule explained above will only consider the sensors with
readings lower than 16◦:
["Directory","SensorNetworks"].rd(network) &
[network,"Type"].rd(id, "temperature") &
[network,"Sensors"].rd(id, value) &
ASSERT lib.lowerthan(value,"16") &
COMPUTE lib.compute_consign(value,consign) &
[network,"Location"].rd(id, location) &

In addition, the reference that has to be transmitted to the
heater according to the measured temperature is computed.
Finally, the location of the temperature sensor related to the
heater that has to receive this reference is retrieved. For the
tree in figure 2 that contains 3 sensors, only the first one
will actually trigger the performance phase.

The last point is to control the frequency of the precon-
dition evaluation. Currently, each time a new measure is
performed by a temperature sensor, the precondition is evalu-
ated. This is obviously not suitable. Thus, at the beginning of
the precondition, a rd() is added to a bag called Ticket
that regularly generates resources used as tickets for trig-
gering time-dependent actions. For instance, suppose that
the Ticket bag generates a ("heating","ticket")
resource each 10 mn. Then, the precondition presented above
is evaluated each 10 mn. If such a sensor exists, its location
and the reference to apply to the related heater is computed.
The full rule with its performance part can now be written:

173

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

["Clock","Ticket"].rd("heating","ticket") &
["Directory","SensorNetworks"].rd(network) &
[network,"Type"].rd(id, "temperature") &
[network,"Sensors"].rd(id, value) &
ASSERT lib.lowerthan(value,"16") &
COMPUTE lib.compute_consign(value,consign) &
[network,"Location"].rd(id, location) &
::
{
["Clock","Ticket"].get("heating","ticket") ;
[network,"Sensors"].rd(id, value) ;
["Heating","Actuators"].(location,consign)
}{
["Clock","Ticket"].get("heating","ticket") ;
[network,"Sensors"].rd(id, value) ;
["Alarm","SMS"].("06778899","heating problem")
}.

The performance part is made of 2 distinct transactions,
basically corresponding to 3 different cases:

1) in the first phase of the first transaction, we check if the
ticket ("heating","ticket") is still available, if
the temperature is the same as the one measured in the
precondition, and if the heating system is manageable.
If it is true, the second phase is performed: the ticket
is consumed and the resource defining the consign
for the heater is inserted in the bag controlling the
heating system. Since, the resource corresponding to
the temperature value might be shared by some other
rules we do not consume it: a rd() is used instead
of a get(); The second transaction has no chance to
be performed as the ticket resource disappeared.

2) the temperature measurement has not been modified
but, for some reason, in the first phase, the system
has not been able to communicate with the heating
system. In this case, the first transaction aborts, the
ticket remains and the second transaction is tried. This
second transaction sends an alarm via SMS to the user
to warn her of the heating system problem;

3) if the temperature measurement has changed, then
none of the 2 transactions are performed because the
resource corresponding to the temperature of the pre-
condition disappeared. In this case, the resource ticket
is preserved in the system, enabling the precondition
to be re-evaluated with the new temperature resource.

B. Other extensions

Two other mechanisms are provided to refine the evalu-
ation mechanism of the precondition. Their goal is mainly
to reduce the size of the search tree and to cut off earlier
branches. These mechanisms are exemplified hereafter:
{*,!}["Clock","Ticket"].rd("heating","ticket") &
{*,!}["Directory","SensorNetworks"].rd(network) &
{*,600}[network,"Type"].rd(id, "temperature") &
{*,!}[network,"Sensors"].rd(id, value) &
ASSERT lib.lowerthan(value,"16") &
COMPUTE lib.compute_consign(value,consign) &
{1,!}[network,"Location"].rd(id, location) &

The first field into the curly brackets defines the number
of awaited replies. It has already seen that rd() opens a
stream of replies. With this new field, the system knows that

after receiving the required number of values, the stream
can be closed. For instance, a sensor is known to stay in a
single location (a single location resource exists in the bag
for the given sensor). The second field indicates how long
(in s) to wait for resources while the rd() is pending. Here,
for instance, the waiting for a temperature measurement
will be no longer than 10 mn (i.e. 600 s), as a new ticket
is issued every 10 minutes. Then, even if the temperature
would finally be read after 10 mn, it would not anyway be
validated in the precondition re-evaluation. Then, it is not
useful to keep the stream waiting for this rd() open.

To be complete, it is worth to say that opened streams
are automatically closed by the system when the resource
on which depends the rd() stream gets consumed.

IV. APPLICATION

In this section, we illustrate the high level of expressive-
ness of the Chaski coordination language through the fol-
lowing application. Several seniors are living autonomously
in their own habitation. Nevertheless, they need a daily
checking. A pool of health professional has to check that
the elderly people are fine.

Two organizations of these daily meetings can be pro-
posed. The first one consists in fixing in advance the
appointment between one elderly people and one health
professional. Obviously, this way will not take into account
the different unforeseen events:

• an elderly person is late at the appointment because
involved in daily activities;

• a health professional is late because previous check-up
lasted more than expected;

• emergency has to be taken into account;
• if a check-up is shorter than planned, the remaining

time is just lost even if another check-up would be
possible;

• the load is not balanced among the pool of health
professionals, some are idle, some are overwhelmed.

