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Abstract—In this paper, we propose two methods based
on quaternions for computing the angles of inclination and
the angular velocity with 6 degrees of freedom using the
measurements of a 3-axis accelerometer and a 3-axis magne-
tometer. Each method has singularities which occur during
the computation of the orientation of the device in the 3-
dimensional space. We propose solutions to avoid these singu-
larities. Experimental results are given to compare our model
with a real gyroscope.
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I. INTRODUCTION

The computation of the angles of inclination of a device
and its angular velocity has many applications for aeronau-
tics, transportation systems, human motion tracking, games
and virtual reality. Classical methods use accelerometers,
magnetometers and gyroscopes. For some particular angles,
there are singularities for which it is impossible to compute
neither the orientation of the device in the 3-dimensional
space nor its angular velocity [1, page 407].

Our goal is to design a smart sensor magnetometer based
virtual gyroscope, i.e. a method for computing the angular
velocity based on the measurements of a 3-axis accelero-
meter and a 3-axis magnetometer, without any gyroscope,
and with 6 degrees of freedom: 3 degrees of freedom are
provided by the accelerometer and the others are provided by
the magnetometer. It is easier to implement, less expensive
and has a lower power consumption than the classical
gyroscope solutions. Our target is small motion tracking
with embedded devices like cellular phones, with application
fields like virtual or augmented reality. Moreover, it is
possible to create a virtual gyroscope using a magnetometer
and an accelerometer, whereas it is not possible to create
a virtual magnetometer nor a virtual accelerometer using
a gyroscope only. Methods with accelerometers only have
been already proposed in [2], [3], [4], [5].

A well-known method for computing a strapdown gyro-
scope output simply consists in differentiating the angles
of inclination of the device, but we want to compute the
total angular velocity, which is the addition of the angular
velocities about the three axes of the fixed frame.

Two methods with two different approaches have been
developed. They are proposed in this paper. The method

that uses the angles of inclination of the device have been
implemented. The method that uses the rotation matrix will
be implemented and the two methods will be compared in
order to find the method which offers the best precision on
the target architecture. This work is a collaboration project
between Freescale and ESIEE Engineering school which
started in June 2010.

In Section II, we introduce the platform and the sensors.
In Section III, a first method for computing the angular
velocity using the absolute angles of inclination is presented.
In Section IV, a second method for computing the angular
velocity using the rotation matrix is presented. In Section
V, experimental results are given.

II. HARDWARE AND SMART SENSORS

We use the new Freescale MMA9550L smart sensor. This
motion sensing platform can manage multiple sensor inputs.
It includes a 3-axis accelerometer and a ColdFire V1 32-
bit microprocessor with an integrated Multiply and AC-
cumulate module (MAC module) for DSP-like operations.
An additional Honeywell HMC5843 3-axis magnetometer is
mounted on the MMA9550L board so that the two sensors
are strictly parallel and their frames are aligned.

This paper focuses on the mathematical model which
provides the angular velocity and the angles of inclination
of the device in the 3-dimensional space. The algorithms
have been implemented in the form of MATLAB scripts
for testing purposes and the curves show the results of
these implementations. In the future, the algorithms will be
directly implemented on the MMA9550L, since it includes
its own microprocessor.

III. VIRTUAL GYROSCOPE BASED ON THE ANGLES OF
INCLINATION OF THE DEVICE

In this section, the angles of inclination and the angu-
lar velocity are computed from the accelerometer and the
magnetometer measurements using Tait-Bryan angles and
quaternions.

A. Parametrization of Rotations with Tait-Bryan Angles

In order to describe the orientation of the device in the
3-dimensional space, 2 right-handed Cartesian coordinate
systems are used: a fixed reference frame with Xr = North,
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Yr = East and Zr = Down (NED convention), and denoted
by the subscript r, and a moving frame attached to a mobile
device, denoted by the subscript d. The reference frame
and the device frame are aligned when the device is flat
and aligned with the Xd axis pointed to magnetic North.
Rotation angles are positive when clockwise viewed along
the relevant axis vector in the positive direction.

