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Abstract—Advancements in Artificial Intelligence (AI) have
greatly increased the risk of digital-image tampering,
underscoring the need to verify the integrity and authenticity of
image data collected and transmitted within sensor networks
and sensor-based systems. As visual threats, such as deepfakes
and adversarial attacks proliferate, manipulated sensor images
can trigger severe security incidents and false detections. This
paper proposes a robust watermarking method that employs a
three-level Discrete Wavelet Transform (DWT) and Singular
Value Decomposition (SVD) to repeatedly embed a watermark
into the singular values of both low- and selected high-frequency
components. Designed to account for transmission noise and
environmental distortions in multi-sensor settings, the proposed
approach leverages redundancy across multiple frequency
bands to enhance resistance to diverse signal-distortion attacks
while keeping the watermark imperceptible. Experimental
results show that the proposed method significantly surpasses
conventional techniques in watermark extraction accuracy
while preserving high image quality, establishing it as a reliable
security solution for protecting image integrity and detecting
tampering in sensor-based environments.

Keywords-Sensor camera; Digital watermarking; Image
protection.

L INTRODUCTION

The increasing prevalence of malicious video-based
attacks, such as deepfakes and adversarial attacks, has
increased the need for technologies that can verify the
integrity and authenticity of image data obtained from sensor
cameras [1].

For instance, a notable 2019 incident in China involved
bypassing a facial recognition access control system with
deepfake technology. An attacker manipulated facial images
from existing surveillance camera footage into real-time
deepfake videos, which were then used to deceive the system
and compromise physical security [2]. This incident
underscores the vulnerability of image sensor-based systems,
particularly those integral to public safety.

Similarly, a 2020 experiment in the United States targeting
autonomous vehicles demonstrated the threat of adversarial
patches. By placing specially crafted patterns on road signs,
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researchers deceived a vehicle's camera into misinterpreting a
“STOP” sign as a “SPEED LIMIT 45” sign [3]. This attack
exploited vulnerabilities in Al-based recognition systems,
posing serious safety risks during road operations [4].

These examples illustrate the significant security threats
that arise when malicious actors manipulate sensor-captured
images. Consequently, verifying the integrity and authenticity
of sensor-based image data has emerged as a critical security
challenge [5].

Digital watermarking is a promising solution to this
challenge. This technique embeds identifiable information
into image data to detect unauthorized modifications or trace
copyright ownership. To be effective, digital watermarking
must satisfy two key requirements: robustness against external
attacks and imperceptibility, which preserves the original
image's visual quality. To meet these criteria, frequency-
domain-based methods—particularly those using the Discrete
Wavelet Transform (DWT)—are commonly employed.
However, DWT-based methods can be vulnerable to certain
attacks such as Joint Photographic Experts Group (JPEG)
compression, Gaussian or salt-and-pepper noise, filtering (e.g.,
low-pass/median), and geometric transformations like
rotation, scaling, and cropping [6].

To overcome these limitations, recent studies have
combined DWT with Singular Value Decomposition (SVD).
SVD facilitates watermark insertion by modifying an image's
singular values, which represent its essential features, thereby
avoiding noticeable distortion [7]. Embedding a watermark
into the singular values of DWT-decomposed frequency
components has been shown to enhance robustness against
both noise and compression attacks [8].

In this study, we propose a method that applies a three-
level DWT to decompose an image into its low- and selected
high-frequency components. Subsequently, SVD is used to
embed the watermark repeatedly into these components.
Embedding the watermark in the low-frequency region, which
contains the image's core structural information, helps ensure
imperceptibility, as even minor modifications in this area can
significantly impact the visual appearance. Simultaneously,
embedding in high-frequency components enhances
resistance to filtering and other frequency-based attacks.
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During the extraction process, the correlation between the
repeated watermark signals is leveraged to correct errors and
accurately reconstruct the original watermark, even in the
presence of distortion.

The main contributions of this study can be summarized
as follows:

e  We propose a novel invisible digital watermarking
method that combines a three-level DWT with SVD
for robust image integrity protection.

e The method demonstrates enhanced resilience
against partial data loss and various signal distortion
attacks, which is achieved by embedding the
watermark with redundancy across multiple
frequency components.

e We developed a comprehensive framework to
systematically evaluate watermarking performance
under diverse signal distortion conditions.

e Experimental validation confirms that the proposed
method significantly outperforms conventional
approaches in watermark extraction accuracy while
maintaining high image quality.

