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Abstract—The sensor nodes’ energy-efficient utilization is a
major challenge in the design of Wireless Sensor Networks
(WSNs). This is because the network lifetime is determined by
the sensor nodes’ limited energy sources whose replacement or
recharging is almost impossible due to the mostly deployment
of the sensor nodes in harsh environments. An effective way to
prolong the network lifetime is by designing an energy-efficient
routing protocol for WSNs. This paper discusses an optimization
method for routing in WSNs to extend the network lifetime.
Although the conventional method can extend the network
lifetime, the computation time increases exponentially with the
number of sensor nodes. Therefore, this method cannot apply to
large-scale WSNs. This paper proposes a method to reduce the
computation time using a genetic algorithm and shows that the
proposed method can provide a suboptimal routing path through
evaluation experiments.

Index Terms—reinforcement learning, genetic algorithm, rout-
ing, wireless sensor network, network lifetime, path optimization

I. INTRODUCTION

Wireless Sensor Networks (WSNs) consist of spatially
deployed sensor nodes in a geographical area to monitor
and/or track physical properties, such as motion, pressure,
temperature, etc., to collect, process and communicate the data
to a sink using the wireless medium [1]. This has made WSNs
useful in different fields of application, such as battlefield
monitoring, object tracking, environmental monitoring, disas-
ter management, etc. The sensor nodes have limited resources,
such as power, bandwidth, memory, storage, processing, and
computing speed. The sensor node is made up of four units,
namely: the sensing unit, power unit, processing unit, and
communication unit. The power unit is limited in energy
source and supplies energy to the other units. Sensor nodes
are mostly deployed in harsh environments, which makes
their battery replacement difficult [2]. This makes the energy-
efficient utilization of the sensor nodes vital to increase the
network lifetime [3].

Distributed control with self-organized management has
been the way of operating WSNs. This approach consumes
a lot of energy due to the control overhead, which emanates

from the periodically broadcast messages for topology dis-
covery by each sensor node to discover neighbors within
its transmission range. But, recently Software-Defined WSNs
(SDWSNs) have been proposed to enable WSNs to utilize
the benefits of Software-Defined Networking (SDN). SDN is
an emerging technology that intends to overcome the limited
resources of sensor nodes and static architectures of networks
by decoupling the network control plane from the data plane,
bringing about programmability, and grouping the network
into the application plane, control plane, and data plane.
The network policies for routing, load balancing, etc. are
being defined and administered at the application plane. The
control plane evaluates and transforms the network policies
into routing rules. The generation and forwarding of traffic
using the routing rules are carried out in the data plane
under the management and supervision of the controller in
the control plane. The controller has wholistic information of
the network and communicates with the sensor nodes using
multi-hop communication [4].

The energy constraint problem in WSN, which determines
the network lifetime is therefore alleviated in the SDWSN
paradigm by removing some of the energy-consuming func-
tions, such as sending control packets from the sensor nodes
to the controller. This makes the sensor nodes not have any
intelligence and functions, such as load balancing, routing,
etc. to be handled at the controller or/and application layer.
Routing in SDWSN is the selection of paths by the controller
for the sensor nodes in forwarding data packets to the sink
using multihop communication. Since the controller has a
wholistic knowledge of the network topology, it can generate
possible Minimum Spanning Trees (MSTs) to be used as the
routing paths [5].

Traditional SDWSN has a limitation of finding the best
routing path(s) such that the residual energy of sensor nodes
is balanced, this is because it uses predetermined routing
paths for data transmission. This thereby degrades the network
lifetime since the predetermined routing path in advance does
not depict the real status of the network, for instance, the
energy consume by the sensor nodes to send packets to the
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sink. This problem of finding an energy-efficient way of using
the best routing path(s) in SDWSN can be solved by deploying
artificial intelligence, such as Reinforcement Learning (RL)
and Genetic Algorithm (GA) at the controller. RL is a kind of
machine learning that learns to solve a problem by trial and
error [6]. GA is a search-based heuristic technique based on
the concept of natural selection and genetics [7]. The GA can
be used to remove the NP-hardness of the All MSTs algorithm
for a large-scale WSNs. This enables the generation of a subset
of the network MSTs which serve as the routing tables in
polynomial time. The RL enables the controller to learn the
MSTs that maximize the network lifetime.

This paper aim at improving the time and space complexity
of the Lifetime-Aware Centralized Q-Routing Protocol (LAC-
QRP) [5]. This is achieved by using the proposed genetic
MSTs algorithm to generate the routing tables. Also, the
network lifetime considered in LACQRP is extended from the
time for the first sensor node to deplete its energy source to
the time that the sink is not reachable by the alive sensor
nodes. This is because sensing is still possible by the alive
sensor nodes and their data can be forwarded to the sink if
the network graph is still connected.