The orientation of the device in the reference frame can
be described by Tait-Bryan angles: φ, θ and ψ. ψ is the
angle of rotation about the Zr axis (yaw). θ is the angle of
rotation about the Yr axis (pitch). φ is the angle of rotation
about the Xr axis (roll). Any rotation of the device can be
expressed as a composition of these three rotations in the
reference frame, as shown in Fig. 1.
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Figure 1. Angles φ, θ, ψ, and Composition of the 3 Rotations about Zr ,
Yr and Xr Axes

A rotation about the Zr axis, the Yr axis or the Xr axis
can be respectively described by a rotation matrix Rz(ψ),
Ry(θ) or Rx(φ):

Rz(ψ)=

2664
cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0

0 0 1

3775 Ry(θ)=

2664
cos(θ) 0 − sin(θ)

0 1 0

sin(θ) 0 cos(θ)

3775

Rx(φ)=

2664
1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

3775
The composition of the 3 rotations about the Zr axis,

then the Yr axis and finally the Xr axis, is described by the
rotation matrix R(φ, θ, ψ) = Rx(φ) ·Ry(θ) ·Rz(ψ).

It is possible to compute φ, θ, ψ and the angular ve-
locity ~ωr from the Earth’s magnetic field ~Bd, expressed
in the device frame, and the Earth’s gravitational field
~gd, expressed in the device frame. The magnetic field is
measured by the magnetometer. On the other hand, the
accelerometer measures the total acceleration including the
gravitational field, the acceleration provided by the user and
the acceleration due to the Coriolis force. Consequently, an
extraction of the gravitational field ~gd needs to be performed
with a filter.

The expression of the Earth’s magnetic field in the refer-
ence frame is given by ~Br =

(
B · cos(δ) 0 B · sin(δ)

)T
where B denotes the strength of the magnetic field (in

Teslas), δ denotes the angle of inclination of the magnetic
field, which depends on the location on the Earth, and (.)T

denotes the transpose of (.).
The expression of the Earth’s gravitational field in the

reference frame is given by ~gr =
(
0 0 g

)T
where

g denotes the strength of the gravitational field, i.e. the
acceleration (in Newtons).

The computation process is shown in Fig. 2.

Extraction
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+
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Figure 2. Computation Process 1

B. Extraction of ~gd
Since ~gd is a constant offset in the measurement of ~a, it

can be extracted with a low-pass filter. The resulting vector
~ge contains sensor medium frequencies and spurious noise.
In order to keep only ~gd, a sliding median filter and a sliding
average filter are used, as shown in Fig. 3. The same delay
is applied to ~Bd to make sure they are in phase.

Low-Pass
Filter

Sliding

Filter
Median

Sliding

Filter
Average

Computation of ~gd

~ad ~gd
~ge

Figure 3. Computation of ~gd

1) Low-Pass Filter: The frequency of ~gd equals 0. Conse-
quently, the gravitational field can be extracted with a first-
order Butterworth low-pass filter. The Z-transform transfer
function of the filter is given by:

~ge(z)
~ad(z)

=
b0 + b1 · z−1

1 + a1 · z−1

The default coefficients have been computed with
MATLAB by synthetizing a low-pass filter with an expe-
rimentally determined cut-off frequency Fc = 0.02 · Fe,
where Fe denotes the sampling frequency. They are given
by [b0, b1, a1] = [0.0305, 0.0305,−0.9391]. If a variation of
the norm ‖~gd‖ exceeds a threshold, the cut-off frequency
of the Butterworth filter increases of 0.05 · Fe and the
coefficients [b0, b1, a1] are computed again. If the cut-off
frequency reaches Fc = 0.4 · Fe, the filter waits for the
norm ‖~gd‖ to stabilize. Then, Fc decreases of 0.05 ·Fe until
it reaches 0.02 · Fe. Then, Fc is kept, until the norm ‖~gd‖
exceeds again the threshold. A threshold of ∆gd = 1

100 ·‖~gd‖
has been experimentally determined.
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2) Sliding Median Filter: A sliding median filter is used
in order to eliminate the highest frequencies sensor spurious
noise, which creates variations of the norm of ~gd. Since this
norm should be constant, we need to eliminate the samples
that have an erroneous norm. As we will see in section III-C,
~gd directly impacts the accuray of the entire computation
process, hence the need to get ~gd with the least error. The
sliding median filter uses a sliding window of n norms. At
the beginning, the window contains the first n norms of the
first n samples. Then, the norms of the window are sorted.
Finally, the median value of the window is extracted, and
the sample whose norm is the median value is output from
the filter, as shown in Fig. 4.