The remainder of this paper is organized as follows:
Section II discusses the conventional methods employed for
image integrity protection, Section III details the proposed
method, Section IV outlines the experimental setup and
procedures, and Section V presents the performance
evaluation results. Finally, Section VI concludes the paper.

II.  BACKGROUND

Prior studies have employed various techniques to verify
the integrity and authenticity of image data, including digital
signatures, hashing, and digital watermarking. This section
analyzes the conventional methods used for protecting image
data.

A. Digital Signature

Albahadily et al. [9] proposed a hash-based digital
signature scheme to verify the integrity and authenticity of
digital documents. This method generates a unique hash value
from the document and user information using the MDS5
algorithm and embeds it as a signature. To detect tampering,
the receiver extracts the hash value and compares it with a
newly generated hash from the received content. This
approach employs a lightweight hashing algorithm, enabling
fast computation suitable for real-time processing, and is
applicable to various data formats, including text and images.
However, a key limitation is that the signature data must be
stored separately from the image; therefore, the overall
content integrity is compromised if the signature is lost or the
image is partially modified.

B. Hashing

Khan et al. [10] proposed an ElGamal-based digital
signature and encryption scheme to ensure both privacy and
authentication for biometric image data. The method first
randomizes the image's pixel positions using a 3D Arnold
transform and then encrypts both the transform parameters

and the image data with the ElGamal public-key cryptosystem.

Integrity verification is subsequently achieved using an
ElGamal digital signature. The scheme offers strong security
by leveraging a public-key cryptosystem based on the discrete
logarithm problem. Additionally, the integration of
randomization and encryption enables both tamper detection
and authentication while significantly reducing the risk of data
leakage. However, the method’s general applicability is
limited, and its high computational overhead makes it
unsuitable for lightweight or real-time environments such as
Internet of Things (IoT) systems.

C. Digital Watermark

Zhanetal. [11] proposed a reversible fragile watermarking
scheme that can verify the integrity of digital images and
restore their original content. The method divides an image
into blocks and generates two types of data for each:
Verification Information (VI) and Recovery Information (RI).
VI is embedded directly into its corresponding block to detect
tampering, whereas RI, used for content restoration, is
concealed in different block locations using the Arnold
transform. This dual-verification approach achieves high
detection accuracy and supports both tamper detection and
content recovery. However, recovery accuracy decreases if
the areas containing the watermarks are tampered with, and
the complex decoding logic limits its use in real-time
applications.

In arelated study, Kusumaningrum et al. [12] proposed an
image-watermarking technique combining a two-level DWT
with SVD, where the watermark is embedded in the low-
frequency (LL2) subband, and a non-blind extraction method
is employed. The authors compared their method against
approaches using only DWT or SVD, evaluating robustness
under various attacks, including salt-and-pepper noise,
Gaussian filtering, and JPEG compression. However, their
evaluation was limited, as it did not consider varying attack
intensities or a sufficiently broad range of attacks to
comprehensively validate robustness. Although their method
outperformed individual DWT and SVD models in watermark

extraction, it exhibited poor performance under certain attacks.

Conventional methods demonstrate strengths in areas such
as processing speed, security, and recoverability, but they
typically involve trade-offs that make it challenging to satisfy
all requirements simultaneously. Therefore, this paper
presents a watermarking method that minimizes image quality
degradation while maintaining robustness against external
attacks and tampering during transmission.

III. IMAGE-WATERMARKING METHOD BASED ON DWT
AND SVD

This study proposes an invisible watermarking scheme
that is robust against signal distortion attacks. The proposed
method applies a three-level DWT to decompose an image
into multiple frequency subbands, followed by SVD on both
the low-frequency and selected high-frequency components.
The watermark is embedded repeatedly into the singular
values, which enhances resistance to attacks that exploit signal
distortions. During extraction, the watermarks embedded in
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these multiple frequency regions are retrieved and integrated
to successfully reconstruct the original watermark.

The design of the method leverages the different
properties of an image's frequency components. High-
frequency regions contain fine details such as edges and
textures. Slight modifications to these regions are typically
imperceptible to the human visual system, making them
suitable for embedding invisible watermarks. However, these
regions are vulnerable to noise attacks aimed at disrupting the
watermark.