The rest of the paper is structured as follows: Section II is
the review of similar works; Section III explains the design
of the Centralized Routing Protocol for Lifetime Optimization
using GA and RL (CRPLOGARL); Section IV provides the
discussion of the simulation and results and the conclusion of
the paper is given in section V.

II. REVIEW OF SIMILAR WORKS.

The first RL-based routing protocol in networks is called
Q-routing by Boyan and Littman [8]. Q-routing is a hop-by-
hop routing protocol that minimizes packet delivery delay in
networks. The limitations of Q-routing are Q-value freshness,
parameter setting sensitivity, and slow convergence. Different
routing protocols such as [9] - [14] have also applied RL to
optimize delivery delay in networks.

Network lifetime and energy optimization routing protocols
based on RL for WSNs have been done by different authors.
The sequel presents some of these works.

Zhang and Fromherz [15] proposed an energy-efficient
routing protocol based on RL for WSNs called constrained
flooding. The protocol enables energy saving by adapting Q-
routing to optimize the cost of sending data packets to the
sink in WSNs with flooding. This reduces the number of
packet transmissions and a corresponding reduction in the
energy consumption of the WSNs. Dong et al. [16] designed
for ultra-wideband sensor networks a RL based Geographi-
cal Routing (RLGR) protocol. RLGR improved the network
lifetime by uniformly distributing energy consumption among
nodes and reducing packet delivery delay. RLGR considers
residual energy of nodes and hop counts to the sink in its
reward function. Simulation results showed that RLGR has
better network lifetime by at least 75 percent with respect to
Greedy Perimeter Stateless Routing (GPSR) [17].

Hu and Fei [18] proposed for Underwater WSNs (UWSNs)
a Q-learning-based Energy-efficient and Lifetime-Aware Rout-
ing (QELAR) protocol for finding the optimal routing path
in the network. The protocol makes the residual energy of
the nodes to be distributed evenly and thereby increasing the
network lifetime. The packets in the network are forwarded
based on a reward function that takes into consideration the
energy distribution of a group of nodes and the residual energy
of each node.

Jafarzadeh and Moghaddam [19] proposed a routing pro-
tocol for WSNs called Energy-aware QoS Routing RL-based
(EQR-RL) protocol. EQR-RL optimizes the energy in WSNs
while guaranteeing the delivery delay of packets. EQR-RL
employs the probability distribution-based exploration strategy
to choose the next hop to forward data packets. The reward
function of the protocol is based on weighted metrics of
selected forwarder residual energy, link delay, and the ratio
of packets between packet sender and the selected forwarder.

Geo et al. [20] proposed an intelligent routing protocol for
WSNs built on RL named RL-based Lifetime Optimization
(RLLO) routing protocol. RLLO uses residual energy of sensor
node and hops count to the sink in its reward function to
update agents’ Q-values. The agents in RLLO are the sensor
nodes. The routing protocol is implemented in NS2. Sim-
ulation results show improved performance when compared
with energy-aware routing (EAR) and improved energy-aware
routing (I-EAR) using network lifetime and packet delivery as
performance metrics.

Debowski et al. [21] proposed a hybrid protocol called Q-
Smart Gradient-based (QSGrd) routing protocol for WSNs.
QSGrd optimizes the energy consumption in WSNs by com-
bining transmission gradient and Q-learning. In QSGrd, each
neighbor of a node is associated with transmission success
probability which depends on the maximum transmission
range and the distance between nodes. The transmission suc-
cess probabilities of the neighbors of a node result in a trans-
mission gradient. Subsequently, the transmission probabilities
are used to update the Q-values. The best routing paths are
learned and selected based on the residual energy of the next
hop and the average least number of transmissions to the sink
using RL.

Mutombo et al. [22] proposed an RL-based Energy Balanc-
ing Routing (EBR-RL) protocol for WSNs. EBR-RL protocol
maximizes the network lifetime by balancing the energy con-
sumption between sensor nodes. EBR-RL protocol operates in
two stages. The first stage set up the network and the second
stage carries out the data transmission using RL. EBR-RL
protocol has better performance in terms of network lifetime
and energy saving when compared with existing energy-
efficient routing protocols.

