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Abstract—Advancements in Artificial Intelligence (AI) have 

greatly increased the risk of digital-image tampering, 

underscoring the need to verify the integrity and authenticity of 

image data collected and transmitted within sensor networks 

and sensor-based systems. As visual threats, such as deepfakes 

and adversarial attacks proliferate, manipulated sensor images 

can trigger severe security incidents and false detections. This 

paper proposes a robust watermarking method that employs a 

three-level Discrete Wavelet Transform (DWT) and Singular 

Value Decomposition (SVD) to repeatedly embed a watermark 

into the singular values of both low- and selected high-frequency 

components. Designed to account for transmission noise and 

environmental distortions in multi-sensor settings, the proposed 

approach leverages redundancy across multiple frequency 

bands to enhance resistance to diverse signal-distortion attacks 

while keeping the watermark imperceptible. Experimental 

results show that the proposed method significantly surpasses 

conventional techniques in watermark extraction accuracy 

while preserving high image quality, establishing it as a reliable 

security solution for protecting image integrity and detecting 

tampering in sensor-based environments. 

Keywords-Sensor camera; Digital watermarking; Image 

protection. 

I.  INTRODUCTION 

The increasing prevalence of malicious video-based 
attacks, such as deepfakes and adversarial attacks, has 
increased the need for technologies that can verify the 
integrity and authenticity of image data obtained from sensor 
cameras [1]. 

For instance, a notable 2019 incident in China involved 
bypassing a facial recognition access control system with 
deepfake technology. An attacker manipulated facial images 
from existing surveillance camera footage into real-time 
deepfake videos, which were then used to deceive the system 
and compromise physical security [2]. This incident 
underscores the vulnerability of image sensor-based systems, 
particularly those integral to public safety. 

Similarly, a 2020 experiment in the United States targeting 
autonomous vehicles demonstrated the threat of adversarial 
patches. By placing specially crafted patterns on road signs, 

researchers deceived a vehicle's camera into misinterpreting a 
“STOP” sign as a “SPEED LIMIT 45” sign [3]. This attack 
exploited vulnerabilities in AI-based recognition systems, 
posing serious safety risks during road operations [4]. 

These examples illustrate the significant security threats 
that arise when malicious actors manipulate sensor-captured 
images. Consequently, verifying the integrity and authenticity 
of sensor-based image data has emerged as a critical security 
challenge [5].  

Digital watermarking is a promising solution to this 
challenge. This technique embeds identifiable information 
into image data to detect unauthorized modifications or trace 
copyright ownership. To be effective, digital watermarking 
must satisfy two key requirements: robustness against external 
attacks and imperceptibility, which preserves the original 
image's visual quality. To meet these criteria, frequency-
domain-based methods—particularly those using the Discrete 
Wavelet Transform (DWT)—are commonly employed. 
However, DWT-based methods can be vulnerable to certain 
attacks such as Joint Photographic Experts Group (JPEG) 
compression, Gaussian or salt-and-pepper noise, filtering (e.g., 
low-pass/median), and geometric transformations like 
rotation, scaling, and cropping [6]. 

To overcome these limitations, recent studies have 
combined DWT with Singular Value Decomposition (SVD). 
SVD facilitates watermark insertion by modifying an image's 
singular values, which represent its essential features, thereby 
avoiding noticeable distortion [7]. Embedding a watermark 
into the singular values of DWT-decomposed frequency 
components has been shown to enhance robustness against 
both noise and compression attacks [8]. 

In this study, we propose a method that applies a three-
level DWT to decompose an image into its low- and selected 
high-frequency components. Subsequently, SVD is used to 
embed the watermark repeatedly into these components. 
Embedding the watermark in the low-frequency region, which 
contains the image's core structural information, helps ensure 
imperceptibility, as even minor modifications in this area can 
significantly impact the visual appearance. Simultaneously, 
embedding in high-frequency components enhances 
resistance to filtering and other frequency-based attacks. 
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During the extraction process, the correlation between the 
repeated watermark signals is leveraged to correct errors and 
accurately reconstruct the original watermark, even in the 
presence of distortion. 