Let ~g = (gx gy gz)T be the input vector, ~gf =
(gfx gfy gfz)T the filtered vector and i the index of the
sample. The expression of the filter is given by:

~gf (i) = ~g(k) such that ‖~g(k)‖ = median(‖~g(i−n+1..i)‖)
Then, the window slides to the right and the norms of

~g(i − n + 2..i + 1) are extracted. A sliding median filter
creates a delay of n− 1 samples.

i = 1 2 3 4 5 6 ...

2.1

Extraction of a window of norms

Sorting of norms

i = 1 2 3 4 5 6 ...

Median norm extraction

Norms ‖~g(i)‖

Extracted Norms ‖ ~gf (i)‖ 2.2

~g(1) ~g(2)~g(3)~g(4)~g(5)Measurements ~g(i)

Filtered Measurements ~gf (i) ~g(2)

2.2 2.6 1.5 2.3

1.5 2.1 2.2 2.3 2.6

+

Figure 4. Sliding Median Filter

The gravitational field filtered with the sliding median
filter still has variations, a sliding average filter is used to
smooth it.

3) Sliding Average Filter: The sliding average filter uses a
sliding window of n samples. At the beginning, the window
contains the first n samples. Then, the average value of the
window is extracted and output from the filter.

Let ~g =
(
gx gy gz

)T
be the input vector, ~gf =(

gfx gfy gfz
)T

the filtered vector and i the index of the
sample. The expression of the filter is given by:

~gf (i) =
1
n
·

i∑
k=i−n+1

~g(k)

Then, the window slides to the right and filters the values
~g(i− n+ 2..i+ 1). A sliding average filter creates a delay
of n− 1 samples.

C. Computation of the Angles of Inclination

The Earth’s magnetic field ~Bd, expressed in the device
frame, results from the rotation of the magnetic field ~Br,
expressed in the reference frame.

~Bd = Rx(φ) ·Ry(θ) ·Rz(ψ) · ~Br (1)

The Earth’s gravitational field ~gd, expressed in the device
frame, results from the rotation of the gravitational field
~gr, expressed in the reference frame. Since ~gr remains
unchanged after a rotation about the Zr axis, Rz(ψ)·~gr = ~gr.
It follows:

~gd = Rx(φ) ·Ry(θ) · ~gr (2)

It is possible to compute the roll angle φ from the
gravitational field by developing Eq. 2:

φg = arctan2
(
gdy
gdz

)
(3)

arctan2 denotes the arctangent on the domain [−π, π].
Once φ is known, it is possible to compute θ:

θ = arctan
( −gdx
gdy · sin(φ) + gdz · cos(φ)

)
(4)

arctan denotes the arctangent on the domain [−π2 , π2 ].
If ~gd is aligned with the Xd axis, the denominator in

Eq. 4 becomes 0. Please see Tab. I for the detection of this
singularity.

Once φ and θ are known, it is possible to compute ψ by
developing Eq. 1:
ψ = arctan2

(
Bdz·sin(φ)−Bdy·cos(φ)

Bdx·cos(θ)+Bdy·sin(φ)·sin(θ)+Bdz·cos(φ)·sin(θ)

)
D. Singularity Detection

A table of the singularities is given in Tab. I. The norma-
lized gravitational and magnetic field in the device frame are
denoted respectively by ~gdN = (gdNx, gdNy, gdNz) = ~gd

‖ ~gd‖

and ~BdN = (BdNx, BdNy, BdNz) = ~Bd

‖ ~Bd‖
. If a singular-

ity is detected, several compositions of rotations give the
same result. Consequently, there are two methods. The first
method consists in keeping the previous values of φ, θ and
ψ. The second method consists in finding the appropriate
case that allows the accurate determination of φ, θ and ψ.

E. Parametrization of Rotations with Quaternions

The quaternions are hypercomplex numbers, i.e. 4-
dimensional mathematical objects, used to describe rotations
in the 3-dimensional space [6].