Obi et al. [5] proposed a Lifetime-Aware Centralized Q-
Routing Protocol (LACQRP) for WSNs. The state space and
action space of LACQRP are all MSTs generated by the con-
troller which served as the routing tables. LACQRP maximizes
the network lifetime by learning the optimal routing tables
that minimize the maximum energy consumption of the sensor
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nodes. Simulation results show that LACQRP converges to
the optimal routing table(s) and has an increased network
lifetime when compared with RL-Based Routing (RLBR) [23]
and RL for Lifetime Optimization (R2LTO) [24]. However,
LACQRP computational complexity varies exponentially with
the number of deployed sensor nodes. This makes LACQRP
not to be feasible in practice for large-scale WSNs.

III. METHODOLOGY

This paper considers a WSN consisting of a set of sensor
nodes and a sink. The sink also acts as an SD controller. After
the network initialization, each sensor node broadcasts its sta-
tus information, which includes a unique identifier (Id), x− y
location, load (number of data octets to transmit per second to
the sink), residual energy, and maximum transmission range.
The sink collects all the sensor nodes’ status information and
builds the network graph G = (V, E), where V is the set of
sensor nodes and E is the set of network links between two
connected distinct nodes in the network. Two sensor nodes are
only connected if their Cartesian distance is less than or equal
to the maximum transmission range of the sensor nodes.

The controller computes a list of routing tables using the
proposed genetic MSTs algorithm based on distance edge
weight. The distance edge weight is used to compute the MSTs
because the transmission energy of a sensor node depends on
distance. The controller chooses an MST in each round using
RL and broadcasts it to all sensor nodes for data transmission.
This enables the lifetime optimization of the WSN globally.
The genetic MSTs algorithm and the centralized routing pro-
tocol for lifetime optimization using GA and RL are presented
in the sequel.

A. A Genetic MSTs Algorithm

The set of nodes and links of the network graph are denoted
by V = {v1, ..., vn} and E = {e1, ..., em}⊆V×V , respectively.
Each link e ∈ E is associated with an integer weight w(e) > 0
representing the link distance. The population of the GA is
obtained from MSTs generated by a classical MST algorithm.
The classical algorithms for finding MST of a connected undi-
rected graph are Kruskal’s algorithm [25], Prim’s algorithm
[26], and Boruka’s algorithm [27]. Kruskal’s algorithm and
Boruka’s algorithm can only find one MST of a network graph.
This is because Kruskal’s algorithm and Boruka’s algorithm
look at the network graph in its entirety and add the shortest
edge to the existing tree until the MST is found. Subsequently,
Prim’s algorithm builds MST by initializing a random node as
the root node. This makes Prim’s algorithm find several MSTs
for a network graph that does not have distinct edge weights
when varying the root node [28]. Therefore, the number of
MSTs generated by the Prim’s algorithm by varying the root
node is less than or equal to the number of nodes, |V| of the
network graph.

The genetic MSTs algorithm uses unique MSTs of the
network as the initial population extracted by the Prim’s
algorithm. Prim’s algorithm is called using the network graph
and varying root nodes as inputs. The algorithm for generating

the MSTs using Prim’s algorithm runs in O(|V||E| log |V|)
time, where |V| and |E| denote the number of sensor nodes
and network links, respectively. The algorithm for generating
the initial population for the genetic MSTs algorithm is given
in Algorithm 1.

Algorithm 1 Initial population using Prim’s Algorithm
Input: G(V, E)
Output: MSTs

1: MSTs = {}
2: for j in V do
3: Select vertex j as the root node
4: T = Prim(G, j)
5: if T /∈MSTs then
6: MSTs← T
7: end if
8: end for
9: Return MSTs

Every chromosome in the population represents an MST,
with its genes representing the graph edges [29]. The pop-
ulation evolves when passed through the crossover operator
and the mutation operator, which generates new individuals
(MSTs) by inheriting some of their parents’ attributes (edges).
The objective function used to measure the fitness of the
newly formed individual is the cost of the MST of the graph.
Individual fitness is given by the possibility of the new tree
T k formed by the crossover operator and the mutation operator
having a total distance edge weight equal to the total distance
edge weight of a minimum spanning tree T ∗ of the graph as
given in (1).

fitness(k) = Poss

[ ∑
i,j∈Tk

di,j =
∑

i,j∈T∗

di,j

]
(1)

where di,j is a link distance weight.

The crossover operation is done by randomly selecting two
individuals, T1 and T2 from the population as parents to form
children for the next generation. T1 and T2 are united to form
a sub-graph, G1 of G by applying the union operation [30].
The new individual generated will be an MST of G1 and also
of the network graph G. The crossover rate, cr determines how
many times of applying the crossover operator before taking
the fitness individual.

