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Abstract—This paper presents a relative pose estimation 
method for multiple vehicles that involves scan matching using 
Light Detection And Ranging (LiDAR) measurements 
captured from overlapping sensing areas of neighboring 
vehicles. Such Cooperative Scan Matching (CSM) can be used 
to Cooperative Moving-Object Tracking (CMOT) by vehicles 
in Global Navigation Satellite Systems (GNSS)-denied 
environments. Each vehicle is equipped with a LiDAR and 
detects static measurements originating from static objects, 
such as building walls and utility poles, from its own LiDAR 
scan images by applying an occupancy grid method. Each 
vehicle then obtains point feature histograms related to static 
features using Fast Point Feature Histograms (FPFH). The 
information related to LiDAR measurements and point feature 
histograms is sent to a central server. After the central server 
matches the environmental features obtained by the vehicles 
based on point feature histograms and estimates the relative 
pose of the vehicles by RAaNdom Sample Consensus 
(RANSAC) based coarse registration and Normal Distributions 
Transform (NDT) scan matching-based fine registration. 
Experimental results using two LiDAR-equipped vehicles in 
two road environments show that the proposed CSM has 
better applicability in urban environments with a high number 
of streets. 

Keywords-multi-vehicles; LiDAR; cooperative scan 
matching; relative pose estimation; FPFH; NDT scan mathcing. 

I.  INTRODUCTION 
Tracking (i.e., estimating the position, size, and velocity) 

of multiple moving objects such as people, cars, bicycles, 
and motorcycles in real environments is an important issue 
for the safe navigation and autonomous driving of mobile 
robots and vehicles [1]–[3]. For such Moving-Object 
Tracking (MOT), the use of stereo camera, Light Detection 
And Ranging (LiDAR), and radar in mobile robotics and 
Intelligent Transportation Systems (ITS) has been drawing 
considerable interest. This paper focuses on LiDAR-based 
MOT. 

MOT using only a LiDAR mounted on a vehicle (called 
Individual MOT (IMOT)) cannot track moving objects that 
exist outside the sensing area of the vehicle or in a blind spot 
of the vehicle. To address this problem of IMOT, 
Cooperative Moving-Object Tracking (CMOT) [4] and 
cooperative perception (CP) [5][6] have been presented. 
Multiple vehicles exchange LiDAR sensing data through a 
vehicle-to-vehicle communication network, and they detect 

and track moving objects in each other’s blind spots. CMOT 
and CP can then improve the accuracy and reliability of 
MOT and environmental sensing. 

In MOT, the occupancy grid method [7] is usually used 
to detect moving objects from the LiDAR measurements. In 
this method, the accurate self-pose (position and attitude) of 
the LiDAR-equipped vehicle in the world coordinate frame 
is required to map the LiDAR measurements acquired in the 
sensor coordinate frame onto the grid map in the world 
coordinate frame. In CMOT, if the accuracy of self-pose 
estimation in the world coordinate frame differs from vehicle 
to vehicle, each vehicle would misrecognize the same object 
as two different objects. In addition, it would recognize an 
object’s size as larger or smaller than the actual size. 

For accurate self-pose estimation of vehicles in CMOT, 
we used Real Time Kinematic Global Navigation Satellite 
Systems (RTK GNSS) under the assumption that CMOT is 
applied in outdoor open-sky environments [8]. However, 
GNSS, including RTK GNSS, lack credibility due to the 
multipath or mask effects in urban street canyons. CMOT 
can be performed in such GNSS-denied environments using 
Cooperative Scan Matching (CSM) [9] and cooperative 
positioning [10][11]. CSM estimates the relative pose of 
vehicles by matching the LiDAR measurements in the 
overlapping sensing areas of these vehicles, and the self-
poses of the vehicles are corrected using the relative pose 
estimate. Iterative Closest Point (ICP) [12] or Normal 
Distributions Transforms (NDT) -based scan matching [13] 
are used as CSM algorithms.  

In relative pose estimation using ICP or NDT-based scan 
matching (called fine registration), an appropriate initial 
value of the relative pose (called coarse registration) should 
be calculated to avoid the local-minimum problem in the 
iterative calculation in the fine registration. Our previous 
work [9] extracted pole-like objects in environments, such as 
utility poles and light poles, from the LiDAR measurements 
and utilized them as environmental features for coarse 
registration. However, many environments do not have such 
objects. In addition, where they do exist, they are frequently 
occluded by surrounding moving objects, such as cars, tracks, 
and buses. 

This paper presents a coarse registration method that uses 
Fast Point Feature Histograms (FPFH) and Random Sample 
Consensus (RANSAC)-based algorithm [14][15]. Since such 
coarse registration does not limit the environmental features 
to pole-like objects, it can be applied in various GNSS-
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denied environments, such as urban city roads and roads 
with many street trees. In this paper, NDT scan matching-
based fine registration is used to estimate the relative pose of 
vehicles. In addition, a success/failure decision method of 
CSM is presented. 

