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Abstract—Falls are a major cause of injury among older
people, often leading to severe consequences, including death. To
reduce this risk for both older and younger populations, Artificial
Intelligence (AI) can play a critical role by predicting pre-fall states
(conditions leading to a fall) and enabling timely intervention. Pre-
fall prediction can be approached through various contexts, such
as time-based, biological, and sensor data. This study focuses on
predicting pre-falls through the time-based context by using the
data from wearable sensors (accelerometer and gyroscope), while
considering the time window feature of the dataset. The dataset
used in this paper was collected using a MetaMotionR device and
comprises two classes: “fall” and “no fall”. A sliding time window
approach of 5 seconds and 10 seconds was applied to prepare the
dataset for pre-fall prediction. Notably, this type of dataset has
not previously been utilised for pre-fall prediction. A variety of
machine learning and Deep Learning algorithms were tested on
this dataset. The machine learning models included Decision Tree
(DT), Support Vector Machine (SVM), and Logistic Regression
(LR), and Deep Learning models included Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), and Recurrent
Neural Networks (RNN). Among machine learning algorithms,
the DT demonstrated super performance, achieving accuracies of
95.99% and 95.75% for the 5-second and 10-second time windows,
respectively. In the category of Deep Learning algorithms, Long
Short Term Memory (LSTM) type of RNN models outperformed
other approaches, with accuracies of 81.08% and 82.63% for the
5-sec and 10-sec windows, respectively.
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I. INTRODUCTION

As the world’s population ages more quickly, there is
growing concern about the safety and health of the elderly.
Unintentional falls are occurring frequently among older adults,
which is associated to negative health outcomes. While falls
can happen at any age, their impact is especially severe for
the elderly, who often face longer recovery times and higher
healthcare expenses; these factors can result in a reduced quality
of life. The growing aging population underscores the urgency
of addressing fall related risks. Therefore, fall prevention and
early intervention are essential for maintaining well-being [1].

These challenges have made research on the detection
and prevention of falls before they happen a priority, with
recent developments in AI and wearable technology offering
promising solutions [2][3]. By continuously tracking people’s

movements and predicting potential fall scenarios, AI systems
can initiate timely interventions to prevent falls, ultimately
saving lives and reducing injuries [4]. A key focus in this study
is Pre-fall prediction, which can be approached from a sensor
based perspective. In this approach, sensors collect data and
timestamps to show early indicators of a possible fall. Each
situation provides different perspectives on the elements that
influence the risk of falling. This study adopts a sensor based
approach, utilising gyroscope and accelerometer data to predict
pre-fall instances. It highlights the importance of understanding
the transitional period leading up to a fall, offering new insights
into the factors that contribute to fall risk.

To facilitate this analysis, this study uses a publicly available
dataset that includes sensor data collected during both fall
and non-fall scenarios. To improve the understanding of Pre-
fall (leading to fall) conditions, the dataset was segmented
into fixed time windows of 5 and 10 seconds preceding each
fall event. This segmentation captures the transitional phase
before a fall and provides contextual data that enhance the
predictive accuracy of the models. Both Machine Learning
(ML) and Deep Learning (DL) algorithms were tested for
their effectiveness in predicting pre-fall. The tested models
included LR, DT Classifier, Support Vector Machine, Multi-
Layer Perceptron, Gradient Boosting, Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN), and Long-
Short-Term-Memory (LSTM).

Most existing studies focus on post fall detection and under-
utilize temporal sensor data for pre-fall prediction. This study
addresses these gaps by using gyroscope and accelerometer
data within 5 and 10 second windows to enable early fall
prediction and timely interventions.

The following are the main contributions of this study:

• Predicting pre-fall instances was achieved using wearable
sensor data (gyroscope and accelerometer) segmented into 5
and 10-second time windows.

• A comparative analysis of ML and DL algorithms showed
that DT performed the best among the machine learning
models, while the LSTM model was the most effective Deep
Learning model for pre-fall detection.
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• The proposed framework for predicting fall risks in real
time facilitates timely interventions, thereby reducing in-
juries caused by falls and providing overall safety through
immediate fall risk assessment.
The remainder of this paper is organized as follows.