Also, the mutation operation is done by randomly choosing
an edge, ei,j from a selected individual, T3 in the population.
The ei,j is deleted from T3 and the main network graph G
to form the sub-graphs, G2 and G∗, respectively. A random
edge, e∗i,j belonging to the cut set of G∗ is added to G2 to
form a new sub-graph, G∗2 [29]. The cut set of G∗ is the set
of edges belonging to G∗ and does not belong to G2. The
new individual generated by the mutation operation must be a
tree of G before acceptance. The mutation rate, mr is used to
specify the number of times of applying the mutation operator
before selecting the fitness one. The genetic MSTs algorithm
is as given in Algorithm 2.
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Algorithm 2 A Genetic MSTs algorithm
Input: cr, mr, Number of generations (NG)
Output: MSTs

1: P = {}
2: Generate k ≤ |V| unique MSTs using Algorithm 1
3: P ← k unique MSTs
4: for i = 1 to NG do
5: Pi = {}
6: nc =

100
cr

7: for j = 1 to nc do
8: Randomly choose T1, T2 from P
9: G1 = T1 ∪ T2

10: T = Prim(G1, v)
11: if T /∈ Pi then
12: Pi ← T
13: end if
14: end for
15: nm = 100

mr
16: for j = 1 to nm do
17: Randomly choose T3 from P
18: Randomly choose ei,j from T3

19: G2 = T3 − ei,j
20: G∗ = G − ei,j
21: CutSet = {ei,j | ei,j ∈ G∗ & ei,j /∈ G2}
22: Randomly choose ei,j from CutSet
23: G∗2 = G2 + e∗i,j
24: if G∗2 is a tree of G then
25: if G∗2 /∈ Pi then
26: Pi ← G∗2
27: end if
28: end if
29: end for
30: for T in Pi do
31: Evaluate fitness using (1)
32: if fitness is True then
33: if T /∈ P then
34: P ← T
35: end if
36: end if
37: end for
38: end for
39: Return P

B. A Centralized Routing Protocol for Lifetime Optimization
using Genetic Algorithm and Reinforcement Learning

A Centralized Routing Protocol for Lifetime Optimization
using GA and RL (CRPLOGARL) is designed to remove
the NP-hardness associated with the LACQRP [5]. This is
achieved by replacing the All MSTs algorithm in LACQRP
with the proposed genetic MSTs algorithm. The CRPLOG-
ARL optimizes the time it takes for the sink not to be reachable
by alive sensor node. This is achieved by finding the routing
tables using Q-learning after each stage of the network graph
building such that the minimum of the sensor nodes’ energies

is maximized. This leads to the prolonging of the time taken
for sensor node(s) to die and hence the maximization of the
time taken for the sink not to be reachable by alive sensor
nodes.

The learning agent of the CRPLOGARL resides in the
controller of the SDWSN. The action space A and the state
space S of the agent is the list of MSTs generated by the
controller using Algorithm 2. The learning agent state is the
current MST that is used by the sink in receiving data packets
from the sensor nodes. The action of the learning agent is
to choose an MST from the action space after a round of
data transmission based on the performance of the previous
MST used. The learning agent measures the performance
of the chosen MST by using the maximum of the energies
consumption of the sensor nodes to send data packets as the
reward function. This is because there is a variation in the
energy consumption of the sensor nodes when different MSTs
are used in data transmission. The variation in the energy
consumption is from the difference in the number of links
crossing each sensor node in the different MSTs.

The quality of being in a state s ∈ S and choosing an
action a ∈ A is measured by an action-value function called
Q-value. The Q-value is a measure of the long-run reward that
the agent gets from each pair of state-action. The estimate of
this action-value function which is used to find the best action
for a given state is realized by caching the Q-values Q(st, at)
of pairs of state-action using the iterative update rule given
in (2) [6]. The learning of the agent is made meaningful by
denoting the Q-value of the learning agent as the maximum
of the sensor nodes’ energies consumption when a particular
MST is used in receiving data packets by the sink.

Qnew(st, at)← (1−α)Qold(st, at)+α

[
rt+γ∗max

a∈A
{Q(st+1, a)}

]
(2)

The extent to which the new learned Q-value affects the old
Q-value is dependent on the learning rate, α(0, 1]. The closer
the value of α is to one, the more the impact of the newly
computed Q-value on the old one. If is equal to one, then the
recent learned Q-value replaces the old Q-value completely.
The discount factor, γ[0, 1] controls the agent’s liking for the
future rewards with respect to the current reward. If γ is equal
to 1, both the immediate reward and the future reward are
considered equally.

In the proposed protocol, Q0(s0, a0) is initialized as zero.
This is because no energy is consumed by the sensor nodes
when there is no sending of data packets to the sink. The
achievable reward rt in each learning episode is given in (3).

rt = max
v∈V
{ECv} (3)

The ECv is calculated by the sink after each episode using the
difference between the previously estimated sensor residual
energy ESREPrevious

v and the currently estimated sensor
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residual energy, ESRECurrent
v . Therefore ECv is as given

in (4).