1) Definition and Properties of a Quaternion: A quater-
nion q has 4 coordinates in a 4-dimensional vector space and
is denoted by q =

(
q1 q2 q3 q4

)T
with (q1, q2, q3, q4) ∈

R4. It consists of a vector part qv =
(
q1 q2 q3

)T
and a

scalar part qs = q4. It can be expressed in the following
form:

q = q1 · i+ q2 · j + q3 · j + q4 (5)
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gdNx gdNy BdNx BdNy φ θ ψ
1 0 sin(δ) cos(δ) −π/2 −π/2 0

0 −π/2 −π/2
π/2 −π/2 π
π −π/2 π/2

1 0 sin(δ) − cos(δ) −π/2 −π/2 π
0 −π/2 π/2
π/2 −π/2 0
π −π/2 −π/2

0 −1 cos(δ) − sin(δ) −π/2 0 0
π/2 π π

0 −1 − cos(δ) − sin(δ) −π/2 0 π
π/2 π 0

−1 0 − sin(δ) − cos(δ) −π/2 π/2 0
0 π/2 π/2
π/2 π/2 π
π π/2 −π/2

−1 0 − sin(δ) cos(δ) −π/2 π/2 π
0 π/2 −π/2
π/2 π/2 0
π π/2 π/2

0 1 − cos(δ) sin(δ) −π/2 π 0
π/2 0 π

0 1 cos(δ) sin(δ) −π/2 π π
π/2 0 0

Table I
TABLE OF SINGULARITIES

In Eq. 5, i, j and k are imaginary numbers: i2 = j2 =
k2 = −1, and i · j = −j · i = k, j · k = −k · j = i,
k · i = −i · k = j. Therefore, it is possible to compute
the product of two quaternions q =

(
q1 q2 q3 q4

)T
and q′ =

(
q′1 q′2 q′3 q′4

)T
, denoted by q · q′, using the

properties of the hypercomplex numbers. It can be noticed
that the product between 2 quaternions is not commutative:
q · q′ 6= q′ · q.

The inverse of a quaternion q =
(
q1 q2 q3 q4

)T
is

denoted by q−1 =
(
−q1 −q2 −q3 q4

)T
.

2) Euler-Rodrigues Parameters: A quaternion q =(
q1 q2 q3 q4

)T
can be used to describe a rotation by

an angle α about a unit vector ~a =
(
a b c

)T
that is the

axis. ~a is a unit vector, so ‖~a‖ = 1. The Euler-Rodrigues
parameters corresponding to the rotation are given by:

q1 = a · sin(α2 ) q2 = b · sin(α2 ) q3 = c · sin(α2 )
q4 = cos(α2 )

3) Rotation: Let ~v =
(
x y z

)T
be a vector. The

quaternion q transforms ~v into another vector ~vf =(
xf yf zf

)T
by rotating it by angle α about an ~a

axis. A 4th null coordinate is added to ~v, so it becomes
~vq =

(
x y z 0

)T
. The rotated vector ~vf corresponds to

the vector part of ~vfq given by:

~vfq = q · ~vq · q−1 (6)

The scalar part of ~vfq is 0, since ~vfq is a pure vector in
the 3-dimensional space.

4) Composition of Two Rotations: Let qα be a quaternion
describing a rotation by an angle α about an ~a axis and qβ a
quaternion describing a rotation by an angle β about a~b axis.
The composition of the rotations about the ~b axis, then the
~a axis, is given by the quaternion qα,β = qα · qβ . Let ~v =(
x y z

)T
be a vector. The quaternion qα,β transforms

~v into another vector ~vf =
(
xf yf zf

)T
by rotating it

by angle β about a ~b axis, then by angle α about an ~a

axis. With ~vq =
(
x y z 0

)T
, the expression of Eq. 6

becomes ~vfq = (qα · qβ) · ~vq · (q−1
β · q−1

α ). The rotated vector
~vf corresponds to the vector part of ~vfq . The scalar part of
~vfq is 0, since ~vfq is a pure vector in the 3-dimensional

space.
5) Computation of the Angular Velocity: The instanta-

neous angular velocity ~ωr(t) of the device at the instant t,
expressed in the reference frame, corresponds to the vector
part of ~ωrq(t) given by [7]:

~ωrq(t) = 2 · q−1(t) · dq(t)
dt

The scalar part of ~ωrq(t) is 0, since ~ωrq(t) is a pure
vector in the 3-dimensional space, which finally gives:

