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Abstract— The recent increase in Internet of Things devices and
wireless network equipment has led to frequent occurrences of
overlapping basic service set environments, where multiple
wireless networks share the same or adjacent channels within
the same space. In these environments, network quality
degrades owing to channel interference. Previous studies have
attempted to avoid interference by blocking some links or using
time-division methods; however, these methods have limitations
in responding to real-time environmental changes and
improving overall network throughput and spatial reuse rates.
This study proposes a Machine Learning-based joint control
technique for TX power and RX sensitivity. This technique is
implemented in both centralized and distributed architectures.
Each node recognizes the network state, predicts optimal
parameters through a Machine Learning model, and applies
them to minimize interference. Experimental results
demonstrate that the proposed technique achieves up to 47.1%
higher effective throughput and 29.6% better measured Signal-
to-Interference-plus-Noise-Ratio compared with the
conventional technique. The proposed distributed technique
demonstrated approximately 46.4%  higher effective
throughput (21.43 Mbps) than the conventional central
technique under low traffic load and maintained relatively high
link quality even in environments with increased traffic load.
While the proposed distributed method incurred higher control
overhead owing to increased computational requirements
compared with the conventional distributed method, the
distributed architecture enables each Access Point to operate
independently, allowing for parallel processing benefits in
actual network deployments.

Keywords- Overlapping Basic Service Set; Machine Learning;
TX power and RX sensitivity Control; Internet of Things Wireless
Networks.

1. INTRODUCTION

The recent rapid growth of Internet of Things (IoT)
devices and wireless network equipment has led to the
frequent occurrence of Overlapping Basic Service Set (OBSS)
environments, where multiple wireless networks share the
same or adjacent channels within the same space [1]. In these
environments, the performance degradation due to channel
interference increases significantly. Furthermore, attackers
can intentionally generate interference signals or unnecessary
traffic, resulting in jamming attacks that threaten the network
availability and reliability [2]. Existing OBSS interference
mitigation techniques primarily avoid interference issues by

blocking certain links or applying time-division methods.
However, these approaches have limitations: they degrade the
overall network throughput and Spatial Reuse (SR) rates [3].
They often focus solely on TX power control (on sender side)
or rely on predefined probability models, thereby failing to
respond effectively to real-time changes in the network
environment or dynamic traffic patterns. Furthermore, they do
not consider controlling the RX sensitivity (on receiver side),
which can also affect the interference. Therefore, this study
views the OBSS environment as a resource to be managed
efficiently, and not merely as a constraint to avoid. This study
proposes a Machine Learning (ML)-based framework that
jointly controls TX power and RX sensitivity. This study
implemented and compared the performances of centralized
and distributed architectures. The centralized approach
utilizes network-wide information to enable global
optimization, whereas the distributed approach allows each
Access Point (AP) to perform predictions independently based
solely on local information, ensuring scalability and
practicality. We compared and analyzed the performance of
the conventional technique and two proposed approaches. The
main contributions of this study are as follows:

* Centralized and distributed ML architectures are
proposed, demonstrating the trade-off between performance
and control overhead in OBSS networks.

* TX power and RX sensitivity are optimized to support
simultaneous connections for more devices.

* The trade-off between the Signal-to-Interference-plus-
Noise-Ratio (SINR) of AP—Station (STA) communication
pairs and the overall network connectivity is analyzed, and
criteria for simultaneous connections are presented.

The structure of this paper is as follows: Section II reviews
the research related to OBSS interference mitigation and ML-
based network optimization. Section III describes the
proposed technique, and Section IV presents the simulation
model. Section V details the experimental environment and
Section VI discusses the performance evaluation results.
Finally, Section VII presents conclusions and directions for
future research.