ECv = ESREPrevious
v − ESRECurrent

v (4)

The energy model adopted for CRPLOGARL is thesame as
LACQRP [5]. The reward function is minimized by selecting
the MST that has a minimum Q-value using the epsilon-greedy
technique [6]. Therefore, given a number, r ∈ (0, 1) generated
randomly in each episode and a likelihood epsilon value, ϵ ∈
[0, 1], the learning agent chooses its action in each round using
the policy given in (5).

at =

argmin
a∈A

{Qt(s, a)}, if r < 1− ϵ

Random action, otherwise.
(5)

The epsilon-greedy strategy employed by the learning agent
ensures that the learning agent will converge to the optimal
MST(s). The optimal MST at each stage of the network
building is the MST with the highest utilization percentage.
The utilization percentage of an MST is given in (6).

ζMST =
τMST

NE
(6)

where ζMST is the utilization percentage of an MST, τMST

is the number of episodes the MST is used, and NE is the
number of episodes before the network is rebuilt.

The proposed CRPLOGARL for finding the optimal RT at
each stage of network building with a view to maximizing the
time taken for the network graph to be disconnected is given
in Algorithm 3.

Algorithm 3 CRPLOGARL
Input: G(V,E), α, γ, ϵ, Learning round (L)
Output: Optimal MST(s)

1: Controller executes Algorithm 2
2: for i = 1 to L do
3: Initialize Q0(s0, a0) = 0.
4: Initialize s0 as a random MST
5: Select an MST using (5).
6: Broadcast the MST to all sensor nodes.
7: Sink receive data from the sensors using the MST.
8: Computes the reward using (3).
9: Updates Qnew using (2).

10: Updates st as the current MST.
11: if Any sensor dies, then
12: Delete the sensor(s) from G(V,E)
13: Delete links connected to the dead sensor(s)
14: Rebuild G(V,E)
15: if G(V,E) is connected, then
16: Do step 1
17: Do step 3 to 14
18: else
19: break
20: end if
21: end if
22: end for

The initialized Q-matrix of Algorithm 3 depends on the
number of generated MSTs, N by Algorithm 2 that are
used as routing tables. This makes the time complexity of
Algorithm 3 to be the same as Algorithm 2. Likewise,
Algorithm 3 has a space complexity of O(N).

IV. SIMULATION AND RESULTS DISCUSSIONS

The performance of the proposed genetic MSTs algorithm
is first established for convergence using simulations and
compared with the All MSTs algorithm [31] using the number
of MSTs generated and computation time as the performance
indices. Subsequently, the performance of the CRPLOGARL
is achieved by simulations using the performance metrics of
network lifetime, number of alive sensor nodes (NAN), and
computation time. These metrics of the CRPLOGARL are
compared with that of the recent LACQRP [5] as a means
of validation. The network lifetime is computed as the time
taken for the sink not to be reachable by alive sensor node(s).
The NAN is the number of alive sensor nodes at the network
lifetime. The computation time is the central processing unit
(CPU) time taken to achieve the network lifetime.

The CRPLOGARL and LACQRP are coded with python 3.8
under the “PyCharm” development environment. The graph-
ical structure of the WSN is implemented using the python
networkx module [32]. The python code is executed on the
SLURM (Simple Linux Utility for Resource Management)
cluster on the IRIT’s OSIRIM platform. The Computer nodes
of the OSIRIM platform adopted are the 4 AMD EPYC 7402
bi-processor computing nodes at 2.8 GHz, with 48 processors
and 512 GB of RAM each. These nodes enable more than 24
threads and/or 192 GB of RAM for the same process. The
simulation parameters used to implement the CRPLOGARL
and the LACQRP are shown in Table 1.

TABLE I
SIMULATION PARAMETERS

Parameters Values
Number of sink 1

Number of sensors 100
Area of deployment 1000 m × 1000 m

Deployment of Sensor node Random
Sink coordinate (500, 500)

Communication range 50 m
Bandwidth 1 kbps

Data packet size 1024 bits
Initial sensor energy 1 J to 10 J

Packet generation rate 1/s to 10/s
Discount factor 0.0
Learning rate 0.7

Epsilon 0.1
Number of generations 1000

Crossover rate 0.01
Mutation rate 1

As shown in Fig. 1, when the mutation rate is kept constant
and the crossover rate is increased for the scenario when
the number of network edges is 5000, the genetic algorithm
for generating MSTs converges slower. This is because the
higher the crossover rate, the lower the number of crossover
operations that are performed by the genetic MSTs algorithm.
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This leads to a reduced possibility of finding newer individuals
in a given generation. There is a direct relationship between
the speed of convergence and the crossover rate of the genetic
MSTs algorithm. This is because the crossover operation
always leads to the formation of an MST of the network graph.