The rest of this paper is organized as follows: Section II 
provides an overview of our experimental system and 
CMOT method. Section III describes the relative pose 
estimation by CSM and the success/failure decision. In 
Section IV, experimental results obtained in outdoor road 
environments by two vehicles (small electric car and 
motorcycle) are shown, followed by our conclusions in 
Section V. 

II. EXPERIMENTAL SYSTEM AND CMOT OVERVIEW  
In this section, an overview of our experimental system 

and CMOT is presented. 

A. Experimental System 
Figure 1 shows the two experimental vehicles: a small 

electric car (Toyota auto body, COMS) and a motorcycle 
(Honda, Gyro Canopy). A 32-layer scanning LiDAR 
(Velodyne, HDL-32E) is installed on the top of each vehicle. 
The maximum range of the LiDAR is 70 m, the horizontal 
viewing angle is 360° with a resolution of 0.16°, and the 
vertical viewing angle is 41.34° with a resolution of 1.33°. 
The LiDAR provides 384 measurements (the object’s 3D 
position and reflection intensity) every 0.55 ms (at 2° 
horizontal angle increments). The period needed for the laser 
beam to complete one rotation (360°) in the horizontal 
direction is 100 ms; thus 70,000 measurements are obtained 
in one rotation. 

The motorcycle (vehicle 2) is also equipped with Inertial 
Measurement Unit (IMU) (Xsens, MTi-300). The IMU 
outputs the attitude angle (roll and pitch angles) and angular 
velocity (roll, pitch, and yaw angular velocities) every 10 
ms. The errors in attitude angle and angular velocity are less 
than ±0.3° and ±0.2°/s, respectively. 

B. Overview of CMOT 
Figure 2 shows a sequence of CMOT. Each vehicle 

senses its surrounding environment with its scanning LiDAR. 
The LiDAR obtains range measurements by scanning laser 
beams. Thus, when the vehicle moves, the entire scan data 
within one scan (laser beam rotation of 360° in the horizontal 
plane) cannot be obtained at the same pose of the vehicle. 
Therefore, if the entire scan data obtained within one scan 
are mapped onto the world coordinate frame using the self-
pose information of the vehicle, distortion will arise in the 
LiDAR scan images. To correct this distortion, the vehicle’s 
pose is determined in a period shorter than than the LiDAR 
scan period, i.e., for every LiDAR measurement (0.55 ms) in 
the scan. Vehicle 1 (small car) corrects the distortion in the 
LiDAR scan images using the information from only LiDAR 
measurements [16]. Vehicle 2 (motorcycle) corrects the 
distortion using the information from its LiDAR and IMU 
measurements because it changes its pose more significantly 
compared with vehicle 1 [17].  

 
(a) Vehicle 1 (small car) 

 

 
(b) Vehicle 2 (scooter) 

Figure 1. Overview of the experimental vehicle.  

 

 
 

Figure 2.  Overview of the cooperative moving-object tracking (CMOT). 
 

 
Each vehicle maps their corrected LiDAR measurements 

onto the grid map. Based on the occupancy grid method, the 
LiDAR measurements are classified into two types, namely 
moving and static measurements, which originate from 
moving and static objects, respectively. Point feature 
histograms are obtained using FPFH for static measurements.  
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The information of the LiDAR measurements is then 
uploaded to the central server. This information includes 
time stamps, 3D positions of static measurements with the 
point feature histograms, 3D positions of the moving 
measurements, and self-poses of the vehicles. 

After receiving the information of the LiDAR 
measurements, the central server estimates the size, position, 
and velocity of the moving objects using a Bayesian-based 
algorithm [10]. The estimated information is then fed back to 
the vehicles. 

In this paper, NDT-based Simultaneous Localization and 
Mapping (SLAM) [19] is assumed to estimate the self-poses 
of the vehicles. In CMOT, if two vehicles have different 
accuracies of their self-poses in the world coordinate frame, 
the mapping of LiDAR measurements for the same object 
onto the grid map will cause errors, and the CMOT 
performance will deteriorate. Therefore, the relative pose 
between two vehicles is estimated by CSM, and the self-
poses of the vehicles are corrected using the relative pose 
information. In this paper, for simplicity, only the self-pose 
of vehicle 2 is corrected.  

CSM estimates the relative pose between two vehicles by 
matching the static measurements in the overlapping sensing 
areas of the vehicles using NDT scan matching. However, if 
the initial pose given to NDT scan matching is inaccurate, 
NDT scan matching will output an inaccurate relative pose 
due to the local-minimum problem in its iterative calculation. 
Therefore, the static measurements in the overlapping 
sensing areas of two vehicles are matched based on the point 
feature histograms, and the relative pose is coarsely 
estimated using RANSAC. The relative pose estimate 
obtained by such coarse registration is given to NDT scan 
matching as the initial pose. 

Finally, the success or failure of CSM is assessed. If it is 
deemed successful, the moving measurements detected by 
two vehicles are re-mapped to the grid map, and the moving 
objects are tracked. 

III. COOPERATIVE SCAN MATCHING 
In this section, the point feature histograms obtained 

using FPFH, which is a metric for matching static 
measurements from two LiDARs, are first described. Next, 
the relative pose between two vehicles is estimated using 
coarse and fine registration. Finally, the success/failure 
decision method of CSM is described. 