II.  RELATED WORK

Jung et al. [4] proposed an OBSS packet detection SR
technique based on an optimized TX power control to achieve
high throughput in OBSS environments. The proposed
technique derives the optimal TX power that maximizes the
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communication success probability through probabilistic
geometric analysis and adjusts the clear channel assessment
threshold accordingly to reduce interference and increase
channel access opportunities. However, this technique has
limitations in that it calculates the optimal values based on
predefined probability models, making it difficult to adapt
flexibly to real-time changes in the network environment or
dynamic traffic patterns. Zhu et al. [5] improved the
performance of coordinated SR (CSR) in an IEEE 802.11be
environment through TX power adjustment and distributed
optimization using adaptive CSR and distributed CSR.
However, this study did not address RX sensitivity control or
adaptability to real-time environmental changes via ML,
thereby limiting the comprehensive optimization of the
transmit/receive parameters in dynamic traffic environments.
In addition, Haxhibeqiri et al. [6] proposed a centralized CSR
approach to centrally optimize transmit parameters to resolve
OBSS interference issues and enhance network throughput.
This approach aims to optimize TX power and Modulation
and Coding Scheme (MCS) index to avoid interference at the
main receiver. However, centralized structures have limited
SR efficiency in dynamic environments owing to structural
constraints, such as scalability, overhead, and single points of
failure. It also has the limitation of focusing solely on TX
power without simultaneously considering RX sensitivity
joint control. Wojnar et al. [7] proposed a learning-based
scheduling technique using multi-armed bandits (MABs) to
optimize the TX power of multiple APs in an IEEE 802.11bn
CSR environment. Specifically, they contributed to an 80%
throughput improvement using hierarchical MAB (H-MAB)
in a centralized manner. However, this study has limitations
in terms of interference management, because it does not
consider RX sensitivity control.

Previous studies have proposed various approaches to
mitigate interference and enhance the SR efficiency in OBSS
environments, such as TX power optimization and centralized
or distributed parameter control. However, most of these
approaches rely on predefined models, making them difficult
to adapt flexibly to real-time changes in network
environments and dynamic traffic patterns. Furthermore,
comprehensive control strategies that simultaneously consider
both TX power and RX sensitivity are still lacking, and fail to
actively incorporate these dynamic factors through ML-based
predictions.

III. OBSS INTERFERENCE MANAGEMENT VIA ML-BASED
JOINT TX POWER AND RX SENSITIVITY CONTROL

The proposed technique is illustrated in Figure 1. The left
figure shows the problem of reduced overall network
throughput due to OBSS interference when each AP and STA
shares the same or adjacent channels in the existing OBSS
environment. In contrast, the figure on the right shows the
results of applying the proposed distributed control method.
Each node dynamically adjusts its TX power and RX
sensitivity through ML-based prediction, thereby minimizing
interference and improving the overall network throughput.
In the case of the proposed centralized control method, a

single AP controls all STAs and APs to minimize interference.
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Figure 1. Distributed control for OBSS interference mitigation.

Figure 2 illustrates the overall operational flow of the TX
power and RX sensitivity joint control framework proposed in

this study.
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Figure 2. Overall flow for TX power and RX sensitivity control using
ML.

First, simulations were repeatedly performed under
various OBSS environments and network configurations to
collect network environment data. This includes the
transmit/receive parameters of each node, number of
neighboring nodes, distance, SINR, Packet Loss Rate (PLR),
and communication success. Subsequently, the ML model
was trained on the collected dataset to predict the optimal TX
power and RX sensitivity for each communication pair
(source—destination). Detailed information regarding the real-
time network environment is summarized in Table 1.

TABLE L. NETWORK ENVIRONMENT INFORMATION
Type Description Scope
Source ID Transmitting node 1-45
Destination ID Receiving node 1-45
Source Transmitting node's 15-23 dBm
TX power TX power
Source Transmitting node's -90—75 dBm
RX sensitivity RX sensitivity
Destination Receiving node's 15-23 dBm
TX power TX power
Destination Receiving node's -90 — -75 dBm
RX sensitivity RX sensitivity
Number of Number of nodes within 50 m 0-44
neighbors of the transmitting node
Distance Distance between transmitter 0-141.4 m
and receiver nodes
SINR Estimated SINR -10-40dB
at the receiving node
PLR Packet loss rate 0-1
Success flag Success of communication Oorl
connection

The source ID is the identifier of the transmitting node
(AP or STA). The destination ID is the identifier of the
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receiving node. Source TX power and source RX sensitivity
are the transmitting node's current TX power (range 15-23
dBm) and RX sensitivity (-90 — -75 dBm), respectively.
Destination TX power and destination RX sensitivity refer to
the TX power of the receiving node and the RX sensitivity,
respectively. The number of neighbors is the number of
surrounding nodes within 50 m of the transmitting node.
Distance is the physical distance (m) between the
transmitting and receiving nodes, which directly affects path
loss. The SINR is the current SINR of the receiving node (dB),
indicating the instantaneous link quality. Approximately -10
to 40 dB is an estimated value calculated during training data
generation. PLR denotes the packet loss rate. The success flag
indicates whether the communication connection was
successful, represented by 0 or 1, and serves as the training
label for supervised learning.