In contrast, an image's low-frequency components carry
its global structure and essential information. Because
modifications in this region can cause noticeable degradation
in image quality and structure, embedding watermarks here
requires minimal distortion to preserve visual fidelity.
Watermarks in the low-frequency band are generally robust
against JPEG compression, which primarily targets high-
frequency content, and show lower sensitivity to attacks such
as Gaussian noise and downsampling. As the low-frequency
subband retains significant image information even after
transformation, an embedded watermark can be reliably
recovered unless the image undergoes severe degradation.
However, this region has its vulnerabilities. High compression
ratios can cause data loss in low-frequency components, and
compression schemes like JPEG2000, which operate across
the full frequency spectrum, can adversely affect the
watermark. Moreover, global adjustments to image properties,
such as brightness or contrast, can also impact the integrity of
a watermark embedded in this region.

To address these respective challenges, the proposed
method utilizes both low- and selected high-frequency
components to implement a robust and invisible watermarking
scheme.

A. Watermark Embedding Process

Although image-watermarking techniques that combine
DWT and SVD typically follow a similar structure, specific
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procedures vary based on research objectives, such as
enhancing robustness, imperceptibility, or efficiency.
Typically, the process involves applying DWT to a host image
to generate subbands (LL, LH, HL, HH), followed by
performing SVD on a selected subband to embed a watermark
by modifying its singular values.

The embedding process for the proposed method is
illustrated in Figure 1. The size of the watermark image is
fixed based on the host image's dimensions and the DWT level,
as defined in (1):

N
W=

(M

where W denotes the side length of the watermark, N is
the side length of the host image, and L represents the DWT
level. In this study, a 512 x 512 host image and a three-level
DWT were employed, necessitating a 64 x 64 watermark
image.

When a three-level DWT is applied to the host image, the
frequency domain is decomposed into four subbands: LL3,
LH3, HL3, and HH3. SVD is then performed on the low-
frequency (LL3) and selected high-frequency (LH3 and HL3)
subbands to enable watermark embedding. The watermark is
first embedded by modifying the singular values of these
subbands, denoted as S;. However, this modification can alter
the host image's structural characteristics, which may degrade
image quality or cause watermark extraction to fail if the new
values do not align well with the original structure.

To address this potential issue, a second SVD is employed
as a recalibration process to refine the modified singular
values before reconstruction. This additional step helps
integrate the modified singular values more naturally into the
image's structural context, yielding new, updated singular
values (S,, ) that improve both the imperceptibility and
robustness of the watermark. Using these updated values, the
modified subbands (LL3t, LH3t, and HL3t) are reconstructed.
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Figure 1. Proposed watermark-embedding process.
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Figure 2. Proposed watermark-extraction process.

Finally, an Inverse DWT (IDWT) is performed to generate
the watermarked image. This procedure results in the
watermark being embedded thrice into different frequency
subbands, creating a redundant watermark structure within the
image.

B. Watermark-Extraction Process

The watermark extraction process, illustrated in Figure 2,
follows a non-blind approach. First, a three-level DWT is
applied to the watermarked image to decompose it into its
constituent frequency subbands. SVD is then performed on
the LL3, LH3, and HL3 subbands to extract the singular value
matrices (S,,), where the watermark was embedded. Using
these extracted matrices along with the corresponding
original U,, and V,, matrices, the watermark images are
reconstructed. Because the watermark is embedded
separately into the LL3, LH3, and HL3 subbands, three
distinct instances can be extracted for the final reconstruction.

The final watermark is reconstructed by fusing these three
instances. Median fusion is first applied to the corresponding
pixel values of the watermarks extracted from the high-
frequency LH3 and HL3 subbands. This step integrates their
information while reducing the influence of noise. The
resulting intermediate watermark is then combined with the
watermark from the LL3 subband using a weighted
combination. Because the LL3 subband contains the most
critical structural information and is least affected by
distortions, its extracted watermark is assigned a higher
weight. This ensures that the LL3 watermark plays a
dominant role in the reconstruction, whereas the components
from LH3 and HL3 serve as complementary sources of
information.

IV. EVALUATION METHODOLOGY

This section details the methodology used to evaluate the
performance of the proposed DWT-SVD image-
watermarking method. IT describes the experimental setup,
attack scenarios, evaluation metrics, and the procedure for
embedding and extraction.

A. Experiment Environments

As shown in Figure 3, the experiments employed 512 x
512 pixel grayscale host images and a 64 x 64 pixel grayscale
watermark image.

Watermark Image
(64 x 64)

KSY

(®) ©
Figure 3. Host and watermark images used in the experiment: (a) Peppers,
(b) Mandrill, and (c) watermark image.