The main contributions of this study can be summarized 
as follows: 

• We propose a novel invisible digital watermarking 
method that combines a three-level DWT with SVD 
for robust image integrity protection. 

• The method demonstrates enhanced resilience 
against partial data loss and various signal distortion 
attacks, which is achieved by embedding the 
watermark with redundancy across multiple 
frequency components. 

• We developed a comprehensive framework to 
systematically evaluate watermarking performance 
under diverse signal distortion conditions. 

• Experimental validation confirms that the proposed 
method significantly outperforms conventional 
approaches in watermark extraction accuracy while 
maintaining high image quality. 

The remainder of this paper is organized as follows: 
Section II discusses the conventional methods employed for 
image integrity protection, Section III details the proposed 
method, Section IV outlines the experimental setup and 
procedures, and Section V presents the performance 
evaluation results. Finally, Section VI concludes the paper. 
 

II. BACKGROUND 

Prior studies have employed various techniques to verify 
the integrity and authenticity of image data, including digital 
signatures, hashing, and digital watermarking. This section 
analyzes the conventional methods used for protecting image 
data. 

A. Digital Signature 

Albahadily et al. [9] proposed a hash-based digital 
signature scheme to verify the integrity and authenticity of 
digital documents. This method generates a unique hash value 
from the document and user information using the MD5 
algorithm and embeds it as a signature. To detect tampering, 
the receiver extracts the hash value and compares it with a 
newly generated hash from the received content. This 
approach employs a lightweight hashing algorithm, enabling 
fast computation suitable for real-time processing, and is 
applicable to various data formats, including text and images. 
However, a key limitation is that the signature data must be 
stored separately from the image; therefore, the overall 
content integrity is compromised if the signature is lost or the 
image is partially modified. 

B. Hashing 

Khan et al. [10] proposed an ElGamal-based digital 
signature and encryption scheme to ensure both privacy and 
authentication for biometric image data. The method first 
randomizes the image's pixel positions using a 3D Arnold 
transform and then encrypts both the transform parameters 
and the image data with the ElGamal public-key cryptosystem. 

Integrity verification is subsequently achieved using an 
ElGamal digital signature. The scheme offers strong security 
by leveraging a public-key cryptosystem based on the discrete 
logarithm problem. Additionally, the integration of 
randomization and encryption enables both tamper detection 
and authentication while significantly reducing the risk of data 
leakage. However, the method’s general applicability is 
limited, and its high computational overhead makes it 
unsuitable for lightweight or real-time environments such as 
Internet of Things (IoT) systems. 

C. Digital Watermark 

Zhan et al. [11] proposed a reversible fragile watermarking 
scheme that can verify the integrity of digital images and 
restore their original content. The method divides an image 
into blocks and generates two types of data for each: 
Verification Information (VI) and Recovery Information (RI). 
VI is embedded directly into its corresponding block to detect 
tampering, whereas RI, used for content restoration, is 
concealed in different block locations using the Arnold 
transform. This dual-verification approach achieves high 
detection accuracy and supports both tamper detection and 
content recovery. However, recovery accuracy decreases if 
the areas containing the watermarks are tampered with, and 
the complex decoding logic limits its use in real-time 
applications. 

In a related study, Kusumaningrum et al. [12] proposed an 
image-watermarking technique combining a two-level DWT 
with SVD, where the watermark is embedded in the low-
frequency (LL2) subband, and a non-blind extraction method 
is employed. The authors compared their method against 
approaches using only DWT or SVD, evaluating robustness 
under various attacks, including salt-and-pepper noise, 
Gaussian filtering, and JPEG compression. However, their 
evaluation was limited, as it did not consider varying attack 
intensities or a sufficiently broad range of attacks to 
comprehensively validate robustness. Although their method 
outperformed individual DWT and SVD models in watermark 
extraction, it exhibited poor performance under certain attacks. 

