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Abstract—This paper presents a tracking method of people using 
networked Light Detection And Ranging sensors (LiDARs) set in 
an environment. Each LiDAR detects people from the LiDAR 
scan data using a background subtraction method and sends the 
positions of the people to the neigboring LiDARs. It estimates the 
people’s positions and velocities and exchanges information with 
the neigboring LiDARs. A Distributed Interacting MultiModel 
(DIMM)-based method is used to accurately estimate people’s 
positions and velocities under various motion modes, such as 
stopping, walking, and suddenly running, in a distributed 
manner without a central server. Simulation experiments of the 
tracking of 20 people using three Velodyne 32-layer LiDARs are 
conducted in two different network topologies (ring and line 
network topologies) to quantitatively evaluate the tracking 
performance and computation effort of the proposed method. 
Simulation results show that the tracking performance and 
computation time of the DIMM-based method are comparable to 
those of conventional centralized interacting multimodel-based 
method. 

Keywords—LiDAR; people tracking; cooperative tracking; 
diffusion strategy; interacting multimodel estimator. 

I. INTRODUCTION 
Estimating the motion and behavior (i.e., tracking) of 

moving objects, such as people, cars, and two-wheelers, in an 
environment is vital in several applications, including 
Intelligent Transport Systems (ITS), autonomous driving, 
security, and surveillance. Therefore, many tracking systems 
based on Light Detection And Ranging sensors (LiDARs) and 
cameras have been developed [1]–[3]. In this paper, we 
investigate people tracking using LiDARs allocated in an 
environment. 

In sparsely populated environments, LiDAR-based 
tracking of people is efficient. However, its performance in 
crowded environments is poor because of occlusions. An 
effective method for accurately tracking people in crowded 
environments is the use of networked multiple LiDARs. 
Despite occasions where people are occluded or are located 
outside a surveillance area of a LiDAR, the use of networked 
multiple LiDARs (referred to as cooperative tracking) 
improves tracking reliability and accuracy as tracking data are 
shared among LiDARs [4][5].  

For the application of cooperative tracking to ITS domains, 
we proposed cooperative tracking of people using networked 
multiple ground LiDARs allocated to different locations in an 
intersection environment [6]. The cooperative tracking method 
detects people’s positions, velocities, and behavior, such as 
stopping, walking, and suddenly running. Usual algorithms for 

people tracking are based on Bayesian filters and assume that 
people walk or run at an almost constant speed. Therefore, 
when people suddenly change their motions, such as suddenly 
running, turning, or stopping, the tracking accuracy decreases. 
To accurately track people under such conditions, we 
proposed a multimodel-based approach, which employs an 
Interacting MultiModel (IMM) estimator [7], instead of the 
single-model Kalman filter approach.  

Most studies on cooperative tracking employ centralized 
data fusion with a central server, in which sensing data are 
captured and preprocessed by each sensor, sent to a central 
server, and then fused in the central server [4][5]. In the first 
version of our cooperative tracking system [6][8], a 
Centralized Interacting MultiModel (CIMM) estimator [9] was 
employed to estimate people’s positions, velocities, and 
behavior by the central server. 

Centralized data fusion reduces system robustness and 
scalability. Recently, various methods for distributed state 
estimation have been proposed in the field of Bayesian filtering 
[10][11], in which information processing among multiple 
sensors is distributed among sensors without using a central 
server. Thus, in our previous study [12], we proposed 
cooperative tracking of people that functions in a distributed 
manner without any central servers, and a Distributed 
Interacting MultiModel (DIMM) estimator [13] was employed. 
However, people could be tracked using only two LiDARs.  

In this paper, DIMM-based cooperative tracking of people 
is presented using three LiDARs. The contributions of this 
paper are as follows: 
 A DIMM-based cooperative people tracking method using 

three LiDARs are designed in two different network topologies 
(ring and line network topologies). The tracking method is 
applicable to four or more LiDARs systems in any network 
topology. 
 The tracking performance and computational effort of the 

presented DIMM-based method are quantitatively evaluated by 
comparing conventional CIMM-based and Kalman filter-based 
methods. 

The rest of this paper is organized as follows: Section II 
gives an overview of the experimental system. Section III 
models people’s motion, and Sections IV and V describe the 
people detection and tracking methods, respectively. Section 
VI presents the simulation conducted to evaluate the 
performance of the proposed cooperative tracking system. 
Section VII concludes the paper. 
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II. EXPERIMENTAL SYSTEM  
Figure 1 shows our experimental system, which consists of 

three LiDARs. Each LiDAR has a 32-layer LiDAR (Velodyne 
HDL-32E) and a computer. The maximum range of the LiDAR 
is 50 m. The horizontal and vertical viewing angles are 360° 
and 41.3° with resolutions of 0.16° and 1.33°, respectively. The 
scanning period is 0.1 s. 