Fig. 1. Number of MSTs in each generation with varied crossover rate.

Fig. 2. Number of MSTs in each generation with varied mutation rate.

Consequently, as shown in Fig. 2, when the crossover rate
is kept constant and the mutation rate is increased, the lower
the number of mutation operations that are performed by the
genetic MSTs algorithm. This leads to a reduced possibility of
finding newer individuals in a given generation. Though there
is no direct relationship between the speed of convergence
and the mutation rate of the genetic MSTs algorithm. This is
because the mutation operation does not always lead to the
formation of an MST of the network graph. The choice of
the crossover rate, and mutation rate for the CRPLOGARL is
gotten from simulations as shown in Fig. 1 and Fig. 2.

The performance of the proposed genetic MSTs algorithm
is ascertained by comparing it with the All MSTs algorithm
using the number of generated MSTs and the computation
time as the performance metrics. The number of the network

nodes is kept constant at 101, while the number of deployed
edges is varied from 1000 to 5000 at an interval of 1000.
The edges are formed randomly between nodes while ensuring
there are no cycles formed in the network graph. The number
of MSTs generated and the corresponding computation time
of the proposed genetic MSTs algorithm and the All MSTs
algorithm are given in Table II.

TABLE II
PERFORMANCE COMPARISON OF PROPOSED GENETIC MSTS ALGORITHM

WITH ALL MSTS ALGORITHM

Edges GA MSTs All MSTs
MSTs Time (s) MSTs Time (s)

1000 51 5.89 54 8.41
2000 103 12.74 168 23.92
3000 296 17.29 504 62.63
4000 345 26.01 1240 131.15
5000 496 41.65 4262 301.45

The number of MSTs generated by the genetic MSTs
algorithm and the All MSTs algorithm increases with the
number of randomly deployed edges as shown in Table II.
The genetic MSTs algorithm can find an average of 20.73%
when compared with all MSTs generated by the All MSTs
algorithm with a reduced computation time of 80.48%.

Fig. 3. Number of alive sensors with network lifetime.

Fig. 3 shows the comparison of the number of alive nodes in
each round of data transmission of CRPLOGARL with that of
the LACQRP when the initial energies and packet gemeration
rate of the sensor nodes are kept arbitrarily at 1 J and 1 /s,
respectively. The number of alive sensor nodes of both routing
protocols decreases with the network lifetime. The decrease in
the number of alive sensor nodes is due to the depletion of the
energy sources of the sensor nodes. The CRPLOGARL has 5
alive sensor nodes at the network lifetime. This is against the
LACQRP with 6 alive sensor nodes before the sink is no longer
reachable for data transmission. This resulted to CRPLOG-
ARL having 16.67% degradation in NAN performance when
compared with LACQRP. Therefore the CRPLOGARL makes
the network graph to be disconnected faster when compared
with LACQRP. This is because CRPLOGARL only uses a
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subset of all MSTs that does not contain all the optimal ones.
This led to a reduced network lifetime in CRPLOGARL when
compared with LACQRP.

Subsequently, the network lifetime with increasing the ini-
tial sensor nodes energies for both routing protocols is as
shown in Fig. 4. As the initial sensor nodes energies increases,
the network lifetime of both routing protocols increases. This
is because the network lifetime is proportional to the residual
energies of the sensor nodes. The CRPLOGARL has a lower
network lifetime performance of 9.88% when compared with
LACQRP. This is because of LACQRP generates all MSTs
which include the optimal ones and as the initial node energies
of the sensor nodes increases, the LACQRP tends to use
often the optimal MSTs which led to better network lifetime.
However, due to the NP-hardness of generating all MSTs in
LACQRP, CRPLOGARL has reduced computation time of
90.87% when compared with LACQRP has shown in Fig. 5.

Fig. 4. Network lifetime with initial sensor energy.

Fig. 5. Computation time with initial sensor energy.

Consequently, the network lifetime with increasing sensors
packet generation rate for both routing protocols is as shown
in Fig. 6. As the packet generation rate increases, the network

lifetime of both routing protocols decreases. This is because
the network lifetime is inversely proportional to the packet
generation rates of the sensor nodes. The CRPLOGARL has a
lower network lifetime performance of 7.92% when compared
with LACQRP.

Fig. 6. Network lifetime with rate of packet generation.

Fig. 7. Computation time with rate of packet generation.