Conventional methods demonstrate strengths in areas such 
as processing speed, security, and recoverability, but they 
typically involve trade-offs that make it challenging to satisfy 
all requirements simultaneously. Therefore, this paper 
presents a watermarking method that minimizes image quality 
degradation while maintaining robustness against external 
attacks and tampering during transmission. 

 

III. IMAGE-WATERMARKING METHOD BASED ON DWT 

AND SVD 

This study proposes an invisible watermarking scheme 
that is robust against signal distortion attacks. The proposed 
method applies a three-level DWT to decompose an image 
into multiple frequency subbands, followed by SVD on both 
the low-frequency and selected high-frequency components. 
The watermark is embedded repeatedly into the singular 
values, which enhances resistance to attacks that exploit signal 
distortions. During extraction, the watermarks embedded in 
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these multiple frequency regions are retrieved and integrated 
to successfully reconstruct the original watermark. 

The design of the method leverages the different 
properties of an image's frequency components. High-
frequency regions contain fine details such as edges and 
textures. Slight modifications to these regions are typically 
imperceptible to the human visual system, making them 
suitable for embedding invisible watermarks. However, these 
regions are vulnerable to noise attacks aimed at disrupting the 
watermark. 

In contrast, an image's low-frequency components carry 
its global structure and essential information. Because 
modifications in this region can cause noticeable degradation 
in image quality and structure, embedding watermarks here 
requires minimal distortion to preserve visual fidelity. 
Watermarks in the low-frequency band are generally robust 
against JPEG compression, which primarily targets high-
frequency content, and show lower sensitivity to attacks such 
as Gaussian noise and downsampling. As the low-frequency 
subband retains significant image information even after 
transformation, an embedded watermark can be reliably 
recovered unless the image undergoes severe degradation. 
However, this region has its vulnerabilities. High compression 
ratios can cause data loss in low-frequency components, and 
compression schemes like JPEG2000, which operate across 
the full frequency spectrum, can adversely affect the 
watermark. Moreover, global adjustments to image properties, 
such as brightness or contrast, can also impact the integrity of 
a watermark embedded in this region. 

To address these respective challenges, the proposed 
method utilizes both low- and selected high-frequency 
components to implement a robust and invisible watermarking 
scheme. 

A. Watermark Embedding Process 

Although image-watermarking techniques that combine 
DWT and SVD typically follow a similar structure, specific 

procedures vary based on research objectives, such as 
enhancing robustness, imperceptibility, or efficiency. 
Typically, the process involves applying DWT to a host image 
to generate subbands (LL, LH, HL, HH), followed by 
performing SVD on a selected subband to embed a watermark 
by modifying its singular values.  

The embedding process for the proposed method is 
illustrated in Figure 1. The size of the watermark image is 
fixed based on the host image's dimensions and the DWT level, 
as defined in (1):  

 W =
N

2𝐿
   (1) 

 
where 𝑊 denotes the side length of the watermark, N is 

the side length of the host image, and L represents the DWT 
level. In this study, a 512 × 512 host image and a three-level 
DWT were employed, necessitating a 64 × 64 watermark 
image. 

When a three-level DWT is applied to the host image, the 
frequency domain is decomposed into four subbands: LL3, 
LH3, HL3, and HH3. SVD is then performed on the low-
frequency (LL3) and selected high-frequency (LH3 and HL3) 
subbands to enable watermark embedding. The watermark is 
first embedded by modifying the singular values of these 
subbands, denoted as 𝑆𝑡. However, this modification can alter 
the host image's structural characteristics, which may degrade 
image quality or cause watermark extraction to fail if the new 
values do not align well with the original structure.  

