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Abstract— The recent increase in Internet of Things devices and 

wireless network equipment has led to frequent occurrences of 

overlapping basic service set environments, where multiple 

wireless networks share the same or adjacent channels within 

the same space. In these environments, network quality 

degrades owing to channel interference. Previous studies have 

attempted to avoid interference by blocking some links or using 

time-division methods; however, these methods have limitations 

in responding to real-time environmental changes and 

improving overall network throughput and spatial reuse rates. 

This study proposes a Machine Learning-based joint control 

technique for TX power and RX sensitivity. This technique is 

implemented in both centralized and distributed architectures. 

Each node recognizes the network state, predicts optimal 

parameters through a Machine Learning model, and applies 

them to minimize interference. Experimental results 

demonstrate that the proposed technique achieves up to 47.1% 

higher effective throughput and 29.6% better measured Signal-

to-Interference-plus-Noise-Ratio compared with the 

conventional technique. The proposed distributed technique 

demonstrated approximately 46.4% higher effective 

throughput (21.43 Mbps) than the conventional central 

technique under low traffic load and maintained relatively high 

link quality even in environments with increased traffic load. 

While the proposed distributed method incurred higher control 

overhead owing to increased computational requirements 

compared with the conventional distributed method, the 

distributed architecture enables each Access Point to operate 

independently, allowing for parallel processing benefits in 

actual network deployments. 

Keywords- Overlapping Basic Service Set; Machine Learning; 

TX power and RX sensitivity Control; Internet of Things Wireless 

Networks. 

I.  INTRODUCTION 

The recent rapid growth of Internet of Things (IoT) 
devices and wireless network equipment has led to the 
frequent occurrence of Overlapping Basic Service Set (OBSS) 
environments, where multiple wireless networks share the 
same or adjacent channels within the same space [1]. In these 
environments, the performance degradation due to channel 
interference increases significantly. Furthermore, attackers 
can intentionally generate interference signals or unnecessary 
traffic, resulting in jamming attacks that threaten the network 
availability and reliability [2]. Existing OBSS interference 
mitigation techniques primarily avoid interference issues by 

blocking certain links or applying time-division methods. 
However, these approaches have limitations: they degrade the 
overall network throughput and Spatial Reuse (SR) rates [3]. 
They often focus solely on TX power control (on sender side) 
or rely on predefined probability models, thereby failing to 
respond effectively to real-time changes in the network 
environment or dynamic traffic patterns. Furthermore, they do 
not consider controlling the RX sensitivity (on receiver side), 
which can also affect the interference. Therefore, this study 
views the OBSS environment as a resource to be managed 
efficiently, and not merely as a constraint to avoid. This study 
proposes a Machine Learning (ML)-based framework that 
jointly controls TX power and RX sensitivity. This study 
implemented and compared the performances of centralized 
and distributed architectures. The centralized approach 
utilizes network-wide information to enable global 
optimization, whereas the distributed approach allows each 
Access Point (AP) to perform predictions independently based 
solely on local information, ensuring scalability and 
practicality. We compared and analyzed the performance of 
the conventional technique and two proposed approaches. The 
main contributions of this study are as follows: 

 • Centralized and distributed ML architectures are 
proposed, demonstrating the trade-off between performance 
and control overhead in OBSS networks. 

• TX power and RX sensitivity are optimized to support 
simultaneous connections for more devices. 

• The trade-off between the Signal-to-Interference-plus-
Noise-Ratio (SINR) of AP–Station (STA) communication 
pairs and the overall network connectivity is analyzed, and 
criteria for simultaneous connections are presented. 

The structure of this paper is as follows: Section II reviews 
the research related to OBSS interference mitigation and ML-
based network optimization. Section III describes the 
proposed technique, and Section IV presents the simulation 
model. Section V details the experimental environment and 
Section VI discusses the performance evaluation results. 
Finally, Section VII presents conclusions and directions for 
future research. 