Section II reviews related work and existing approaches.
Section III presents the proposed methodology. Section IV
reports experimental results, and Section V discusses the
findings. Finally, Section VI concludes the paper and outlines
future work.

II. LITERATURE REVIEW

With the aging population and associated risks, the need
to address fall related challenges has become increasingly
urgent. Researchers are now focusing on early detection systems
and preventive measures to mitigate these risks [5][6][7].
The development of wearable sensor technologies, such as
gyroscopes and accelerometers, has significantly transformed
falls detection and prevention. These devices enable continuous,
real-time motion tracking, making it possible to detect of
unusual patterns associated with potential falls [8][9]. Due to
their portability, non-invasive nature, and high data collection
capacity, wearable sensors have proven to be extremely useful
for developing ML and DL models [8][10]. While fall detection
research has historically concentrated on post-fall identification,
more recent studies emphasise pre-fall prediction to allow for
prompt intervention. Pre-fall prediction identifies transitional
movements indicating an elevated risk by analysing motion
patterns during brief time windows before a fall [11][12].

Strong performance in classifying fall related data has
been shown by machine learning techniques, such as Logistic
Regression (LR), Decision Tree (DT), Support Vector Machine
(SVM), and Gradient Boosting [5]. However, time series sensor
data analysis is a perfect fit for Deep Learning models, espe-
cially LSTM networks, which have demonstrated exceptional
performance in capturing temporal dependencies in sequential
data [13][14].

When developing and accessing fall detection systems,
datasets play an essential role. One example of such datasets
are SisFall[15], which is gathered using an accelerometer
and gyroscope. It contains classes for Activities of Daily
Living (ADL) and falls, gathered from both younger and
some older individuals. These activities were selected based
on a literature survey [15]. UpFall includes the dataset of 17
individuals who performed 11 daily living activities, as well
as falls [16]. The UMAFall dataset highlights the difference
between the various approaches of machine learning to fall
detection [17]. KFall is a comprehensive dataset for fall inertial
sensors (acceleration, gyroscope and Euler angles) which are
synchronised with video based fall labels [18]. These datasets
were gathered from numerous sensors, both wearable and
non-wearable, during everyday activities and simulated falls.
Under controlled circumstances (Lab-based environment), these
datasets allow researchers to train and validate ML and DL
models. Recent advancements in fall prediction and detection
are increasingly using wearable and vision based technologies.

For instance, the system presented in the study [19] uses both
wearable and vision-based sensors, giving a sensitivity of 96%
using Hidden Markov Models (HMM) and a decision tree.
Many other studies are focusing on real time applications, [20]
employs the ConvLSTM network and techniques for real time
fall detection and prediction, achieving a high accuracy rate
of 98.3%. Similarly, KNN, GRU(Gated Recurrent Unit), and
SVM algorithms, along with the wearable sensors, are used to
predict falls with an accuracy of 93.5% [21]. Heterogeneous
Hidden Markov Model (HHMM) is used for the effective
recognition and prediction of falls by utilising the 3D Vision
based body data with an accuracy of 81.5% [22]. Additionally,
the Kinect System, along with Zero Moment Point (ZMP)
and SVMs approaches, was used to reach an accuracy of
91.7% [23]. Deep Learning methods are commonly used in
fall detection and prediction research, such as the use of CNNs
with Class Activation Maps (CAM), which can detect the
impact of a fall before it happens by utilising the wearable
sensors. This approach has achieved an accuracy of 95.33%
[24]. The PreFallKD system, which integrates CNNs and Vision
Transformers with knowledge Distillation, demonstrates strong
performance with a 92.66% F-1 score in real time fall prediction
using wearable sensor data [25]. However, most existing fall
detection systems focus on post fall identification, which limits
the potential for prompt interventions. Additionally, temporal
data for pre-fall prediction remains underutilised. This study
addresses these gaps by leveraging accelerometer and gyroscope
data within 5 and 10 second time windows to predict pre-fall
conditions. We assess conventional machine learning models
(e.g. SVM, DT, and more sophisticated DL architectures (RNN
and CNN)), offering a framework for early intervention and fall
risk mitigation.Table I shows the comparison of fall detection
and prediction approches.