To address this potential issue, a second SVD is employed 
as a recalibration process to refine the modified singular 
values before reconstruction. This additional step helps 
integrate the modified singular values more naturally into the 
image's structural context, yielding new, updated singular 
values ( 𝑆𝑤 ) that improve both the imperceptibility and 
robustness of the watermark. Using these updated values, the 
modified subbands (LL3t, LH3t, and HL3t) are reconstructed.  

 

 

Figure 1. Proposed watermark-embedding process.
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Figure 2. Proposed watermark-extraction process. 

 
 

Finally, an Inverse DWT (IDWT) is performed to generate 
the watermarked image. This procedure results in the 
watermark being embedded thrice into different frequency 
subbands, creating a redundant watermark structure within the 
image. 

B. Watermark-Extraction Process 

The watermark extraction process, illustrated in Figure 2, 

follows a non-blind approach. First, a three-level DWT is 

applied to the watermarked image to decompose it into its 

constituent frequency subbands. SVD is then performed on 

the LL3, LH3, and HL3 subbands to extract the singular value 

matrices (𝑆𝑤), where the watermark was embedded. Using 

these extracted matrices along with the corresponding 

original 𝑈𝑤  and 𝑉𝑤  matrices, the watermark images are 

reconstructed. Because the watermark is embedded 

separately into the LL3, LH3, and HL3 subbands, three 

distinct instances can be extracted for the final reconstruction. 

The final watermark is reconstructed by fusing these three 

instances. Median fusion is first applied to the corresponding 

pixel values of the watermarks extracted from the high-

frequency LH3 and HL3 subbands. This step integrates their 

information while reducing the influence of noise. The 

resulting intermediate watermark is then combined with the 

watermark from the LL3 subband using a weighted 

combination. Because the LL3 subband contains the most 

critical structural information and is least affected by 

distortions, its extracted watermark is assigned a higher 

weight. This ensures that the LL3 watermark plays a 

dominant role in the reconstruction, whereas the components 

from LH3 and HL3 serve as complementary sources of 

information. 

 

IV. EVALUATION METHODOLOGY 

This section details the methodology used to evaluate the 
performance of the proposed DWT-SVD image-
watermarking method. IT describes the experimental setup, 
attack scenarios, evaluation metrics, and the procedure for 
embedding and extraction. 

A. Experiment Environments 

As shown in Figure 3, the experiments employed 512 × 
512 pixel grayscale host images and a 64 × 64 pixel grayscale 
watermark image. 

 
Figure 3. Host and watermark images used in the experiment: (a) Peppers, 

(b) Mandrill, and (c) watermark image. 

To evaluate the robustness of the proposed watermarking 
scheme, seven distinct signal distortion attacks—
encompassing noise, compression, and filtering—were 
applied to the watermarked images. Each attack was 
conducted at five intensity levels, from mild (Level 1) to 
severe (Level 5), to assess performance under varying 
conditions. The specific parameters controlling the intensity 
for each attack are summarized in TABLE I.  

The intensity of each attack was controlled by specific 
parameters. For Gaussian noise, intensity was determined by  
the variance, where a higher value corresponds to stronger 
noise. 

For salt-and-pepper noise, the density parameter 
represented the proportion of affected pixels; for instance, a 
density of 0.1 adds salt noise (white pixels, value = 255) to 5%  
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TABLE I. ATTACK PARAMETERS AND INTENSITIES. 

Attack Parameter 
Attack intensity (level) 

1 2 3 4 5 

Gaussian 

noise 
Variance 0.001 0.005 0.01 0.05 0.1 

Salt-and-

pepper 
Density 0.01 0.03 0.05 0.1 0.2 

Speckle 

noise 
Probability 0.01 0.03 0.05 0.1 0.2 

JPEG Quality 

factor 

90 70 50 30 10 

JPEG2000 90 70 50 30 10 

Blurring 

attack Kernel  

size 

3 5 7 9 11 

Low-pass 

filtering 
3 5 7 9 11 

of the pixels and pepper noise (black pixels, value = 0) to 
another 5%, resulting in a total of 10% corrupted pixels. 