Two network topologies can be considered for exchanging 
information among LiDARs: a ring network topology (referred 
to as a ring network) and a line network topology (a line 
network). As shown in Figure 1, each LiDAR is connected to 
two other adjacent LiDARs in the ring network, whereas, in the 
line network, LiDARs 1 and 2 and LiDARs 2 and 3 are 
connected. 

For four or more LiDARs, similar to the case of three 
LiDARs, each LiDAR is connected to two other LiDARs on 
both sides in a ring network, whereas, in a line network, only 
the LiDARs at both ends of the line are connected to one 
adjacent LiDAR, and other LiDARs are connected to the two 
LiDARs. 

III. MOTION AND MEASUREMENT MODELS OF A PERSON 
To accurately track people in an intersection environment, 

we consider three motion modes of a person as follows [8]: 
• Stop mode (mode 1): A person stops. 
• Constant velocity mode (mode 2): A person walks or runs 

at an almost constant velocity. 
• Sudden motion mode (mode 3): A person starts to 

suddenly run or stops suddenly. 
A person’s position is denoted by ),( yx , and the moving 

direction of the person is denoted by . The translational and 
turning velocities of the person are denoted by v  and , 
respectively. The three motion modes are then modeled by the 
following state equations:  

• Mode 1 
1 1

1 1

t t t

t t t

x x x
y y y

                             (1) 

 
 

 

Figure 1. Overview of the networked three LiDARs. The red and green dotted 
lines indicate ring and line network topologies, respectively. 
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where t and t-1 indicate time steps. v  and  are the 
translational and turning accelerations of the person, 
respectively. x , y , v , v ,  and  are the plant 
disturbances.  (= 100 ms) is the sampling period of the 
LiDAR. 

For simplicity, the state equation of the m-th mode (m = 1, 
2, 3) is represented by the following vector form: 

1 1( , )m m m m
t t tx f x v                           (4) 

where mx  is the state vector, and mv  is the plant disturbance 
vector, which is assumed to have a white noise sequence with 
the covariance matrix mQ .  

The LiDAR measurement related to a person gives the 
following equation: 

m m
t t tz H x z                      (5) 

where T
yx zz ),(z  is the position of the person. z  is the 

measurement noise, which is assumed to have a white noise 
sequence with the covariance matrix R. Hm is the 
measurement matrix. 

IV. PEOPLE DETECTION USING BACKGROUND 
SUBTRACTION METHOD 

Figure 2 shows the sequence of people detection and 
tracking. Each LiDAR captures its own scan data and maps 
them onto an elevation map. In the elevation map, a cell 
containing two or more scan data is called an occupied cell. 
Each LiDAR extracts the occupied cell related to a person 
(referred to as a person-cell) based on the background 
subtraction method. Generally, the LiDAR scan data related to 
a person occupy two or more cells, and the neighboring person 
cells are clustered (referred to as person-cell group).  

Each LiDAR communicates with the adjacent LiDAR and 
exchanges the information of clustered person cells. 
Thereafter, each LiDAR fuses the information of person cells 
and then determines the geometric center of person cells as the  
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Figure 2.  Sequence of people detection and tracking. 

 
(a) Cell merging 

 
(b) Cell splitting 

Figure 3.  Cell merging and splitting of two passing people (top view). 

person’s position. 
In our simulation, the cell size of the elevation map is set 

to 0.3 m. Therefore, when the distance of neighboring two 
people is less than 0.3 m, two person-cell groups are merged, 
and the people are detected as a person. To address this 
problem, the merged person-cell groups are split, as described 
below. 
 Consider two people passing each other. Figure 3 shows 
the person cells for such people on the elevation map. Initially, 
two person-cell groups A and B for persons 1 and 2, 
respectively, are extracted, and at the current time, the person-
cell groups are merged into C. We examine whether the cells 
in person-cell groups A and B partially overlap those in 
person-cell group C. If the cells overlap, as those in a blue 
frame in Figure 3(a), the two person-cell groups are 
considered to have merged. Then, the merged person-cell 
group C is split to accurately track the two people. 
 The coordinates of each cell in the merged person-cell 
group C are compared with the positions 1x̂  and 2x̂  of 
persons 1 and 2, respectively, estimated at the initial time 
using our tracker. When the coordinate of the cell is near 1x̂  
( 2x̂ ), the cell is classified as a person-cell group A' (B') 
related to person 1 (2). Thereafter, the geometrical centers of 
the person-cell groups A' and B' are obtained as the positions 
of persons 1 and 2, respectively. 