To the best of our knowledge, our study is among the first
studies to use this specific MetaMonitor dataset with sliding
time windows of 5 s and 10 s for pre-fall prediction, combining
both ML and DL models to emphasize the role of temporal
context in improving pre-fall prediction.

III. METHODOLOGY

The subsequent Figure 1 illustrates the methodological
process in this study. The methodology includes various
components, such as dataset sampling (data generation), dataset
cleaning, preprocessing, modelling and evaluation.

A. Dataset

This study utilised a publicly accessible dataset [26] collected
using the MetaMotionR sensor. Data was gathered using two
wearable sensors (accelerometer and gyroscope) positioned at
the user’s waist. The dataset comprises recordings from 17
participants (4 females, 13 males) with an average age of 30
± 8.02 years, height 174.18 ± 7.85 cm, and weight 74.35 ±
9.71 kg performing various Activities of Daily Living (ADLs)
and simulated fall (lab based) events in controlled conditions.
The ADLs included jumping, running and stopping, sitting on
a chair, and pulling the sensor. The fall scenarios included
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TABLE I. COMPARISON OF FALL DETECTION AND PREDICTION METHODS

No. Refrence Prediction Detection Real Time Wearable Vision AI/ML Accuracy / Perf.
1 [19] Yes Yes No Yes Yes HMM, DT Sens: 96%
2 [20] Yes Yes Yes Yes No Conv, LSTM, Smoothing Acc: 98.3%
3 [21] Yes Yes Yes Yes No KNN, GRU, SVM Acc: 93.5%
4 [22] Yes Yes Yes No Yes HHMM Acc: 81.5%
5 [23] Yes Yes Yes No Yes SVM, Mod. ZMP Acc: 91.7%
6 [24] Yes Yes Yes Yes No CNN + CAM Acc: 95.33%
7 [25] Yes Yes Yes Yes No CNN + ViT KD F1: 92.66%

Figure 1. Methodology.

forward falls, right-side falls, left-side falls, and backwards
falls. MetaMotionR sensor records acceleration, rotation, and
orientation. Falls were performed on a mat for safety, with a 1-
second data window captured when acceleration exceeded 2.5 G.
This dataset was chosen due to the nature of the sensor and time
stamping for evaluating the performance of various ML and DL
algorithms. In this study, we only considered two classes: fall
and no fall. Figure 2 shows the values of features (x,y,z) from
both the accelerometer and the gyroscope for instances of fall
and no fall. It can be observed that both fall and no fall follow
distinct patterns; the value of the accelerometer (Acc(X)) is
lower in the fall instance and higher in the no fall instance.
In case of Acc(Y), the values are higher for the fall event
but lower when there is no fall. Acc(Z) shows lower values
during fall and higher values for no fall. For the gyroscope
readings, fall events are associated with higher Rot(X)and
Rot(Y) values while Rot(Z) values are lower. These observed
patterns highlight the potential of sensor based features in
distinguishing between fall and non-fall events.

B. Sampling/ Data Generation

Data sampling was conducted to create the pre-fall dataset,
capturing the time window preceding each fall event. The
dataset comprises timestamps (e.g., 5 seconds, 10 seconds),
sensor readings, and a binary fall indicator (e.g., 1 representing
a fall). The timestamp denotes a fixed time window (e.g.,
5 seconds) before each fall, facilitating the identification of

Figure 2. Illustration of all Instances (Fall, no fall) sub figure (a) shows the
sensor values of accelerometer and sub figure (b) shows the sensor values of

gyroscope.

conditions that lead to a fall event. Data was chronologically
sorted by timestamp to generate the dataset, with fall events
marked as 1 and Pre-Fall events as 0. This relationship can be
expressed mathematically as follows:

prefall = tfall − Tw ≤ tevent ≤ tfall (1)

Where tfall is the timestamp of the fall event, Tw is the time
window before fall, which is taken for prefill, which in this
case is 5 and 10 seconds, and tevent is the timestamp of any
row in the dataset. Figure 3 further illustrates the sensor (both
accelerometer and gyroscope) reading from a typical no-fall
to a fall transition. The pre-fall period is virtually highlighted
for both 5 and 10-second windows preceding the fall, showing
the temporal dynamics captured in the dataset.