Speckle intensity was controlled by a probability 
parameter, which defines the likelihood that any given pixel 
will be corrupted by noise. Here, higher probability results in 
noisier pixels. 

For JPEG and JPEG2000 compression, the attack intensity 
was set by the quality factor, with lower factors indicating 
stronger compression and greater image quality loss. 

Finally, for blurring and low-pass filtering, the kernel size 
determined the intensity. A larger kernel produces a stronger 
blur effect (greater information loss) or, in the case of low-

pass filtering, removes more high-frequency components. For 
instance, a kernel size of 3 corresponds to a 3 × 3 filter. Each 
attack was applied at five intensity levels, from weak (Level 
1) to very strong (Level 5), to evaluate the method’s 
robustness under all scenarios. 

B. Experimental Procedure 

The experimental workflow is illustrated in Figure 4. The 
embedding process begins by applying a three-level DWT to 
the 512 × 512 host image, using the Daubechies 4 (db4) 
wavelet with periodization to decompose it into LL3, LH3, 
HL3, and HH3 subbands. SVD is then applied to the LL3, 
LH3, and HL3 subbands. The watermark is embedded into the 
singular value matrices using a scaling factor, α, followed by 
the second SVD recalibration step. The modified subbands 
(LL3t, LH3t, and HL3t) are then reconstructed and used in an 
inverse DWT (IDWT) to generate the final watermarked 
image. 

For the robustness evaluation, each signal distortion attack 
was applied to the watermarked image. The watermark was 
then extracted from the attacked image by first applying a 
three-level DWT, followed by SVD on the LL3t, LH3t, and 
HL3t subbands. The same scaling factor α used during 
embedding is applied during extraction. The three extracted 
watermarks are then combined to reconstruct the final image. 
This is done by first applying median fusion to the watermark 
data from the LH3 and HL3 subbands to reduce noise and 
produce an intermediate watermark. This watermark is then 
combined with the LL3 watermark using a weighted 
combination, assigning a weight of 0.9 to the low-frequency 
data and 0.3 to the high-frequency data. 

 

Figure 4. Flowchart of the experimental procedure. 
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C. Performance Evaluation Metrics 

To assess watermark extraction accuracy and image 
quality, the following performance evaluation metrics were 
used:  

Normalized Cross-Correlation (NCC) measures the 
similarity between two images, and in this study, it was used 
to compare the host image with the watermarked image and 
the original watermark with the extracted one [13]. 

Mean Squared Error (MSE) quantifies the pixel-wise 
numerical error between the original and altered images by 
averaging the squared differences between corresponding 
pixels, which evaluates the distortion caused by watermark 
embedding [14]. 

The Peak Signal-to-Noise Ratio (PSNR) is a widely used 
metric for assessing the quality of a distorted image compared 
to its original version; a higher PSNR value indicates better 
preservation of image quality after embedding [15]. 

The Structural Similarity Index Measure (SSIM) evaluates 
the structural similarity between two images by incorporating 
characteristics of the human visual system, such as luminance, 
contrast, and structure, making it a more perceptually relevant 
indicator than PSNR [16]. 

 

V. EXPERIMENTS 

To validate the performance of the proposed method, a 
comparative analysis was conducted against a conventional 
method, which employs a two-level DWT and SVD, 
embedding the watermark only in the low-frequency (LL2) 
subband [12]. Both methods used the same watermark 
embedding strength (𝛼 ), and robustness was evaluated by 
applying seven signal distortion attacks at five different 
intensity levels to assess performance under varying degrees 
of attack severity. 

A. Image Quality Comparison 

Figure 5 compares the image quality of the conventional 
and proposed methods using the Peppers and Mandrill images. 
The conventional method yielded slightly better visual quality 
because it only embeds the watermark in the low-frequency 
subband (LL2), preserving more of the original image content.  

 
Figure 5. Image-quality comparison between the conventional and 

proposed methods: (a, c) Peppers and (b, d) Mandrill. 