The second way is to let to the application organizing the
scheduling in real time by relying on the Chaski framework
and its rules to capture information from different type of
sensors and to synchronize distributed actions.

Figure 3. Overview of the distributed application

174

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

Figure 3 gives an overview of the distributed application
with the decomposition in Objects/Bags:
["Hospital","Checkup"] is a bag containing in-

formation about the people to be contacted during a day;
["Hospital"."Pool"] manages the available doc-

tors who can make the daily checking;

name
Emily Amper
Eloi de Moure
Mani Kor
Meg Awatt
Mick Rofarad
Kyle Hobbit

doctorname status
”Dr. Home” ”idle”
”Dr. Whatelse” ”idle”

Table I
EXAMPLE OF RESOURCES CONTAINED IN CHECKUP AND POOL BAGS

[?? ,"Sensor"] encapsulates a presence sensor at
the location of each elderly person;
["Hospital","CommCaller"] is a bag encapsulat-

ing the video conference equipment of the hospital;
[?? ,"CommReceiver"] is a bag encapsulating the

video conference equipment at elderly person location;
The main rule is:

["Hospital","Checkup"].rd(senior) &
["Hospital","Pool"].rd(doctor,"idle") &
[senior,"Sensor"].rd("present")
::
{
["Hospital","Checkup"].get(senior) ;
["Hospital","Pool"].get(doctor,"idle") ;
[senior,"Sensor"].rd("present") ;
["Hospital","CommCaller"].put(doctor,"call",senior) ;
[senior,"CommReceiver"].put("accept",doctor)
}.

The bag [senior,"Sensor"] encapsulates a presence
sensor that insert in the bag the information about the
presence or not of the person. For instance, it can be a
simple presence sensor put on top of a computer/laptop/pad
screen. The bags ["Hospital","CommCaller"] and
[senior,"CommReceiver"] just encapsulate the video
conference software module used by the system. It can use
for instance the command line interface of skype.

The behavior of the rule is as follows. The first token
returns all the people that are waiting for a checkup. The
second token returns all the available Health professional.
The third token corresponds to a presence sensor on the
location of each of the elderly people. When one of them
is detected as ”present” then the precondition of the rule is
verified and the performance part may be triggered.

Assume that the precondition becomes true with "Mani
Kor" as senior and doctor is "Dr Home". Then the
performance part is:
{
["Hospital","Pool"].get("Dr Home","idle") ;
["Mani Kor","Sensor"].rd("present") ;
["Hospital","Checkup"].get("Mani Kor") ;
["Hospital","CommCaller"].put("Dr Home","call","Mani Kor") ;
["Mani Kor","CommReceiver"].put("accept","Dr Home")
}.

When the performance part is triggered, the initial situa-
tion responsible for the precondition could have changed and
then it is required to verify that the condition is still true.
This is done either using the rd() or the get() operations.
Both verify that the required resource is still available but the
second in addition will consume the resource in the second
phase of the transaction. The different cases concerning the
performance are discussed hereafter.

If the 3 resources ("Mani Kor"), ("present") and
("Dr Home","idle") are still available then they are
locked and the 2 last tokens verify that the video conference
is technically possible (e.g. equipment ”on” at both sides). If
everything is fine then resources ("Dr Home","idle")
and ("Mani Kor") are consumed and the video con-
ference is launched. The consumption of resources ("Dr
Home","idle") and ("Mani Kor") prevents the two
people (doctor and senior) to be involved in another video
conference because all the rules that require one of these
resources will fail in the performance phase. When the
check-up is finished, the doctor has just to notify the
system that he is available again. As a consequence the
resource ("Dr Home","idle") is inserted in the bag
["Hospital","Pool"]. This will reactivate all the rules
waiting for a resource in this bag.

The transaction may cancel because:
• the doctor could have received an emergency. In this

case, the corresponding resource is removed from
["Hospital","Pool"]. This could be done auto-
matically by removing the resource when the doctor
id card used for authentication and tracing is removed
from the reader associated to the computer;

• the doctor could be involved in another check-up if 2
check-ups were possible at the same time. Only one
triggers the video conference and the other fails due to
the absence of the resource ("Dr Home","idle");

• "Mani Kor" could already be with another doctor;
• "Mani Kor" could have left the room equipped with

video conference system for some reason and then the
resource ("present") is no longer available;

• video conference equipment failed at one of the sides.
If the transaction fails then no resources are consumed.

Thus, the precondition of the rule may become again true if
the doctor or the senior becomes again available.