II. RELATED WORK 

Jung et al. [4] proposed an OBSS packet detection SR 
technique based on an optimized TX power control to achieve 
high throughput in OBSS environments. The proposed 
technique derives the optimal TX power that maximizes the 
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communication success probability through probabilistic 
geometric analysis and adjusts the clear channel assessment 
threshold accordingly to reduce interference and increase 
channel access opportunities. However, this technique has 
limitations in that it calculates the optimal values based on 
predefined probability models, making it difficult to adapt 
flexibly to real-time changes in the network environment or 
dynamic traffic patterns. Zhu et al. [5] improved the 
performance of coordinated SR (CSR) in an IEEE 802.11be 
environment through TX power adjustment and distributed 
optimization using adaptive CSR and distributed CSR. 
However, this study did not address RX sensitivity control or 
adaptability to real-time environmental changes via ML, 
thereby limiting the comprehensive optimization of the 
transmit/receive parameters in dynamic traffic environments. 
In addition, Haxhibeqiri et al. [6] proposed a centralized CSR 
approach to centrally optimize transmit parameters to resolve 
OBSS interference issues and enhance network throughput. 
This approach aims to optimize TX power and Modulation 
and Coding Scheme (MCS) index to avoid interference at the 
main receiver. However, centralized structures have limited 
SR efficiency in dynamic environments owing to structural 
constraints, such as scalability, overhead, and single points of 
failure. It also has the limitation of focusing solely on TX 
power without simultaneously considering RX sensitivity 
joint control. Wojnar et al. [7] proposed a learning-based 
scheduling technique using multi-armed bandits (MABs) to 
optimize the TX power of multiple APs in an IEEE 802.11bn 
CSR environment. Specifically, they contributed to an 80% 
throughput improvement using hierarchical MAB (H-MAB) 
in a centralized manner. However, this study has limitations 
in terms of interference management, because it does not 
consider RX sensitivity control. 

Previous studies have proposed various approaches to 
mitigate interference and enhance the SR efficiency in OBSS 
environments, such as TX power optimization and centralized 
or distributed parameter control. However, most of these 
approaches rely on predefined models, making them difficult 
to adapt flexibly to real-time changes in network 
environments and dynamic traffic patterns. Furthermore, 
comprehensive control strategies that simultaneously consider 
both TX power and RX sensitivity are still lacking, and fail to 
actively incorporate these dynamic factors through ML-based 
predictions. 

III. OBSS INTERFERENCE MANAGEMENT VIA ML-BASED 

JOINT TX POWER AND RX SENSITIVITY CONTROL 

The proposed technique is illustrated in  Figure 1. The left 

figure shows the problem of reduced overall network 

throughput due to OBSS interference when each AP and STA 

shares the same or adjacent channels in the existing OBSS 

environment. In contrast, the figure on the right shows the 

results of applying the proposed distributed control method. 

Each node dynamically adjusts its TX power and RX 

sensitivity through ML-based prediction, thereby minimizing 

interference and improving the overall network throughput. 

In the case of the proposed centralized control method, a 

single AP controls all STAs and APs to minimize interference. 

 

Figure 1.  Distributed control for OBSS interference mitigation. 

 Figure 2 illustrates the overall operational flow of the TX 
power and RX sensitivity joint control framework proposed in 
this study.  

 

Figure 2.  Overall flow for TX power and RX sensitivity control using 

ML. 

First, simulations were repeatedly performed under 
various OBSS environments and network configurations to 
collect network environment data. This includes the 
transmit/receive parameters of each node, number of 
neighboring nodes, distance, SINR, Packet Loss Rate (PLR), 
and communication success. Subsequently, the ML model 
was trained on the collected dataset to predict the optimal TX 
power and RX sensitivity for each communication pair 
(source–destination). Detailed information regarding the real-
time network environment is summarized in Table 1. 