V. DIMM-BASED COOPERATIVE TRACKING 
A sequence of the above-mentioned motion modes is 

assumed to be governed by the first-ordered homogeneous 
Markov chain as follows: 

1Prob n m
mn t tT                           (6) 

3

1
1mn

n
T                                             (7) 

where 1
m
t  and n

t  are events that the m-th and n-th modes (m, 
n = 1, 2, 3) are in effect at times t–1 and t, respectively. mnT  is 
the transition probability that the m-th mode jumps into the n-
th mode. In our simulation, the transition probability matrix is 
set to mnT  = 0.9 for m n  and 0.05 for m n . 

The k-th LiDAR (k = 1, 2, 3) estimates people’s state in the 
following five steps [12][13]: 

Step 1) Filter initialization: The probability that the m-th 
mode occurs at time t–1 is denoted by , 1ˆ m

k t . The m-th mode 
conditional estimate and its related covariance are denoted by 

, 1ˆ m
k tx  and , 1

m
k tP , respectively. The three quantities interact 

with one another as follows: 
3

, / 1 , 1
1

ˆ ˆn m
k t t mn k t

m
T                               (8) 

3

, 1 , 1
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k t mn k t

n
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3
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ˆ ˆ[ ( )( ) ]m n m n m n T
k t k mn t k t k t k t k t

n
cP P x x x x    (10) 

where , , 1 , / 1ˆ ˆ/m n
k mn mn k t k t tc T  

Step 2) State estimation: A bank of the single-model-based 
Kalman filters runs, and the prediction and its related 
covariance for each mode are updated: 

, / 1 , 1

, / 1 1 , 1 1 1 1

ˆ ( )m m m
k t t k t

m m T m T
k t t t k t t t t

x f x
P F P F G Q G

       (11) 

where F and G  are Jacobian matrices of mf  ((4)) related 
to , 1

m
k tx and 1

m
tv , respectively. 

By blending the measured position of people, kz , the 
quantities related to the measurement ,k tq  and its error 
covariance ,k tS  are given by 

1
, ,

1
,

( )

( )

k

k

m m T
k t l l l t

l N

m m T m
k t l l l

l N

q H R z

S H R H
                          (12) 

The state estimate ,
m
k tγ  and its related error covariance ,

m
k tΓ  

at time t are determined using the information filter as follows: 
1 1

, , , / 1 , / 1 ,

1 1
, , / 1 ,

ˆ( ) {( ) }

{( ) }

m m m m m
k t k t k t t k t t k t

m m m
k t k t t k t

γ Γ P x q

Γ P S
        (13) 

 In (12), Nk is the set of neighboring LiDARs, including 
itself (i.e., k-th LiDAR). In the ring network, N1=N2=N3={1, 2, 
3}, and in the line network, N1={1, 2}, N2={1, 2, 3}, and 
N3={2, 3}. 
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The model-conditional likelihood is calculated by 

1
, , / 1 , / 1 , / 1

, / 1

1 1 exp[ ( ) ( ) ]
22k

m m T m m
k t k t t k t t k t tm

l N k t t

z L z
L

 

                       (14) 

where the predicted measurement error , / 1
m
k t tz  and its 

associated covariance , / 1
m
k t tL  are given by 

, / 1 , , / 1

, / 1 , / 1

ˆ
( )

m m m
k t t k t k k t t
m m m m T
k t t k k t t k

z z H x
L H P H R

                     (15) 

Step 3) Exchange of tracking information and likelihood: All 
LiDARs communicate with one another and exchange 
information about the state estimate ,

m
k tγ , its related error 

covariance ,
m
k tΓ , and the model-conditional likelihood ,

m
k t . 

Step 4) Integration of tracking information: By integrating 
the tracking information exchanged among LiDARs in Step 3, 
the m-th model-conditional estimate ,ˆ m

k tx  and its related 
covariance ,

m
k tP  at time t are given by 

1
, , , , ,

1 1
, , ,

ˆ { ( ) }

( ) ( )

k

k

m m m m m
k t k t lk t k t k t
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P Γ
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where the weight ,
m
lk t  is set so that the smaller the state 

estimation error covariance ,
m
l tΓ  is, the larger the weight: 

,
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Step 5) Update of mode probability: Based on the likelihood 
,

m
k t  exchanged among LiDARs in step 3, the likelihood 

function of the m-th mode, ,
m
k t , is integrated by 

, ,log log
k

m m m
k t lk k t

l N
                      (18) 

The weight m
lk  is given by [14] 

,

1  for  ,
max ,

1 for  
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k

k
l k
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l N l k

k

l N l k
N N
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        (19) 

where lN  and kN  are the dimensions of lN  and kN , 
respectively.  