To evaluate the robustness of the proposed watermarking
scheme, seven distinct signal distortion attacks—
encompassing noise, compression, and filtering—were
applied to the watermarked images. Each attack was
conducted at five intensity levels, from mild (Level 1) to
severe (Level 5), to assess performance under varying
conditions. The specific parameters controlling the intensity
for each attack are summarized in TABLE L.

The intensity of each attack was controlled by specific
parameters. For Gaussian noise, intensity was determined by
the variance, where a higher value corresponds to stronger
noise.

For salt-and-pepper noise, the density parameter
represented the proportion of affected pixels; for instance, a
density of 0.1 adds salt noise (white pixels, value =255) to 5%
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TABLE I. ATTACK PARAMETERS AND INTENSITIES.

Attack intensity (level
Attack Parameter ack intensity (level)
1| 2] 3] 415

Gaussian | /. iance [0.001[0.005| 0.01 | 0.05 | 0.1
noise

Salt-and- | Gty | 0.01 | 003|005 01 | 02
pepper

Speckle |5, Sbabitity | 0.01 | 0.03 | 0.05 | 0.1 | 0.2
noise

JPEG Quality | 90 | 70 [ 50 | 30 | 10
JPEG2000 | factor | 90 | 70 | 50 | 30 | 10
Blurring

attack Kernel 3 > 7 9 1
Low-pass size

filtering 3 > 7 ? 1

of the pixels and pepper noise (black pixels, value = 0) to
another 5%, resulting in a total of 10% corrupted pixels.

Speckle intensity was controlled by a probability
parameter, which defines the likelihood that any given pixel
will be corrupted by noise. Here, higher probability results in
noisier pixels.

For JPEG and JPEG2000 compression, the attack intensity
was set by the quality factor, with lower factors indicating
stronger compression and greater image quality loss.

Finally, for blurring and low-pass filtering, the kernel size
determined the intensity. A larger kernel produces a stronger
blur effect (greater information loss) or, in the case of low-

pass filtering, removes more high-frequency components. For
instance, a kernel size of 3 corresponds to a 3 x 3 filter. Each
attack was applied at five intensity levels, from weak (Level
1) to very strong (Level 5), to evaluate the method’s
robustness under all scenarios.

B. Experimental Procedure

The experimental workflow is illustrated in Figure 4. The
embedding process begins by applying a three-level DWT to
the 512 x 512 host image, using the Daubechies 4 (db4)
wavelet with periodization to decompose it into LL3, LH3,
HL3, and HH3 subbands. SVD is then applied to the LL3,
LH3, and HL3 subbands. The watermark is embedded into the
singular value matrices using a scaling factor, a, followed by
the second SVD recalibration step. The modified subbands
(LL3t, LH3t, and HL3t) are then reconstructed and used in an
inverse DWT (IDWT) to generate the final watermarked
image.

For the robustness evaluation, each signal distortion attack
was applied to the watermarked image. The watermark was
then extracted from the attacked image by first applying a
three-level DWT, followed by SVD on the LL3t, LH3t, and
HL3t subbands. The same scaling factor a used during
embedding is applied during extraction. The three extracted
watermarks are then combined to reconstruct the final image.
This is done by first applying median fusion to the watermark
data from the LH3 and HL3 subbands to reduce noise and
produce an intermediate watermark. This watermark is then
combined with the LL3 watermark using a weighted
combination, assigning a weight of 0.9 to the low-frequency
data and 0.3 to the high-frequency data.
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Figure 4. Flowchart of the experimental procedure.
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C. Performance Evaluation Metrics

To assess watermark extraction accuracy and image
quality, the following performance evaluation metrics were
used:

Normalized Cross-Correlation (NCC) measures the
similarity between two images, and in this study, it was used
to compare the host image with the watermarked image and
the original watermark with the extracted one [13].

Mean Squared Error (MSE) quantifies the pixel-wise
numerical error between the original and altered images by
averaging the squared differences between corresponding
pixels, which evaluates the distortion caused by watermark
embedding [14].

The Peak Signal-to-Noise Ratio (PSNR) is a widely used
metric for assessing the quality of a distorted image compared
to its original version; a higher PSNR value indicates better
preservation of image quality after embedding [15].

The Structural Similarity Index Measure (SSIM) evaluates
the structural similarity between two images by incorporating
characteristics of the human visual system, such as luminance,
contrast, and structure, making it a more perceptually relevant
indicator than PSNR [16].