~ωr(t) =

 cos(θ) · cos(ψ) · φ̇+ sin(ψ) · θ̇
− cos(θ) · sin(ψ) · φ̇+ cos(ψ) · θ̇

sin(θ) · φ̇+ ψ̇


F. Computation of the Quaternion q From the Angles of
Inclination

A rotation by angle ψ about the Zr axis, by angle
θ about the Yr axis or by angle φ about the Xr axis
can be respectively described by the quaternion qψ =
(0 0 sin(ψ2 ) cos(ψ2 ))T , qθ = (0 sin( θ2 ) 0 cos( θ2 ))T or
qφ = (sin(φ2 ) 0 0 cos(φ2 ))T .

The quaternion describing the composition of the rotations
about the Zr axis, then the Yr axis, and finally the Xr axis,
is given by q = qφ · qθ · qψ .

The method described above has 8 singularities. Conse-
quently, the computation of the angles φ, θ and ψ cannot
be accurate if the detection of singularities is not efficient
enough.

IV. VIRTUAL GYROSCOPE BASED ON THE ROTATION
MATRIX

In this section, the angles of inclination of the device and
the angular velocity are computed from the accelerometer
and the magnetometer measurements using the rotation
matrix and quaternions. Although its computation cost is
higher, the major advantage of this method is that it reduces
the number of singularities to only 2. Furthermore, this
method does not require the explicit computation of the
angles. The computation process is shown in Fig. 5.
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A. Computation of the Rotation Matrix M

Let ~v =
(
x y z

)T
be a vector. The rotation matrix M

transforms ~v into another vector ~vf =
(
xf yf zf

)T
by

rotating it by an unknown angle α about an unknown ~a axis.
The coordinates of the resulting ~vf are given by:

~vf = M · ~v (7)

Once ~v and ~vf are known, it is possible to compute M .
Consequently, we will be able to deduce α and ~a.

Let ~gdN = ~gd

‖ ~gd‖ be the normalized gravitational field in

the device frame, ~BdN = ~Bd

‖ ~Bd‖
the normalized magnetic

field in the device frame, ~Cd = ~gd × ~Bd the cross product
between the gravitational field and the magnetic field in the
device frame, ~CdN = ~Cd

‖ ~Cd‖
, ~TBd = ~BdN × ~CdN and ~Tgd =

~gdN × ~CdN .
On the other hand, let ~grN = ~gr

‖ ~gr‖ be the normalized

gravitational field in the reference frame, ~BrN = ~Br

‖ ~Br‖
the

normalized magnetic field in the reference frame, ~Cr = ~gr×
~Br the cross product between the gravitational field and the

magnetic field in the reference frame, ~CrN = ~Cr

‖ ~Cr‖
, ~TBr =

~BrN × ~CrN and ~Tgr = ~grN × ~CrN .
The expressions of ~grN and ~BrN are respectively given

by ~grN =
(
0 0 1

)T
and ~BrN =

(
cos(δ) 0 sin(δ)

)T
.

Consequently, ~Cr =
(
0 g ·B · cos(δ) 0

)T
, ~CrN =(

0 1 0
)T

, ~TBr =
(
− sin(δ) 0 cos(δ)

)T
and ~Tgr =(

−1 0 0
)T

.
The general expression of the matrix M is given by:

M=

2664
M11 M12 M13

M21 M22 M23

M31 M32 M33

3775
Since ~Tgd = M · ~Tgr, ~CdN = M · ~CrN and ~gdN = M · ~grN ,

the matrix M can be deduced from ~Tgd, ~CdN and ~gdN :

M=

2664
−Tgdx CdNx gdNx

−Tgdy CdNy gdNy

−Tgdz CdNz gdNz

3775

Since ~TBd = M · ~TBr and ~BdN = M · ~BrN , there is
another method, which is to deduce the matrix M from ~TBd,
~CdN and ~BdN :

M=

2664
BdNx·cos(δ)−TBdx·sin(δ) CdNx BdNx·sin(δ)+TBdx·cos(δ)

BdNy·cos(δ)−TBdy·sin(δ) CdNy BdNy·sin(δ)+TBdy·cos(δ)

BdNz·cos(δ)−TBdz·sin(δ) CdNz BdNz·sin(δ)+TBdz·cos(δ)

3775
B. Computation of the Quaternion q

Once the matrix M is known, it becomes possible to
compute q. The four possible cases are given in Tab. II [8,
page 15]. The comparison of M11, M22 and M33 gives the
appropriate case that allows the computation of q.