This is because of LACQRP generates all MSTs which
include the optimal ones and as the packet generation rates
of the sensor nodes increases, the LACQRP tends to use
less the optimal MSTs. However, due to the NP-hardness of
generating all MSTs in LACQRP, CRPLOGARL has reduced
computation time of 90.90% when compared with LACQRP
has shown in Fig. 7.

V. CONCLUSION

This paper presented the design of a centralized routing pro-
tocol for lifetime optimization using a genetic algorithm and
reinforcement learning for WSNs. The sink and the controller
resided at the base station of the Software Defined WSN. The
controller generated subsets of all minimum spanning trees of
the network graph in polynomial time for routing purposes.
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The reinforcement learning deployed at the controller learned
the optimal MST(s) for lifetime optimization at each stage of
the network building by the controller. This maximized the
time taken for the sink not to be reachable by alive sensor
nodes. The centralized routing protocol for lifetime optimiza-
tion using genetic algorithm and reinforcement learning has
improved computation time when compared with the lifetime-
aware centralized routing protocol. This enabled the real-life
implementation of the proposed protocol feasible. However,
the proposed protocol suffered a reduction in the performance
of network lifetime and the number of alive nodes when the
network graph is disconnected. This is because the sub-set of
the MSTs generated by the proposed protocol does not contain
all the optimal MST(s). Future work will consider emulating
the Software Defined WSN using Mininet considering real-
world parameters of a typical WSN.

ACKNOWLEDGMENT

Elvis Obi was sponsored by the Petroleum Technology
Trust Fund (PTDF) Overseas Scholarship Scheme of Nigeria
government.

REFERENCES

[1] D. S. Ibrahim, A. F. Mahdi, and Q. M Yas, “Challenges and Issues
for Wireless Sensor Networks: A Survey,” Journal of Global Scientific
Research, vol. 6, no. 1, pp. 1079-1097, January 2021.

[2] R. Priyadarshi, B. Gupta, and A. Anurag, “Deployment techniques in
wireless sensor networks: a survey, classification, challenges, and future
research issues,” The Journal of Supercomputing, vol. 76, no. 9, pp.
7333-7373, January 2020.

[3] Z. Mammeri, “Reinforcement learning based routing in networks: Re-
view and classification of approaches,” IEEE Access, vol. 7, pp. 55916-
55950, April 2019.

[4] M. Ndiaye, G. P. Hancke, and A. M. Abu-Mahfouz, “Software Defined
Networking for Improved Wireless sensor Network Management: A
Survey,” Sensors, vol. 17, no. 5, pp. 1-32, May 2017.

[5] E. Obi, Z. Mammeri, and O.E. Ochia, “A Lifetime-Aware Centralized
Routing Protocol for Wireless Sensor Networks using Reinforcement
Learning,” In 17th IEEE International Conference on Wireless and Mo-
bile Computing, Networking and Communications (WiMob), October
2021, pp. 363-368.

[6] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An introduc-
tion,” 2nd ed., Cambridge, MA, USA: MIT press, 2018.

[7] D. A Whitley, “Genetic algorithm tutorial,” Statistics and computing,
vol. 4, no. 2, pp. 65-85, June 1994.

[8] J. A. Boyan and M. L. Littman, “Packet routing in dynamically changing
networks: A reinforcement learning approach,” In Advances in neural
information processing systems, vol. 6 pp. 671-678, 1993.

[9] S. P. Choi and D. Y. Yeung, “Predictive Q-routing: A memory-based
reinforcement learning approach to adaptive control,” in 9th Proceed-
ings of Neural Information Processing Systems Conference, 1996, pp.
946–951.

[10] D. Subramanian, P. Druschel, and J. Chen, “Ants and reinforcement
learning: A case study in routing in dynamic networks,” in 15th
Proceedings of International Joint Artificial Intelligence Conference,
1997, pp. 832–839.

[11] S. Kumar and R. Miikkulainen, “Confidence based Q-routing: An online
network routing algorithm,” in 16th Proceedings of Artificial Neural
Network Engineering Conference, San Francisco, CA, USA, 1998, pp.
758–763.

[12] L. Peshkin and V. Savova, “Reinforcement learning for adaptive routing,”
in Proceedings of International Joint Conference on Neural Networks,
2002, pp. 1825–1830.

[13] D. Chetret, C. K. Tham, and L. Wong, “Reinforcement learning and
CMAC-based adaptive routing for MANETs,” in 12th Proceedings
of IEEE International Conference on Networks, November 2004, pp.
540–544.

[14] P. Fu, J. Li, and D. Zhang, “Heuristic and distributed QoS route dis-
covery for mobile ad hoc networks,” in 5th Proceedings of International
Conference on Computer and Information Technology, Shanghai, China,
2005, pp. 512–516.