V. EXPERIMENTS

To validate the performance of the proposed method, a
comparative analysis was conducted against a conventional
method, which employs a two-level DWT and SVD,
embedding the watermark only in the low-frequency (LL2)
subband [12]. Both methods used the same watermark
embedding strength (a), and robustness was evaluated by
applying seven signal distortion attacks at five different
intensity levels to assess performance under varying degrees
of attack severity.

A. Image Quality Comparison
Figure 5 compares the image quality of the conventional

and proposed methods using the Peppers and Mandrill images.

The conventional method yielded slightly better visual quality
because it only embeds the watermark in the low-frequency
subband (LL2), preserving more of the original image content.

Peppers (conventional / proposed) Mandrill (conventional / proposed)

[ P — 1 50 —— ]
EPSNR| -Psw[

45 —e—ssim | loss 45 [|—0—SSIM 098
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2 {09 z2s

H | ]

o 20 {os8 a 20 088
15 {086 15 086
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Conventional Proposed Conventional Proposed

Peppers Mandrill

SSIM
o
©

SsiM

Figure 5. Image-quality comparison between the conventional and
proposed methods: (a, ¢) Peppers and (b, d) Mandrill.

With the proposed method, the PSNR for the Peppers and
Mandrill images decreased by 11.5% and 7.28%, respectively,
although both values remained high, exceeding 40 dB.
Similarly, the SSIM values showed only a marginal decline of
1.25% and 0.4%, respectively, with scores remaining above
0.98, indicating excellent perceptual similarity.

B. Watermark-Extraction Performance

To compare the watermark extraction performance of the
conventional and proposed methods, the seven signal
distortion attacks were applied to the watermarked images at
five intensity levels.

The performance was then evaluated using the NCC and
PSNR metrics.

As shown in Figure 6, the conventional method exhibited
significant performance degradation in NCC for the Peppers
and Mandrill images as the intensity of Gaussian noise,
sparkle noise, and low-pass filtering attacks increased, with
noticeable drops also observed for salt-and-pepper and
blurring attacks. Specifically, as attack intensity rose from
Level 1 to 5, image deteriorated by 75% (Gaussian noise),
89.99% (sparkle noise), and 82.55% (low-pass filtering). The
Mandprill image showed similar degradation rates of 65.95%,
90.44%, and 92.34% for the same attacks.

By contrast, while the proposed method’s performance
also declined with increasing attack intensity, the degradation
was significantly lower. For instance, under the most
impactful low-pass filtering attack, the proposed method's

performance dropped by only 14.26% for Peppers and 16.10%

for Mandrill, demonstrating its superior robustness.

While there was no substantial performance difference for
most compression attacks, the proposed method was superior
under severe JPEG2000 (Level 5) compression,
outperforming the conventional method by 31.47% for
Peppers and 94.66% for Mandrill.

As presented in Figure 7, the conventional method showed
a sharp decline in PSNR for nearly all attacks, failing to
maintain stable performance even at weak, Level 1 intensities
(except for JPEG compression). The most severe degradation
occurred with the speckle noise attack; for the Peppers image,
PSNR dropped from 12.60 dB (Level 1) to -12.83 dB (Level
5), a 201.86% decline. By contrast, the proposed method
demonstrated consistently stable PSNR performance. Only
minor degradation was observed for noise and low-pass
filtering attacks between Levels 1 and 2, with values
remaining relatively stable thereafter. Although compression
attacks caused some degradation, the decline was
considerably less severe than that with the conventional
method, and the proposed method maintained higher
extraction performance across all attack intensities.

VL

This paper presented a digital-image watermarking
scheme that achieves both high robustness against signal
distortion attacks and strong imperceptibility. The method
combines a three-level DWT with SVD, repeatedly
embedding a watermark into the singular values of the low-

CONCLUSION AND FUTURE WORK
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frequency (LL3) and selected high-frequency (LH3, HL3)
subbands. This redundant embedding enhances robustness
against various attacks while allowing for the complementary
recovery of damaged watermark data, effectively mitigating
the typical trade-off between imperceptibility and robustness
found in conventional methods.

Experimental results demonstrated that the scheme
preserves excellent image quality, maintaining high PSNR
and SSIM values after embedding. The redundancy led to
significantly improved extraction performance; even when
parts of the watermark were degraded, the copies enabled
accurate reconstruction and reliable detection. Moreover, the
method consistently showed strong performance under
various levels of noise and compression attacks.

Therefore, the proposed method represents a practical
solution for protecting image data in sensor network
environments, offering an effective alternative for
applications where high reliability and imperceptibility are
essential.
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