M22<−M33

M11>M22

M11>M33

q = 1
2
·

0B@
√

1+M11−M22−M33

(M12+M21)/
√

1+M11−M22−M33

(M31+M13)/
√

1+M11−M22−M33

(M23−M32)/
√

1+M11−M22−M33

1CA
M22>M33

M11<−M22

M11<−M33

q = 1
2
·

0B@ (M12+M21)/
√

1−M11+M22−M33√
1−M11+M22−M33

(M23+M32)/
√

1−M11+M22−M33

(M31−M13)/
√

1−M11+M22−M33

1CA
M22<M33

M11<−M22

M11>M33

q = 1
2
·

0B@ (M31+M13)/
√

1−M11−M22+M33

(M23+M32)/
√

1−M11−M22+M33√
1−M11−M22+M33

(M12−M21)/
√

1−M11−M22+M33

1CA
M22>−M33

M11>−M22

M11>−M33

q = 1
2
·

0B@ (M23−M32)/
√

1+M11+M22+M33

(M31−M13)/
√

1+M11+M22+M33

(M12−M21)/
√

1+M11+M22+M33√
1+M11+M22+M33

1CA
Table II

COMPUTATION OF q FROM M

C. Computation of the Angles of Inclination
Once q is known, φ, θ and ψ can be computed:

φ = arctan2 (
2 · (q1 · q4 + q2 · q3)

1− 2 · (q21 + q22)
)

θ = arcsin (2 · (q2 · q4 − q3 · q1))

ψ = arctan2 (
2 · (q3 · q4 + q1 · q2)

1− 2 · (q22 + q23)
)

With this method, there are only 2 singularities left: θ =
±π2 . They are known as the gimbal lock. If such a singularity
is detected, the previous value of θ is kept.

V. EXPERIMENTAL RESULTS

A. Extraction of ~gd
The Fig. 6 shows the results of the computation of ~gd.

First, the Xd axis has been aligned with the Zr axis,
then the device has been shaken by the user, who created
accelerations of about 2g. Then, the Yd axis has been aligned
with the Zr axis and, finally, the Zd axis has been aligned
with the Zr axis.

We can notice that the norm of the extracted gravitational
field equals 1g and that the highest frequencies due to the
fast shakes of the user have been eliminated.
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Figure 6. Extraction of ~gd

B. Angular Velocity

Experimental results of the angular velocity computed
with our first method virtual gyroscope (top) compared to
the one from a real gyroscope (bottom) are given in Fig.
7. The real gyroscope is tied to the accelerometer and the
magnetometer and their frames are aligned to get a 9 degree
of freedom system. The similarity of the two measures
confirms the accuracy of our model.

Figure 7. Angular Velocity Computed With our Virtual Gyroscope (top)
vs. a Real one (bottom)

VI. CONCLUSION AND FUTURE WORKS

In this paper, we have presented two methods to imple-
ment a virtual gyroscope that only uses the measurements
of an accelerometer and a magnetometer, with 6 degrees of
freedom.

The two methods have their own advantages and draw-
backs. The method which uses the angles of inclination is
easier to implement, but there are 8 singularities, which
need to be solved. Moreover, the computation of ψ depends
on the computation of θ, which in turns depends on φ. If
there is a singularity on φ, the computation of the angles

is not possible. On the other hand, the method with the
rotation matrix has only two singularities but its computation
cost is higher. The second method has not been completely
implemented and validated yet; this is our current work.

The precision of both methods and their limitations must
be investigated and will be our main future work.

Finally, we plan to optimize the implementation of both
methods on the MMA9550L. This will allow us to provide
the angular velocity and the angles of inclination of the
device and use them for several applications, like a 3-
dimensional mouse, a virtual joystick, a human motion
tracker. The MMA9550L board can communicate with the
PC with a Bluetooth connection. Consequently, the board
can become a portable device with its own power supply.
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