The mode probability is therefore calculated as follows: 

, / 1
, 3

, / 1 ,
1

ˆ
ˆ

ˆ

m m
k t t tm

k t
m m
k t t k t

m

                      (20) 

Using the mode probability, we recognize the motion mode 
that occurs. 

Step 6) Calculation of state estimates: The state estimate and 
its related error covariances of tracked people are given by 

3

, , ,
1

3

, , , , , , ,
1

ˆ ˆˆ

ˆ ˆ ˆ ˆˆ [ ( )( ) ]

m m
k t k t k t

m
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m

x x

P P x x x x

        

(21) 

In steps 2 and 4, to accurately track many people, each 
LiDAR sets a validation region around the predicted position 
of each tracked person [15]. LiDAR measurements 
(measurements of person’s position) within the validation 
region, which are obtained from the tracked person, are 
applied to the track update. In crowded environments, multiple 
LiDAR measurements are within a validation region, and 
several validation regions overlap. To achieve reliable data 
association (matching of tracked people and LiDAR 
measurements), the global-nearest-neighbor-based data 
association [16] is exploited. The number of people in the 
sensing areas of LiDARs changes over time. They often 
encounter occlusions. To handle such conditions, a rule-based 
data-handling method, which employs track initiation and 
termination [15], is implemented.  

VI. SIMULATION EXPERIMENTS 
 As shown in Figure 4 (a), three LiDARs are placed in an 
intersection environment, and 20 people are tracked. People’s 
motions and LiDAR scan data are generated by a simulator 
(Siemens, Simcenter Prescan). Figure 4 (b) shows the paths 
taken by 20 people. People that moved along the blue paths 
walked at 1.5 m/s and then stopped. People that moved along 
the red paths walked at 1.2 m/s and then stopped. People that 
moved along the purple paths walked at 1.5 m/s from a stop, 
ran at 3.0 m/s, and then stopped. As an example, Figure 5 
shows the velocity profiles of seven of the 20 people. 

The tracking performance is evaluated for the following 
four cases. 
• Case 1: DIMM-based tracking in a ring network, 
• Case 2: DIMM-based tracking in a line network, 
• Case 3: CIMM-based tracking, 
• Case 4: Distributed Kalman filter (DKF)-based tracking in 

a ring network. 
In case 3, the person cells detected by the three LiDARs are 

collected on a central server, and the central server tracks 
people using a conventional IMM estimator [6][8]. In case 4, 
only the constant speed model ((2)) is used as a motion model 
of a person.  

Figure 6 shows the tracking results for person 1 in cases 1 
and 2, and Figure 7 shows those in cases 1 and 3. Table I lists 
the tracking errors for the 20 people. In the table, the result for 
case 1 shows the following root-mean-squared error Ji for the i-
th person (i = 1 to 20): 

2 2 2 2

0

1 ˆˆ ˆ ˆ( )
N

i it it it it
t

J x y v
N

           (22) 
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(a) Bird’s-eye view 

 

 
(b) Top view 

Figure 4.  Simulation environment and paths taken by 20 people. 

 
(a) Persons 1(black), 9 (red),               (b) Persons 2 (black), 8 (red), 

15 (blue) and 19 (green).                      and 10 (blue). 
Figure 5.  Velocity profile of people. The blue and green lines in (a) 
significantly overlap, and the red and blue lines in (b) significantly overlap. 

where ( ˆitx , ˆity ), îtv , and ˆ
it  are estimate errors in a 

position, translational velocity, and turn velocity, respectively. 
N is the tracking duration.  

On the other hand, the results for cases 2, 3, and 4 represent 
the percentage of the tracking error to that in case 1. Thus, the 
positive sign (+) indicates that the tracking error is larger than 
that for case 1, whereas the negative sign (-) indicates the 
opposite.  

As listed in Table I, the tracking error in case 2 (line 
network) is approximately 8 % larger than that in case 1 (ring 
network). This is because in case 1, each LiDAR exchanges 
detection and tracking information with two LiDARs located 
at both sides, whereas, in case 2, LiDARs 1 and 3 exchange 
information only with LiDAR 2. Since the difference in the 
tracking error between case 1 (DIMM-based tracking) and 
case 3 (CMM-based tracking) is approximately 1 %, both 
methods can track people at almost the same degree of 
accuracy. 