[15] Y. Zhang, and M. Fromherz, “Constrained flooding: a robust and
efficient routing framework for wireless sensor networks,” In 20th IEEE
International Conference on Advanced Information Networking and
Applications, May 2006, pp. 1-6.

[16] S. Dong, P. Agrawal, and K. Sivalingam, “Reinforcement learning based
geographic routing protocol for UWB wireless sensor network,” In IEEE
Global Telecommunications Conference, November 2007, pp. 652-656.

[17] B. Karp and H.T. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” In 6th annual international conference on Mobile
computing and networking, August 2000, pp. 243-254.

[18] T. Hu and Y. Fei, “QELAR: A machine-learning-based adaptive routing
protocol for energy-efficient and lifetime-extended underwater sensor
networks,” IEEE Transactions on Mobile Computing, vol. 9, no. 6, pp.
796–809, February 2010.

[19] S. Z. Jafarzadeh and M. H. Y. Moghaddam, “Design of energy-aware
QoS routing algorithm in wireless sensor networks using reinforcement
learning,” In 4th IEEE International Conference on Computer and
Knowledge Engineering, May 2014 pp. 722-727.

[20] W.J. Guo, C.R. Yan, Y.L. Gan, and T. Lu, “An intelligent routing
algorithm in wireless sensor networks based on reinforcement learning,”
Applied Mechanics and Materials, Vol. 678, pp. 487–493, October 2014.

[21] B. Debowski, P. Spachos, and S. Areibi, “Q-learning enhanced gradient
based routing for balancing energy consumption in WSNs,” In 21st IEEE
International Workshop on Computer Aided Modelling and Design of
Communication Links and Networks, December 2016 pp. 18-23.

[22] V. K. Mutombo, S. Y. Shin, and J. Hong, “EBR-RL: energy balancing
routing protocol based on reinforcement learning for WSN,” In 36th
ACM Annual Symposium on Applied Computing Proceedings, April
2021, pp. 1915-1920.

[23] W. Guo, C. Yan, and T. Lu, “Optimizing the lifetime of wireless
sensor networks via reinforcement-learning-based routing,” International
Journal of Distributed Sensor Networks, vol. 15, no. 2, pp. 1-20,
February 2019.

[24] S. E. Bouzid, Y. Serrestou, K. Raoof, and M. N. Omri, “Efficient routing
protocol for wireless sensor network based on reinforcement learning,”
In 5th IEEE International Conference on Advanced Technologies for
Signal and Image Processing, October 2020, pp. 1-5.

[25] J. B. Kruskal, “On the shortest spanning subtree of a graph and the trav-
eling salesman problem,” In Proceedings of the American Mathematical
society, vol. 7, no. 1, pp. 48-50, 1956.

[26] R. C. Prim, “Shortest connection networks and some generalizations,”
The Bell System Technical Journal, vol. 36, no. 6, pp. 1389-1401, 1957.

[27] J. Eisner. ”State-of-the-art algorithms for minimum spanning trees: A
tutorial discussion”, University of Pennsylvania, 1997.

[28] Z. Halim, “Optimizing the minimum spanning tree-based extracted
clusters using evolution strategy,” Cluster Computing, vol.21, no.1, pp.
377-391, March 2018.

[29] T. A. Almeida, V. N. Souza, F. M. S. Prado, A. Yamakami, and M. T.
Takahashi, “Genetic algorithm to solve minimum spanning tree problem
with fuzzy parameters using possibility measure,” In IEEE NAFIPS
Annual Meeting of the North American Fuzzy Information Processing
Society, pp. 627-632, June 2005.

[30] T. A. Almeida, A. Yamakami, and M. T. Takahashi, “An evolutionary ap-
proach to solve minimum spanning tree problem with fuzzy parameters,”
In 6th IEEE International Conference on Computational Intelligence for
Modelling, Control and Automation and International Conference on
Intelligent Agents, Web Technologies and Internet Commerce, Vol. 2,
November 2005, pp. 203-208.

[31] T. Yamada, S. Kataoka, and K. Watanabe, “Listing all the minimum
spanning trees in an undirected graph,” International Journal of Com-
puter Mathematics, vol. 87 no. 14, pp. 3175-3185, November 2010.

[32] A. Hagberg, P. Swart, and S. C. Daniel, “Exploring network structure,
dynamics, and function using NetworkX, In 8th SCIPY Conference,
August 2008, pp. 11-15.

12Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-005-6

SENSORCOMM 2022 : The Sixteenth International Conference on Sensor Technologies and Applications