TABLE I.  NETWORK ENVIRONMENT INFORMATION 

The source ID is the identifier of the transmitting node 

(AP or STA). The destination ID is the identifier of the 

Type Description Scope 
Source ID Transmitting node 1–45  

Destination ID Receiving node 1–45 

Source  

TX power 

Transmitting node's  

 TX power 

15–23 dBm 

Source  

RX sensitivity 

Transmitting node's  

RX sensitivity 

-90–-75 dBm 

Destination  

TX power 

Receiving node's  

TX power 

15–23 dBm 

Destination  

RX sensitivity 

Receiving node's  

RX sensitivity 

-90 – -75 dBm 

Number of 

neighbors 

Number of nodes within 50 m  

of the transmitting node 

0–44 

Distance Distance between transmitter  

and receiver nodes 

0–141.4 m 

SINR Estimated SINR  

at the receiving node 

-10 – 40 dB 

PLR Packet loss rate 0–1 

Success flag Success of communication 

connection 

0 or 1 
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receiving node. Source TX power and source RX sensitivity 

are the transmitting node's current TX power (range 15–23 

dBm) and RX sensitivity (-90 – -75 dBm), respectively. 

Destination TX power and destination RX sensitivity refer to 

the TX power of the receiving node and the RX sensitivity, 

respectively. The number of neighbors is the number of 

surrounding nodes within 50 m of the transmitting node. 

Distance is the physical distance (m) between the 

transmitting and receiving nodes, which directly affects path 

loss. The SINR is the current SINR of the receiving node (dB), 

indicating the instantaneous link quality. Approximately -10 

to 40 dB is an estimated value calculated during training data 

generation. PLR denotes the packet loss rate. The success flag 

indicates whether the communication connection was 

successful, represented by 0 or 1, and serves as the training 

label for supervised learning. 

IV. SIMULATION MODEL 

This section presents the simulation model considered in 

this study. It includes the high-density IEEE 802.11ax 

network configuration, the wireless channel assumptions, and 

the formulations of key variables such as TX power, RX 

sensitivity, and SINR.  Figure 3 shows the network 

configuration used in the simulation. 

 

Figure 3.  Network configuration. 

This study assumes a high-density IEEE 802.11ax 

wireless network environment deployed within a 100 m × 

100 m square area, operating only on a single 20 MHz 

channel in the 2.4 GHz band [8]. The network comprises nine 

APs arranged in a 3 × 3 grid pattern at 33.33 m intervals, with 

four STAs assigned per AP, randomly distributed across each 

area. This configuration creates an OBSS environment where 

multiple BSSs operate on the same channel, causing co-

channel interference. The 33.33 m spacing between APs was 

specifically chosen to represent high-density deployment 

scenarios commonly assumed in smart building and 

industrial WLAN studies, where coverage overlap is 

unavoidable. This symmetric arrangement ensures that 

interference patterns are equally distributed from all 

directions, providing an unbiased testing environment for 

evaluating the proposed joint control algorithm's 

performance under realistic interference conditions.  

The wireless channel is modeled using a log-distance path 

loss model that includes shadow fading, as shown in (1) 

[9][10]. 

𝑃𝐿(𝑑) = 𝑃𝐿0 + 10𝛼𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋𝜎           (1) 

Here, 𝑃𝐿0  =  46.7𝑑𝐵  is the path loss at the reference 
distance 𝑑0  =  1 𝑚, and 𝛼 =  3.5 is the path loss exponent 
for indoor environments. 𝑑 denotes the distance (m) between 
the transmitter and receiver, and 𝑋𝜎~𝑁(0, 𝜎2) is the shadow 
fading component with 𝜎 =  4𝑑𝐵. 
The noise power is calculated as in (2). 

𝑁 = 𝑁0 + 10log10(𝐵𝑊) + 𝑁𝐹 
= −174 + 10 log10(20 × 106) + 7               (2) 

= −94 𝑑𝐵𝑚 

Here, 𝑁0 = −174 𝑑𝐵𝑚/𝐻𝑧 is the thermal noise power 
density at 290 K, 𝐵𝑊 = 20 𝑀𝐻𝑧 is the channel bandwidth, 
and 𝑁𝐹 =  7 𝑑𝐵 is the receiver noise figure. 

