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Abstract—Many system identification problems can be ad-
dressed based on tensor decomposition methods. In this frame-
work, the conventional Recursive Least-Squares (RLS) algorithm
requires a prohibitive amount of arithmetic resources and is
sometimes prone to numerical stability issues. This paper presents
a low-complexity RLS-based algorithm for multiple-input/single-
output system identification, which results as a combination
between the exponentially weighted RLS algorithm and the
Dichotomous Coordinate Descent (DCD) iterations.

Index Terms—adaptive filter; multilinear forms; recursive least-
squares (RLS); dichotomous coordinate descent (DCD); tensor
decomposition

I. INTRODUCTION

The identification of multilinear forms (or linearly separable
systems) can be efficiently exploited in the framework of
different applications [1]. Such scenarios can appear in the
framework of multichannel systems, e.g., with a large number
of sensors and actuators. In these contexts, the basic approach
relies on tensor decomposition and modeling techniques, since
the multilinear forms can be modeled as rank-1 tensors. The
main idea is to combine (i.e., “tensorize”) the solutions of
low-dimension problems, in order to efficiently solve a mul-
tidimensional system identification problem, which is usually
characterized by a large parameter space.

For the system identification implementations, which can
be decomposed using Multiple-Input/Single-Output (MISO)
setups, several tensor-based models were recently proposed
[1]. One such decomposition uses the Recursive Least-Squares
(RLS) method based on Woodburry’s identity to split the
unknown system determination into multiple smaller adap-
tive systems. Despite the fact that the overall complexity is
reduced, the algorithm previously introduced as tensor-based
RLS (RLS-T) is still dependent on the square of each filter’s
length, and it is also prone to inherit the problems of classical
least-squares solutions [2].

The combination with the Dichotomous Coordinate Descent
(DCD) iterations has been established as a possible stable
alternative with lower complexity traits, proportional to the
filter’s length [3]. Based on this idea, the current paper presents
a tensorial decomposition for multilinear forms based on
the RLS-DCD method. For the identification of an unknown
MISO system based on its tensorial form, multiple RLS-DCD
shorter filters are employed, which inherit the performance of
the classical RLS versions and require lower arithmetic efforts.

In the following, Section II introduces the framework of
multilinear forms, while Section III presents the proposed
algorithm. Finally, several conclusions are summarized in
Section IV.

II. MULTILINEAR FORMS

In the framework of a real-valued MISO system, the output
signal (at discrete-time index n) is defined as

y(n) =

L1∑
l1=1

L2∑
l2=1

· · ·
LN∑

lN=1

xl1l2...lN (n)h1,l1h2,l2 · · ·hN,lN ,

where hi = [hi,1 hi,2 · · · hi,Li ]
T are N individual channels,

each one of length Li, i = 1, 2, . . . , N , and the superscript
T denotes the transpose operator. The input signals can be
described in the tensorial form X (n) ∈ RL1×L2×···×LN ,
having the elements (X )l1l2...lN (n) = xl1l2...lN (n). Thus, the
output signal becomes

y(n) = X (n)×1 h
T
1 ×2 h

T
2 ×3 · · · ×N hT

N , (1)

where ×i, i = 1, 2, . . . , N denotes the mode-i product. As
we can notice, y(n) is a multilinear form, since it is a linear
function of each hi, i = 1, 2, . . . , N , when the other N − 1
components are fixed.

Let us consider the rank-1 tensor H ∈ RL1×L2×···×LN , with
the elements (H)l1,l2,...,lN = h1,l1h2,l2 · · ·hN,lN , such that
H = h1 ◦ h2 ◦ · · · ◦ hN , where ◦ denotes the outer product.
In addition, we have vec (H) = hN ⊗ hN−1 ⊗ · · · ⊗ h1,
where vec(·) is the vectorization operation and ⊗ denotes
the Kronecker product. Hence, we can rewrite (1) as y(n) =
vecT (H) vec [X (n)].

Furthermore, we can denote x(n) = vec [X (n)] and g =
vec (H). Here, x(n) is the input vector of length L1L2 · · ·LN

and g plays the role of a global impulse response (of the same
length). Therefore, (1) finally becomes y(n) = gTx(n), while
the reference signal results as

d(n) = gTx(n) + w(n), (2)

where w(n) is the measurement noise, which is uncorrelated
with the input signals. The main goal is the identification of the
global system g. Equivalently, the identification problem can
be formulated in terms of recursively estimating the individual
components hi, i = 1, 2, . . . , N .
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III. RLS-BASED ALGORITHMS

The faster convergence rate is one of the main advantages of
the RLS methods, with respect to the performances obtained
by other families of algorithms. However, this convergence
aspect comes together with a very high computational com-
plexity. It was previously demonstrated that tensor-based algo-
rithms could produce better results than the classical RLS ap-
proach, by splitting the long filter associated with the unknown
system identification problem into multiple smaller filters,
i.e., into multiple smaller system identification processes. This
results in a significant decrease in the number of mathematical
operations and improved convergence rates.