IV. SIMULATION MODEL

This section presents the simulation model considered in
this study. It includes the high-density IEEE 802.11ax
network configuration, the wireless channel assumptions, and
the formulations of key variables such as TX power, RX
sensitivity, and SINR.
configuration used in the simulation.
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Figure 3. Network configuration.

This study assumes a high-density IEEE 802.11ax
wireless network environment deployed within a 100 m x
100 m square area, operating only on a single 20 MHz
channel in the 2.4 GHz band [8]. The network comprises nine
APs arranged in a 3 x 3 grid pattern at 33.33 m intervals, with
four STAs assigned per AP, randomly distributed across each
area. This configuration creates an OBSS environment where
multiple BSSs operate on the same channel, causing co-
channel interference. The 33.33 m spacing between APs was

specifically chosen to represent high-density deployment
scenarios commonly assumed in smart building and
industrial WLAN studies, where coverage overlap is
unavoidable. This symmetric arrangement ensures that
interference patterns are equally distributed from all
directions, providing an unbiased testing environment for
the proposed joint algorithm's
performance under realistic interference conditions.

evaluating control

The wireless channel is modeled using a log-distance path
loss model that includes shadow fading, as shown in (1)

[91[10].

PL(d) = PLo + 10alogy, (£) +X, (1)
0

Here, PL, = 46.7dB is the path loss at the reference
distance d, = 1m, and @« = 3.5 is the path loss exponent
for indoor environments. d denotes the distance (m) between
the transmitter and receiver, and X,~N (0, g2) is the shadow
fading component with ¢ = 4dB.

The noise power is calculated as in (2).

N = N, + 10log,o(BW) + NF
= —174 + 101log,(20 X 10°) + 7
= —94dBm

(@)

Here, Ny = =174 dBm/Hz is the thermal noise power
density at 290 K, BW = 20 MHz is the channel bandwidth,
and NF = 7 dB is the receiver noise figure.

The SINR is a key indicator of link quality and achievable
data transmission rates in wireless networks [11]. For each
communication link, both the downlink and uplink SINR
values are calculated. The SINR for the downlink
transmission from AP; to STA,; is calculated as shown in (3).

Pra(ij)
Ni+1i

SINRpL(i ) = G3)

Here, Ppy(jy = Pex(jy — PL(i,J) represents the received
signal power, where P,y denotes the TX power of AP;, and
PL(i, ) denotes the path loss between AP; and STA;. N; is the
noise power at STA;, calculated as N; = kTB - NF, where k
is the Boltzmann constant, T denotes the temperature, B
denotes the bandwidth (20 MHz), and NF denotes the noise
figure (7 dB). [; is the interference from the other APs and
active STAs, as shown in (4).

I = Xej Py - Mii + Zmestagerive Pex(my * Ami (4)

where hy; and h,,,; represent the channel gains from the
interfering AP and STA, respectively, and ST A, tive denotes

the set of STAs actively transmitting. The expression for the
uplink transmission from ST4; to AP; is given by (5).
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Prx(jip)

N]'+Ij

SINRUL(i,j) = (5)

The main difference in the uplink calculations is that STAs
usually transmit at a lower power. This increases the
probability of collisions, owing to the distributed properties of
the CSMA/CA protocol.