C. Data Preprocessing /Cleaning

The data cleaning process contains several techniques. Firstly,
the dataset was checked for missing values [27]. If any missing
values are found, they were replaced by the mean of their
respective columns. After addressing missing values, the next
step was identifying and removing outliers. Outliers were
removed using the interquartile range method to prevent them
from destroying model training and accuracy [28]. Once the
dataset is refined, normalisation is applied in standard scaling to
ensure that all data points fall within a consistent range. While
ML models often require normalization, feature selection, or
handcrafted feature extraction, DL models can automatically
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Figure 3. Illustration of sensor readings from Fall to no Fall sub figure (a)
shows the sensor values of accelerometer and sub figure (b) shows the sensor

values of gyroscope.

learn hierarchical features from raw sensor data, simplifying
the overall workflow and potentially capturing more complex
temporal patterns.

D. Data Modeling

After completing the preprocessing and data cleaning stages,
80% of the data was utilised to train ML and DL algorithms. For
the ML, the data was trained using LR, DT, SVM, Multilayer
perceptron (MLP), perceptron, and gradient boosting. The DL
algorithms employed include LSTM, CNN, RNN, and DNN.
Once the models were trained, the remaining 20% of the data
was used to test the ML and DL algorithms. The model’s
performance was evaluated using Accuracy (the ratio of the
number of correctly classified instances to the total number of
instances predicted), Precision (the ratio of correctly predicted
positive instances to all positively predicted instances) and
Recall (the proportion of predicted positive instances to all
actual positive instances) factors. These parameters provide
comprehensive evaluation of model’s performance to predict
pre-fall.

IV. RESULTS

The experiments for this study were conducted using Google
Colab and Python, utilising 32 GB of RAM and 128 GB
of storage. The DL models were trained over 20 epochs
after which no significant performance gains were observed,
and early stopping was applied to prevent overfitting. The
results obtained from experiments using 5-second and 10-
second window data by applying ML and DL algorithms, as
proposed in the framework. The performance of ML and DL
algorithms with the parameters Accuracy(Acc), Precision(Pre)
and Recall(Rec) is summarised in Table II. Among all ML
models, the DT classifier model has performed efficiently
with an accuracy of 95.99% and 95.75% on 5-second and

10-second windows, respectively. For DL models, LSTM has
performed efficiently with an accuracy of 81.08% and 82.63%
on 5-second and 10-second windows, respectively. Figure
4 illustrates the precision-recall curve and ROC (Receiver
operating characteristic) curve for the DT under 5 and 10-
second windows. The curves demonstrate a high area under
both metrics, indicating strong model accuracy. The 10-second
window shows a slightly steeper curve, reflecting marginally
improved performance.

TABLE II. ACCURACY, PRECISION AND RECALL FOR 5 AND
10-SECOND TIME WINDOW

5 Second Window

Algorithms Acc Pre Rec

Logistic Regression 78.75% 59.21% 46.86%
Decision Tree Classifier 95.99% 92.26% 91.58%
Support Vector Machine 82.02% 60.26% 81.41%
MLP Classifier 82.24% 62.02% 73.81%
Perceptron 69.72% 43.88% 77.93%
Gradient Boosting Classifier 84.58% 63.16% 91.18%
RNN 80.60% 56.84% 88.17%
CNN 78.53% 55.00% 70.26%
DNN 75.97% 54.86% 13.48%
LSTM 81.08% 57.42% 89.52%

10 Second Window
Algorithms ACC PRE Rec
Logistic Regression 78.98% 62.11% 53.78%
Decision Tree Classifier 95.75% 92.27% 91.72%
Support Vector Machine 83.49% 64.03% 86.57%
MLP Classifier 82.13% 65.51% 69.35%
Perceptron 73.18% 49.75% 81.00%
Gradient Boosting Classifier 85.08% 65.13% 94.55%
RNN 82.08% 60.79% 90.05%
CNN 78.74% 61.74% 50.74%
DNN 78.13% 57.89% 62.22%
LSTM 82.63% 61.69% 89.84%