Concerning the faulty equipment, another transaction can
be added after the first one and then triggered in sequence.
{
["Hospital","Pool"].get("Dr Home","idle") ;
["Mani Kor","Sensor"].rd("present") ;
["Hospital","checkup"].get("Mani Kor") ;
["Hospital","Support"].put("Pb","Dr Home","Mani Kor");
}

If the resources awaited by the 3 first token are available,
this means that the previous transaction failed. Otherwise
("Mani Kor") would have disappeared. Then this trans-
action is executed only if the first one fails. In this case

175

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

a resource ("Problem","Dr Home","Mani Kor") is
inserted allowing another rule waiting for it to manage the
problem and to warn the support team for instance.

V. DISCUSSION

The simple example given in the previous section shows
the expressiveness of the Chaski language may simplify the
design of distributed applications which need to put together
data coming from different distributed locations.

ECA rules

This language goes beyond what is possible to do
with Event-Condition-Action (ECA) rules [10] on different
points. First, it unifies the event and the condition because
they are seen in the same way by the system: an event
and value condition are resources contained in the bags.
This allows to have much more refined way to trigger the
rules. Second, the event and the condition evaluation concern
distributed data with no restriction about the distribution.
Third, the verification of the condition is embedded in a
transaction including also the actions to be performed. This
guaranties the same logical time.

STITCH coordination language

As Chaski rules are an improvement of the STITCH
coordination language, we discuss here the differences.

First, STITCH does not allow to consider alternative
transactions in the same rule. This means that fall-back
treatment is less natural and requires additional bags and
explicit extra rules that makes the design of the application
more complex. In addition, in STITCH, the insertion (put)
is not embedded in the transaction but handled by a separate
mechanism ensuring that the resource is eventually inserted.
It obviously ensures the insertion but does not allow any
treatment if the insertion cannot be done at the transaction
time. This makes the system less flexible. For instance, this
could not ensure the correct setting of the video conference
in our example. Another difference is that, in STITCH,
the exact same resource of the precondition is used in
the transaction. Then, if the sensor reads many times the
presence of a person and inserts each time a new identical
("present") resource, this would cause the transaction
to abort and to be retried with another resource with the same
value. This generates much more work. The last difference
that is not highlighted in the present example concerns the
extension introduced in Section III-B that allows respectively
to define the number of replies awaited and the maximum
time to be blocked when pending.

VI. CONCLUSION

In this paper, a new abstraction layer is proposed. It
provides a uniform view of the components - sensors,
actuators and services - that are encountered in (wireless)
sensors and actuators networks. Thanks to this abstraction

layer, integration of geographically distributed software and
hardware components is easier. Morever, to enforce the
whole system consistency, sensing and actuation are em-
bedded in transactions. Prototyping is accelerated thanks to
the rule-based coordination language. The powerfulness of
this middleware is exemplified on a realistic application.

ACKNOWLEDGMENT

This research has been sponsored in part by the European
Project OUTSMART (PN 285038) under the 7th Framework
Programme FP7-2011-ICT-FI.

REFERENCES

[1] J.-M. Andreoli, F. Pacull, D. Pagani, and R. Pareschi, “Mul-
tiparty negotiation of dynamic distributed object services,”
Journal of Science of Computer Programming, vol. 31, pp.
179–203, 1998.

[2] D. Arregui, F. Pacull, and M. Riviere, “Heterogeneous
component coordination: the clf approach,” in In Proc. of
EDOC’2000, Makuhari, 2000, pp. 194 – 203.

[3] J.-M. Andreoli, D. Arregui, F. Pacull, and J. Willamowski,
“Resource-based scripting to stitch distributed components,”
in in Proc. of EDICS’02, 2002, pp. 429–443.

[4] N. Carriero and D. Gelernter, “Linda in context,” Commun.
ACM, vol. 32, pp. 444–458, April 1989.

[5] E. Freeman, K. Arnold, and S. Hupfer, JavaSpaces Principles,
Patterns, and Practice, 1st ed. Essex, UK, UK: Addison-
Wesley Longman Ltd., 1999.

[6] S. W. McLaughry and P. Wycko, “T spaces: The next wave,”
in Proceedings of the Thirty-second Annual Hawaii Interna-
tional Conference on System Sciences-Volume 8 - Volume 8,
ser. HICSS ’99. Washington, DC, USA: IEEE Computer
Society, 1999, pp. 8037–.

[7] P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concur-
rency control and recovery in database systems. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1987.

[8] “Book review: Rule based programming with ops5 by thomas
a. cooper and nancy wogrin (morgan kaufmann pubtishers),”
SIGART Bull., pp. 14–15, July 1989, reviewer-Trowbridge,
Timothy L.

[9] R. A. Kowalski, “The early years of logic programming,”
Commun. ACM, vol. 31, pp. 38–43, January 1988.

[10] U. Dayal, A. P. Buchmann, and D. R. McCarthy, “Rules are
objects too: A knowledge model for an active, object-oriented
databasesystem,” in Lecture notes in computer science on
Advances in object-oriented database systems. New York,
NY, USA: Springer-Verlag New York, Inc., 1988, pp. 129–
143.

176

SENSORDEVICES 2011 : The Second International Conference on Sensor Device Technologies and Applications

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-145-8