Let us consider the estimated impulse responses of the
channels, ĥi(n), i = 1, 2, . . . , N , and the estimated output,
ŷ(n), such that the error signal results in N equivalent ways:

e(n) = d(n)− ŷ(n) = d(n)− ĥT
i (n− 1)xĥi

(n), (3)

for i = 1, 2, . . . , N , where

xĥi
(n) =

[
ĥN (n− 1)⊗ ĥN−1(n− 1)⊗ · · · ⊗ ĥi+1(n− 1)

⊗ ILi ⊗ ĥi−1(n− 1)⊗ · · · ⊗ ĥ2(n− 1)⊗ ĥ1(n− 1)
]T

x(n),

with ILi denoting the identity matrices of sizes Li × Li.
At this point, we can apply the least-squares (LS) error

criterion [2] in the context of (2) and (3). Thus, the cost func-
tions can be formulated in N alternative ways, following the
optimization procedure of the individual impulse responses.
Furthermore, the minimization of these cost functions with
respect to ĥi(n), i = 1, 2, . . . , N leads to the set of normal
equations, which result in the updates of the individual filters
of the RLS-T algorithm [1].

In this idea paper, we propose to use the combination be-
tween the DCD iterations and the RLS method, in the tensorial
framework. The RLS-DCD algorithm [3] was employed in the
past due to its low complexity arithmetic workloads and im-
proved numerical stability. The advantages obtained by using
the generalized tensorial model applied with low-complexity
RLS algorithms can lead to high convergence/tracking speeds
and acceptable computational requirements, an overall design
that is suitable for efficient hardware applications.

The proposed tensor-based RLS-DCD (RLS-DCD-T) algo-
rithm is summarized in Table I. For each of the corresponding
channels, the RLS-DCD-T is designed with an overall com-
plexity proportional to the length of the associated adaptive
filter, in terms of additions and multiplications. No divisions
are needed to perform the filter update process or to generate
the output information. Consequently, the complexity of the
Exponential Weighted RLS-DCD-T algorithm presented in
Table I reflects its split functionality design. The overall
computational effort is a sum of values proportional to the
individual filter lengths, in terms of multiplications, respec-
tively additions. Considering the fact that decompositions can
be performed such that Li ≪ L, the proposed reduction in
complexity represents a migration from a setup difficult to

TABLE I. EXPONENTIAL WEIGHTED RLS-DCD-T ALGORITHM (FILTER i).

Initialization :

ĥi(0) = ri(0) = 0Li×1, Ri(0) = ξiILi
, ξi > 0, 0 < λi ≤ 1

For n = 1, 2, . . . , number of iterations :

R
(1)
i (n) = λiR

(1)
i (n− 1) + x

ĥi
(n)x

(1)

ĥi
(n)

R
(1)
i (n) denotes the 1st column of R−1

i (n)

x
(1)

ĥi
(n) denotes the 1st element of x

ĥi
(n)

e
ĥi

(n) = d(n)− ĥT
i (n− 1)x

ĥi
(n)

p0,i(n) = λiri(n− 1) + e
ĥi

(n)x
ĥi

(n)

Ri(n)∆hi(n) = p0,i(n)
DCD−−−→ ∆ĥi(n), ri(n)

ĥi(n) = ĥi(n− 1) + ∆ĥi(n)

implement on hardware platforms to an attractive solution for
multiple adaptive systems configurations.

Using the conventional RLS family of algorithms [2] (i.e.,
the direct estimation of the global impulse response) could be
very costly for large values of L, since the computational com-
plexity order would be O(L2). On the other hand, the compu-
tational complexity of the RLS-T algorithms is proportional
to

∑N
i=1 O(L2

i ), which could be much more advantageous
when Li ≪ L. In addition, since the RLS-T operates with
shorter filters, improved performance is expected, as compared
to the conventional RLS algorithm. The RLS-DCD-T brings
an extra layer of efficiency by performing the same tasks with
workloads of order

∑N
i=1 O(Li). These observations are also

supported by our preliminary experimental results, which will
be reported in future works.

IV. CONCLUSION

This idea paper has introduced a low-complexity RLS-based
adaptive algorithm for the identification of unknown systems
based on tensorial decompositions. The resulting RLS-DCD-
T algorithm benefits from the low computational requirements
of the DCD iterations and could provide performance compa-
rable with other established versions of tensorial based RLS
methods. The reduction in complexity for the adaptive filter
update process is important. Most importantly, the usage of
the DCD iterations allows for the coefficient updates to be
performed using only bit-shifts and additions.
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