The SINR is a key indicator of link quality and achievable 
data transmission rates in wireless networks [11]. For each 
communication link, both the downlink and uplink SINR 
values are calculated. The SINR for the downlink 

transmission from 𝐴𝑃𝑗 to 𝑆𝑇𝐴𝑖  is calculated as shown in (3). 

𝑆𝐼𝑁𝑅𝐷𝐿(𝑖,𝑗) =  
𝑃𝑟𝑥(𝑖,𝑗)

𝑁𝑖+𝐼𝑖
                            (3) 

Here, 𝑃𝑟𝑥(𝑖,𝑗) = 𝑃𝑡𝑥(𝑗) − 𝑃𝐿(𝑖, 𝑗)  represents the received 

signal power, where 𝑃𝑡𝑥(𝑗) denotes the TX power of 𝐴𝑃𝑗, and 

𝑃𝐿(𝑖, 𝑗) denotes the path loss between 𝐴𝑃𝑗 and 𝑆𝑇𝐴𝑖 . 𝑁𝑖 is the 

noise power at 𝑆𝑇𝐴𝑖 , calculated as 𝑁𝑖 = 𝑘𝑇𝐵 ∙ 𝑁𝐹, where 𝑘 
is the Boltzmann constant, 𝑇  denotes the temperature, 𝐵 
denotes the bandwidth (20 MHz), and 𝑁𝐹 denotes the noise 
figure (7 dB). 𝐼𝑖  is the interference from the other APs and 
active STAs, as shown in (4). 

𝐼𝑖  =  ∑ 𝑃𝑡𝑥(𝑘) · ℎ𝑘𝑖𝑘≠𝑗  + ∑ 𝑃𝑡𝑥(𝑚) · ℎ𝑚𝑖𝑚∈𝑆𝑇𝐴𝑎𝑐𝑡𝑖𝑣𝑒
        (4) 

where ℎ𝑘𝑖  and ℎ𝑚𝑖  represent the channel gains from the 
interfering AP and STA, respectively, and 𝑆𝑇𝐴𝑎𝑐𝑡𝑖𝑣𝑒  denotes 
the set of STAs actively transmitting. The expression for the 
uplink transmission from 𝑆𝑇𝐴𝑖  to 𝐴𝑃𝑗 is given by (5). 
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𝑆𝐼𝑁𝑅𝑈𝐿(𝑖,𝑗) =  
𝑃𝑟𝑥(𝑗,𝑖)

𝑁𝑗+𝐼𝑗
                           (5) 

The main difference in the uplink calculations is that STAs 
usually transmit at a lower power. This increases the 
probability of collisions, owing to the distributed properties of 
the CSMA/CA protocol. 

V. EXPERIMENTAL ENVIRONMENT 

In this study, experiments were conducted to analyze the 

impact of increasing traffic load on network performance by 

varying the data transmission rate to 3, 6, 12, 24, and 48 Mbps 

in a formula-based simulation using MATLAB 2021b [12]. 

Experiments lasting 10 s were repeated 1000 times for each 

traffic load level to measure the average performance. A ML 

model using XGBoost [13] was employed to predict and 

control TX power and RX sensitivity based on the network 

environment. The model was divided into two approaches: a 

centralized method, where a single AP handles data learning 

and prediction, and a distributed method, where nine APs 

perform data learning and prediction across a 40 m area. The 

experiments compared and analyzed the following four 

approaches: 

TABLE II.  CONTROL TECHNIQUES 

Control 

techniques 
Description 

Conv (central) 
Conventional method controlling Tx power  

in a centralized technique 

Conv (dist) 
Conventional method controlling Tx power  

in a distributed technique 

Prop (central) 
Proposed method controlling Tx power  

and Rx sensitivity in a centralized technique 

Prop (dist) 
Proposed method controlling Tx power  

and Rx sensitivity in a distributed technique 

Table 2 summarizes the control techniques used as 
comparators in this experiment. Conv (central) is a 
conventional method that centrally controls TX power, 
corresponding to the approach by Wojnar et al. [7]. Conv (dist) 
is a conventional method for controlling TX power in a 
distributed manner. Prop (central) and prop (dist) are the 
proposed methods for controlling Tx power and Rx sensitivity 
in centralized and distributed manners, respectively. 