With the proposed method, the PSNR for the Peppers and 
Mandrill images decreased by 11.5% and 7.28%, respectively, 
although both values remained high, exceeding 40 dB. 
Similarly, the SSIM values showed only a marginal decline of 
1.25% and 0.4%, respectively, with scores remaining above 
0.98, indicating excellent perceptual similarity. 

B. Watermark-Extraction Performance 

To compare the watermark extraction performance of the 
conventional and proposed methods, the seven signal 
distortion attacks were applied to the watermarked images at 
five intensity levels. 

The performance was then evaluated using the NCC and 
PSNR metrics. 

As shown in Figure 6, the conventional method exhibited 
significant performance degradation in NCC for the Peppers 
and Mandrill images as the intensity of Gaussian noise, 
sparkle noise, and low-pass filtering attacks increased, with 
noticeable drops also observed for salt-and-pepper and 
blurring attacks. Specifically, as attack intensity rose from 
Level 1 to 5, image deteriorated by 75% (Gaussian noise), 
89.99% (sparkle noise), and 82.55% (low-pass filtering). The 
Mandrill image showed similar degradation rates of 65.95%, 
90.44%, and 92.34% for the same attacks. 

By contrast, while the proposed method’s performance 
also declined with increasing attack intensity, the degradation 
was significantly lower. For instance, under the most 
impactful low-pass filtering attack, the proposed method's 
performance dropped by only 14.26% for Peppers and 16.10% 
for Mandrill, demonstrating its superior robustness. 

While there was no substantial performance difference for 
most compression attacks, the proposed method was superior 
under severe JPEG2000 (Level 5) compression, 
outperforming the conventional method by 31.47% for 
Peppers and 94.66% for Mandrill. 

As presented in Figure 7, the conventional method showed 
a sharp decline in PSNR for nearly all attacks, failing to 
maintain stable performance even at weak, Level 1 intensities 
(except for JPEG compression). The most severe degradation 
occurred with the speckle noise attack; for the Peppers image, 
PSNR dropped from 12.60 dB (Level 1) to -12.83 dB (Level 
5), a 201.86% decline. By contrast, the proposed method 
demonstrated consistently stable PSNR performance. Only 
minor degradation was observed for noise and low-pass 
filtering attacks between Levels 1 and 2, with values 
remaining relatively stable thereafter. Although compression 
attacks caused some degradation, the decline was 
considerably less severe than that with the conventional 
method, and the proposed method maintained higher 
extraction performance across all attack intensities. 

 

VI. CONCLUSION AND FUTURE WORK 

This paper presented a digital-image watermarking 

scheme that achieves both high robustness against signal 

distortion attacks and strong imperceptibility. The method 

combines a three-level DWT with SVD, repeatedly 

embedding a watermark into the singular values of the low-  
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Figure 6. Extraction-performance comparison of conventional and proposed methods based on attack intensity—NCC (top: Peppers, bottom: Mandrill).

 

Figure 7. Extraction-performance comparison of conventional and proposed methods based on attack intensity—PSNR (top: Peppers, bottom: Mandrill).
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frequency (LL3) and selected high-frequency (LH3, HL3) 

subbands. This redundant embedding enhances robustness 

against various attacks while allowing for the complementary 

recovery of damaged watermark data, effectively mitigating 

the typical trade-off between imperceptibility and robustness 

found in conventional methods. 

Experimental results demonstrated that the scheme 

preserves excellent image quality, maintaining high PSNR 

and SSIM values after embedding. The redundancy led to 

significantly improved extraction performance; even when 

parts of the watermark were degraded, the copies enabled 

accurate reconstruction and reliable detection. Moreover, the 

method consistently showed strong performance under 

various levels of noise and compression attacks. 

Therefore, the proposed method represents a practical 

solution for protecting image data in sensor network 

environments, offering an effective alternative for 

applications where high reliability and imperceptibility are 

essential. 
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