V. EXPERIMENTAL ENVIRONMENT

In this study, experiments were conducted to analyze the
impact of increasing traffic load on network performance by
varying the data transmission rate to 3, 6, 12, 24, and 48 Mbps
in a formula-based simulation using MATLAB 2021b [12].
Experiments lasting 10 s were repeated 1000 times for each
traffic load level to measure the average performance. A ML
model using XGBoost [13] was employed to predict and
control TX power and RX sensitivity based on the network
environment. The model was divided into two approaches: a
centralized method, where a single AP handles data learning
and prediction, and a distributed method, where nine APs
perform data learning and prediction across a 40 m area. The
experiments compared and analyzed the following four
approaches:

TABLE II. CONTROL TECHNIQUES

Control

techniques Description

Conventional method controlling Tx power
in a centralized technique
Conventional method controlling Tx power
in a distributed technique
Proposed method controlling Tx power
and Rx sensitivity in a centralized technique
Proposed method controlling Tx power
and Rx sensitivity in a distributed technique

Conv (central)

Conv (dist)

Prop (central)

Prop (dist)

Table 2 summarizes the control techniques used as
comparators in this experiment. Conv (central) is a
conventional method that centrally controls TX power,
corresponding to the approach by Wojnar et al. [7]. Conv (dist)
is a conventional method for controlling TX power in a
distributed manner. Prop (central) and prop (dist) are the
proposed methods for controlling Tx power and Rx sensitivity
in centralized and distributed manners, respectively.

The performance evaluation metrics used were the
effective throughput, SINR, control overhead. To evaluate
network performance, the achievable effective throughput of
each STA-AP link was measured. Effective throughput
follows the IEEE 802.11ac physical layer specification, with
the transmission rate adaptively selected based on the channel
quality [14]. The effective throughput T; of each STA; is
calculated using (6).

T; = Rycs(SINR;) x (1 — PLR;) (6)

where Ry cs() is the MCS selection function that maps the
measured SINR to the corresponding data transmission rate.
The IEEE 802.11ac standard defines 10 MCS levels (0-9),
supporting rates from 6.5 Mbps (MCS 0, SINR = 5 dB

required) to 86.7 Mbps (MCS 9, SINR = 33 dB required) on
a 20 MHz channel. This function selects the highest MCS
level that satisfies the minimum SINR requirement. PLR; is
the PLR that combines channel-induced errors and collision-
induced losses, as shown in (7).

PLRL' = PLRchannel(SINRi) + PLRcollision(p)
_PLRchannel X PLRcollision (7)
where p represents network congestion. STAs with an
SINR below 5 dB experience high packet loss (50-90%),
whereas those with an SINR above 20 dB achieve low loss
rates (below 5%). The control overhead represents the time
required for parameter optimization, including ML prediction,
file I/O, and SINR calculation. This is distinct from the data
transmission period wused in effective throughput
measurements. While the distributed method theoretically
allows nine APs to operate independently, our MATLAB
implementation processes these operations sequentially,
resulting in cumulative overhead.

VL

In this section, the performance of the proposed ML-based
joint control technique is evaluated. The centralized and
distributed schemes are compared with the conventional
methods, focusing on effective throughput, control overhead,
and measured SINR under various traffic load conditions.
Figure 4 shows the effective throughput of each method for
different traffic loads.

PERFORMANCE EVALUATION
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Figure 4. Effective throughput comparison of the four control schemes
(conv (central), conv (dist), prop (central), and prop (dist)) with increasing
traffic load.

As the traffic load increased, the effective throughput
decreased across all methods. The prop methods (central, dist)
demonstrated superior performance compared with the conv
methods (central, dist). Specifically, prop (dist) achieved the
highest effective throughput of 12.09 Mbps, showing an
improvement of approximately 47.1% over conv (central).
This improvement results from the effective interference
control achieved by simultaneously optimizing TX power and
RX sensitivity. The dist method exhibited higher effective
throughput than the central method because each AP was
optimized with values suitable for a 40 m radius area, enabling

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

Copyright (c) IARIA, 2025. ISBN: ISBNFILL

17



SENSORCOMM 2025 : The Nineteenth International Conference on Sensor Technologies and Applications

finer control. At a low traffic load (3 Mbps), prop (dist)
achieved the highest effective throughput at 21.43 Mbps,
representing a performance improvement of approximately
46.4% compared with conv (central). However, as the traffic
load increased to 48 Mbps, the interference caused a sharp
decrease in effective throughput for all methods. Notably,
prop (dist) exhibited an effective throughput of 4.71 Mbps,
which was 0.44 Mbps lower than that of prop (central).