The performance evaluation metrics used were the 
effective throughput, SINR, control overhead. To evaluate 
network performance, the achievable effective throughput of 
each STA-AP link was measured. Effective throughput 
follows the IEEE 802.11ac physical layer specification, with 
the transmission rate adaptively selected based on the channel 
quality [14]. The effective throughput 𝑇𝑖  of each 𝑆𝑇𝐴𝑖  is 
calculated using (6). 

𝑇𝑖  =  𝑅𝑀𝐶𝑆(𝑆𝐼𝑁𝑅𝑖 ) ×  (1 − 𝑃𝐿𝑅𝑖)             (6) 

where 𝑅𝑀𝐶𝑆() is the MCS selection function that maps the 
measured SINR to the corresponding data transmission rate. 
The IEEE 802.11ac standard defines 10 MCS levels (0–9), 

supporting rates from 6.5 Mbps (MCS 0, SINR ≥ 5 dB 

required) to 86.7 Mbps (MCS 9, SINR ≥ 33 dB required) on 

a 20 MHz channel. This function selects the highest MCS 
level that satisfies the minimum SINR requirement. 𝑃𝐿𝑅𝑖  is 
the PLR that combines channel-induced errors and collision-
induced losses, as shown in (7). 

𝑃𝐿𝑅𝑖  =  𝑃𝐿𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙(𝑆𝐼𝑁𝑅𝑖 ) + 𝑃𝐿𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛(𝜌) 
−𝑃𝐿𝑅𝑐ℎ𝑎𝑛𝑛𝑒𝑙 × 𝑃𝐿𝑅𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛                   (7) 

where 𝜌  represents network congestion. STAs with an 
SINR below 5 dB experience high packet loss (50–90%), 
whereas those with an SINR above 20 dB achieve low loss 
rates (below 5%). The control overhead represents the time 
required for parameter optimization, including ML prediction, 
file I/O, and SINR calculation. This is distinct from the data 
transmission period used in effective throughput 
measurements. While the distributed method theoretically 
allows nine APs to operate independently, our MATLAB 
implementation processes these operations sequentially, 
resulting in cumulative overhead. 

VI. PERFORMANCE EVALUATION 

In this section, the performance of the proposed ML-based 
joint control technique is evaluated. The centralized and 
distributed schemes are compared with the conventional 
methods, focusing on effective throughput, control overhead, 
and measured SINR under various traffic load conditions.  
Figure 4 shows the effective throughput of each method for 
different traffic loads. 

 

Figure 4.  Effective throughput comparison of the four control schemes 

(conv (central), conv (dist), prop (central), and prop (dist)) with increasing 

traffic load. 

As the traffic load increased, the effective throughput 
decreased across all methods. The prop methods (central, dist) 
demonstrated superior performance compared with the conv 
methods (central, dist). Specifically, prop (dist) achieved the 
highest effective throughput of 12.09 Mbps, showing an 
improvement of approximately 47.1% over conv (central). 
This improvement results from the effective interference 
control achieved by simultaneously optimizing TX power and 
RX sensitivity. The dist method exhibited higher effective 
throughput than the central method because each AP was 
optimized with values suitable for a 40 m radius area, enabling 
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finer control. At a low traffic load (3 Mbps), prop (dist) 
achieved the highest effective throughput at 21.43 Mbps, 
representing a performance improvement of approximately 
46.4% compared with conv (central). However, as the traffic 
load increased to 48 Mbps, the interference caused a sharp 
decrease in effective throughput for all methods. Notably, 

prop (dist) exhibited an effective throughput of 4.71 Mbps, 

which was 0.44 Mbps lower than that of prop (central).  
 Figure 5 shows the results of the comparison of the 

control overhead for each method.  

  

Figure 5.  Control overhead comparison of the four control schemes (conv 

(central), conv (dist), prop (central), and prop (dist)) with increasing traffic 

load. 