  
(a) Position                                   (b) Translation velocity 

 
(c) Turn velocity                                  (d) Mode estimate 

Figure 6.  Tracking error in cases 1 (black) and 2 (red). The blue dashed line 
in (d) indicates the true mode.  

 

   
(a) Position                                   (b) Translation velocity 

 
(c) Turn velocity                                  (d) Mode estimate 

Figure 7.  Tracking error in cases 1 (black) and 3 (red). The blue dashed line 
in (d) indicates the true mode.  

 
TABLE I    TRACKING PERFORMANCE IN CASES 1－4 

Person # Case 1 Case 2 [%] Case 3 [%] Case 4 [%] 
1 0.28 +1.6 -9.0 +77.0 
2 0.35 -7.0 -4.7 +37.0 
3 0.50 +4.1 +36.3 +48.1 
4 0.21 +2.5 +0.4 +22.3 
5 0.31 +18.5 -3.8 +3.1 
6 0.29 +1.7 -6.1 +110.4 
7 0.24 +6.3 -5.3 +16.4 
8 0.29 +10.3 -1.9 +55.3 
9 0.25 +0.4 +4.7 +521.9 
10 0.38 -8.4 -6.3 +38.9 
11 0.24 +93.6 -11.7 +31.7 
12 0.21 +6.1 -0.7 +45.6 
13 0.34 +14.1 -4.1 +14.5 
14 0.25 +7.2 -0.2 +11.3 
15 0.38 +2.9 0.0 +11.6 
16 0.27 -0.2 -2.4 +101.3 
17 0.23 +4.1 +0.2 +19.9 
18 0.32 -0.6 -12.9 +0.1 
19 0.38 -10.7 -7.1 +35.2 
20 0.45 +30.8 -8.5 +89.4 

Mean 0.31 +8.1 -1.2 +61.2 
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(a) Case 1                                             (b) Case 2 

 
(c) Case 3 

Figure 8.  Computation time. The black, red, and blue lines in (a) and (b) 
indicate the results of LiDARs 1, 2, and 3, respectively. 

TABLE II ROOT MEAN SQUARES OF THE COMPUTATION TIME  
 LiDAR 1 LiDAR 2 LiDAR 3 

Case 1 114.5 ms 103.9 ms 104.5 ms 
Case 2 119.7 ms 109.1 ms 126.5 ms 
Case 3 113.4 ms 

 
The tracking performance in case 4 (DKF-based tracking) 

is approximately 61% worse than that in case 1 (DIMM-based 
tracking). This is because, in case 4, a constant-velocity model 
is employed as the motion model of a person, and the tracking 
error increases when the person performs a sudden 
acceleration motion. 

We compare the computation time of DIMM-based 
tracking (cases 1 and 2) and CIMM-based tracking (case 3). 
The specifications of the computer are Windows 10 Pro OS, 
Intel(R) Core (TM) i7-8565U@1.80 GHz CPU, 16 GB RAM, 
and C++ software language. Figure 8 shows the results, and 
Table II lists the root mean squares of the computation time. 
The computation time indicates the time required to detect and 
track people from the LiDAR scan data obtained within a scan. 
Note that the computation time in case 3 (CIMM-based 
tracking) is the sum of the computation times in LiDAR 1 and 
the central server.  

The computation time is almost the same for all the cases. 
Although the computation time should be less than 100 ms of 
the LiDAR scan period, herein, it is slightly higher than 100 
ms. This can be reduced by optimizing the program code and 
using a graphical processing unit for real-time operations. 

VII. CONCLUSION AND FUTURE WORK 

 This paper presented a cooperative tracking of people using 
networked LiDARs based on a DIMM estimator. Simulation 
experiments of tracking of 20 people were conducted using 
three Velodyne 32-layer LiDARs set in an intersection 
environment. The tracking performance of the presented 
method in two different network topologies (ring and line 
network topologies) was evaluated by comparing the tracking 
performance of the CIMM and DKF estimators. 

DIMM- and CIMM-based tacking showed comparable 
performance, and the performance of DIMM-based tracking 
was 61% lower than that of DKF-based tracking. In addition, 

the computation times for DIMM- and CIMM-based tacking 
were almost the same. 

In our future studies, we will evaluate the presented method 
through real experiments. In addition, we will employ a 
machine-learning-based method to improve the performance of 
people detection in crowded environments.  
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