Figure 4. ROC Curve and Precision Recall Curve. (a) and (b) represent ROC
curve and Precision recall curve for decision tree for 5 second window and
(c) and (d) show ROC curve and Precision recall curve for decision tree for

10 second window.
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Figure 5. (a) Training, Validation and Testing Accuracy, precision and recall
over 20 epochs for LSTM on 5 second window (b) Training, Validation and
Testing Accuracy, precision and recall over 20 epochs for LSTM on 5 second

window.

Figure 6. (a) Training and testing validation accuracy, precision and recall on
5 second window (b) Training and testing validation accuracy, precision and

recall on 10 second window.

Figure 5 illustrates line graphs for training and validation
accuracy, precision and recall over 20 epochs for the LSTM
model. The graph highlights a steady improvement in these
metrics as training progresses. A slight gap between training
and validation metrics indicates that the model fits well and is
generalised effectively.

Figure 6 compares training and validation precision and
recall for the LSTM model across 5 and 10 second windows.
The minimal difference between training and validation metrics
suggests the model’s robustness and adaptability to the use
case.

V. DISCUSSION

This study investigated pre-fall prediction using time stamped
data collected from wearable sensors. The dataset included
readings from the accelerometer and the gyroscope. The
dataset consists of two classes, fall and no fall. To predict
Pre-fall events, the dataset was transformed to 5 and 10-
second time windows preceding fall occurrence. Both ML
models, including Logistic Regression, Decision Tree Classifier,
Support Vector Machine, MLP Classifier, Perceptron, Gradient
Boosting Classifier and DL models, such as RNN, CNN, DNN,
LSTM, were evaluated to identify their effectiveness for pre-
fall prediction. The results of model tests indicate the that
the DT Classifier is the best performing ML model, achieving
an accuracy of 95% across both time windows. This means

that the predictions made by the model for the pre-fall events
were correct 95% of the time. The DT model was able to
perform so well because of its ability to handle datasets with
temporal features. In this study sensor readings were taken as
temporal feature, which enhance the predative strength of DT
model. Among DL models, LSTM performed well, achieving
the accuracies of 81.08% and 82.63% for 5 and 10 second
windows, respectively. Based on the comparative analysis, the
results suggest that although LSTM is good with temporal
features, traditional ML models, such as Decision Trees, are
more suitable for this dataset due to their structure and features.
The robustness of the proposed solution can be seen by the
fact that models were tested across multiple time windows (5s
and 10s) and using diverse ML and DL models. The consistent
performance of DT in ML models and LSTM in DL models
across both 5 s and 10 s windows demonstrates the framework’s
ability to generalize well under varying temporal conditions,
which is crucial for reliable real world deployment. Since all
of the experiments are performed on single dataset uniform
sensor type i.e. accelerometer and gyroscope there exist the
chance of data bias which only be studied and covered by
including more dataset as discussed in future work.

VI. CONCLUSION AND FUTURE WORK

In this study, a time-stamped dataset was used to predict pre-
fall using machine learning and Deep Learning. The threshold
windows set for pre-fall prediction were 5 seconds and 10
seconds. Based on these time frames, ML and DL algorithms
are applied to this dataset. The results indicated that the best
performing model is a decision tree with an accuracy of 95%
for both 5 and 10-second windows. For DL, LSTM has been
demonstrated to be the most suitable model. The nature of data
favored traditional machine learning models such as decision
trees. The main contribution of this study includes, to perform
pre-fall prediction on time-stamped datasets and provide the
evaluation scores for these techniques. Additionally, this study
evaluated and compared the performance of ML and DL models
for pre-fall prediction and established the baseline performance
for future research. In the future, more advanced ML and DL
approaches will be explored on real-time datasets to further
enhance the accuracy and generalisation of pre-fall prediction
systems.
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