Conv (dist) exhibited the fastest control overhead, 
averaging 9.8 s, whereas prop (dist) required the longest 
control overhead, averaging 80.6 s. All the methods 
maintained consistent control overhead regardless of the 
traffic load, because the computational complexity of the 
algorithm was independent of the data transmission rate. 
Because of the complex model structure that simultaneously 
optimizes TX power and RX sensitivity, the control overhead 
for the prop methods (central, dist) increased compared with 
those of the conv methods (central, dist). Specifically, prop 
(dist) used four models, significantly increasing the overhead 
and requiring additional computation to predict both TX 
power and RX sensitivity based on network state information. 
However, in actual distributed systems, each AP operates 
independently; therefore, the benefits of parallel processing 
exist from the perspective of the entire network. Prop (central) 
increased by 18.1% compared with conv (central), averaging 
57.5 s, whereas prop (dist) increased by 723.2% compared 
with conv (dist). 

  Figure 6 shows the SINR variation for each method under 
different traffic loads. 

 
Figure 6.  Measured SINR comparison of the four control schemes (conv 

(central), conv (dist), prop (central), and prop (dist)) with increasing traffic 

load. 

The experimental results indicate that the prop method 
generally maintained a higher SINR than the conv methods 
(central, dist). Prop (dist) achieved the highest average SINR 
of 6.09 dB, representing a 29.6% improvement over conv 
(central). As the traffic load increased, all methods exhibited 
a decreasing trend in SINR. When traffic load increased from 
3 to 48 Mbps, conv (central) decreased from 10.76 to -1.65 dB, 
and conv (dist) decreased from 11.61 to -0.73 dB. The 
proposed methods, prop (central) and prop (dist), also 
decreased from 11.66 to 0.28 dB and from 12.06 to -0.05 dB, 
respectively. However, even under high traffic load, the 
proposed methods maintained a relatively high SINR, 
providing better link quality. This demonstrates that the 
proposed methods can sustain a stable link quality even in 
high-traffic-load environments. The analysis indicates that the 
distributed approach maintains a higher SINR than the 
centralized approach because it can more accurately identify 
and control the interference characteristics within the local 
area. 

VII. CONCLUSION AND FUTURE WORK 

The rapid increase in the number of devices utilizing 
wireless networks has exacerbated problems such as channel 
interference, degraded network quality, and jamming attacks 
in OBSS environments. Previous studies avoided interference 
by suspending communication on some links or applying 
time-division methods; however, these methods failed to 
reflect real-time changes in the network environment, limiting 
improvements in overall throughput and SR rates. To address 
these issues, this study proposes an ML-based simultaneous 
control technique for TX power and RX sensitivity. The 
proposed technique is implemented in both the centralized and 
distributed architectures. Each node recognizes the network 
state and then predicts and applies the optimal parameters 
through an ML model, effectively controlling the interference. 
Experimental results demonstrate that the proposed technique 
achieves up to 47.1% higher effective throughput and 29.6% 
improved measured SINR compared with conventional 
techniques. In particular, the proposed distributed approach 
achieved a 46.4% higher effective throughput than the 
proposed centralized approach under low traffic load 
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conditions while maintaining a relatively stable link quality 
even under high traffic loads. Although the control overhead 
increased significantly in the proposed distributed approach, 
the distributed structure enabled each AP to operate 
independently. This leverages the benefits of parallel 
processing, ensuring practical applicability in real-world 
environments. However, limitations were identified in the 
simulation environment. MATLAB is primarily designed for 
algorithm development and numerical computation, not for 
network simulation, and could not adequately reflect the 
parallel nature of distributed systems. The sequential 
processing of distributed operations in MATLAB resulted in 
higher control overhead, which prevented the observation of 
actual performance benefits that would occur when multiple 
APs operate independently in real networks. Future research 
will use ns-3 for more realistic distributed simulations and 
reinforcement learning for adaptive control, ultimately 
validating the framework in real WLAN scenarios. 
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