Figure 5 shows the results of the comparison of the
control overhead for each method.

—- conv(central)
- convidist)
=&~ proplcentral)
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Figure 5. Control overhead comparison of the four control schemes (conv
(central), conv (dist), prop (central), and prop (dist)) with increasing traffic
load.

Conv (dist) exhibited the fastest control overhead,
averaging 9.8 s, whereas prop (dist) required the longest
control overhead, averaging 80.6 s. All the methods
maintained consistent control overhead regardless of the
traffic load, because the computational complexity of the
algorithm was independent of the data transmission rate.
Because of the complex model structure that simultaneously
optimizes TX power and RX sensitivity, the control overhead
for the prop methods (central, dist) increased compared with
those of the conv methods (central, dist). Specifically, prop
(dist) used four models, significantly increasing the overhead
and requiring additional computation to predict both TX
power and RX sensitivity based on network state information.
However, in actual distributed systems, each AP operates
independently; therefore, the benefits of parallel processing
exist from the perspective of the entire network. Prop (central)
increased by 18.1% compared with conv (central), averaging
57.5 s, whereas prop (dist) increased by 723.2% compared
with conv (dist).

Figure 6 shows the SINR variation for each method under
different traffic loads.
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Figure 6. Measured SINR comparison of the four control schemes (conv
(central), conv (dist), prop (central), and prop (dist)) with increasing traffic
load.

The experimental results indicate that the prop method
generally maintained a higher SINR than the conv methods
(central, dist). Prop (dist) achieved the highest average SINR
of 6.09 dB, representing a 29.6% improvement over conv
(central). As the traffic load increased, all methods exhibited
a decreasing trend in SINR. When traffic load increased from
3 to 48 Mbps, conv (central) decreased from 10.76 to -1.65 dB,
and conv (dist) decreased from 11.61 to -0.73 dB. The
proposed methods, prop (central) and prop (dist), also
decreased from 11.66 to 0.28 dB and from 12.06 to -0.05 dB,
respectively. However, even under high traffic load, the
proposed methods maintained a relatively high SINR,
providing better link quality. This demonstrates that the
proposed methods can sustain a stable link quality even in
high-traffic-load environments. The analysis indicates that the
distributed approach maintains a higher SINR than the
centralized approach because it can more accurately identify
and control the interference characteristics within the local
area.

VIL

The rapid increase in the number of devices utilizing
wireless networks has exacerbated problems such as channel
interference, degraded network quality, and jamming attacks
in OBSS environments. Previous studies avoided interference
by suspending communication on some links or applying
time-division methods; however, these methods failed to
reflect real-time changes in the network environment, limiting
improvements in overall throughput and SR rates. To address
these issues, this study proposes an ML-based simultaneous
control technique for TX power and RX sensitivity. The
proposed technique is implemented in both the centralized and
distributed architectures. Each node recognizes the network
state and then predicts and applies the optimal parameters
through an ML model, effectively controlling the interference.
Experimental results demonstrate that the proposed technique
achieves up to 47.1% higher effective throughput and 29.6%
improved measured SINR compared with conventional
techniques. In particular, the proposed distributed approach
achieved a 46.4% higher effective throughput than the
proposed centralized approach under low traffic load

CONCLUSION AND FUTURE WORK
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conditions while maintaining a relatively stable link quality
even under high traffic loads. Although the control overhead
increased significantly in the proposed distributed approach,
the distributed structure enabled each AP to operate
independently. This leverages the benefits of parallel
processing, ensuring practical applicability in real-world
environments. However, limitations were identified in the
simulation environment. MATLAB is primarily designed for
algorithm development and numerical computation, not for
network simulation, and could not adequately reflect the
parallel nature of distributed systems. The sequential
processing of distributed operations in MATLAB resulted in
higher control overhead, which prevented the observation of
actual performance benefits that would occur when multiple
APs operate independently in real networks. Future research
will use ns-3 for more realistic distributed simulations and
reinforcement learning for adaptive control, ultimately
validating the framework in real WLAN scenarios.
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