A. Point Feature Histograms 
Each vehicle obtains point features using FPFH [14] 

from the static measurements. Vehicle 1 first maps the static 
measurements onto a voxel map (grid size of 1 m) in its own 
vehicle coordinate frame 1 (fixed to vehicle 1) and 
downsamples the static measurements using a voxel grid 
filter. The centroid of the static measurements in the i-th 
voxel (i = 1, 2, …) on the voxel map is then obtained. The 
centroid is called the feature point Ai. Vehicle 2 obtains the 
feature point Bi in the same way from the static 
measurements in its own coordinate frame 2 . 

 

 
Figure 3.  Point feature. 

 
 

The point feature histograms are calculated based on the 
feature points Ai and Bi. Since it is the same for both 
vehicles, only the point feature histograms calculation 
method for vehicle 1 is described in this paper.  

The 3D position of the feature point Ai in the i-th voxel 
is denoted by ai in 1 . The 3D position of the feature point 
Aj in the j-voxel (j =1, 2, ... 124), which is located around 
the i-th voxel, is also denoted by aj in 1 . As shown in 
Figure 3, the normal vectors for the feature points Ai and Aj 
are denoted by ni and nj, respectively. A coordinate frame 

Ai is defined, in which the feature point Ai is used as the 
origin OAi, the normal vector ni as the x' axis, (aj−ai) × x' as 
the y' axis, and the axis orthogonal to the x' and y' axes as 
the z' axis. 

Then, the triple feature ( j，  j，  j) related to the angles 
in Ai is defined by 'j jy n , ' ( )j j ix a a , and 

arctan( ' / ' )j j jz n x n . The point features SPFH(Ai) of 
3×124-dimensional vector is obtained by calculating the 
features for the 124 feature points Aj (j =1, 2, ... 124) around 
Ai. In similar way, the point features SPFH(Aj) for the 
feature points Aj (j =1, 2, ... 124) around Ai are obtained. The 
final histograms (33 dimensions) related to the feature point 
Ai are then determined from 

124

1

1 1( ) ( ) ( )
124i i j

j j

A A A
w

FPFH SPFH SPFH     (1) 

where the weight wj is equal to j ia a . 

B. Relative Pose Estimation 
In the coarse registration, the relative pose between 

vehicles is determined by matching the feature points Ai and 
Bi with similar point feature histograms. However, since 
many feature points have similar feature histograms, 
incorrect matching often occurs. Therefore, the following 
RANSAC-based method is used to perform the coarse 
registration. 

Step 1: Three feature points *
iA  (i = 1, 2, 3) are randomly 

extracted from the set of feature points obtained by vehicle 1. 
Then, 100 feature points Bi (i = 1, … 100) with similar 
feature histograms as those of *

iA are extracted using the k-
nearest neighbor method from the set of feature points 
obtained by vehicle 2. Then, one feature point *

iB is randomly 
selected from the 100 feature points Bi. 
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Step 2: The pose of vehicle 2 relative to vehicle 1 is 
denoted by ( , , , , , )Tx y zX , where 

( , , )Tx y zx  and ( , , )Tθ  are the relative position 
and attitude angle (roll, pitch, and yaw angles), respectively. 

The centroid positions of three feature points * * *
1 2 3( , , )A A A  

and * * *
1 2 3( , , )B B B  are denoted by a  and b , respectively. The 

feature point matrices are denoted by 1 2 3( , , )Ta a a a  and 
1 2 3( , , )Tb b b b , where *

i ia a a  and *
i ib b b , 

and *
ia  and *

ib  are the 3D positions of the feature points *
iA  

and *
iB , respectively. With use of the matrices U and V, 

which are defined by the singular value decomposition (H = 
UΣVT) of the matrix TH b a , the relative position x  
and the rotational matrix ( )R θ  related to the relative 
attitude angle θ  are given by 

( ) TR θ VU   
cos cos sin sin cos cos sin
cos sin sin sin sin cos cos

sin sin cos

 

cos sin cos sin sin
cos sin sin sin cos

cos cos

        (2) 

( )x a R θ b                                   (3) 

With use of the relative pose, the 3D position ib of the 
feature point Bi in 2  (obtained by vehicle 2) can be 
transformed to the 3D position (1)

ib in 1 . The feature point 
nearest to (1)

ib  is extracted from the set of feature points Ai 
(i =1, 2, ...), and the 3D position of the nearest feature point 
in 1  is denoted by ia . Then, the cost function is given by 

(1) (1)

1

1 ( ) ( )
BN

T
i i i i

iB

J
N

a b a b                    (4) 

where (1) ( )i ib R θ b x . NB is the number of the feature 
points Bi. 

Step 3: Steps 1 and 2 are repeated 10,000 times to find 
the relative pose X  with the smallest J. Then, the relative 
pose 0X  is obtained in the coarse registration. 

In NDT scan matching, the relative pose 0X  is used as 
the initial value, and the iterative calculation is performed 
using the Newton method to maximize the likelihood 
function in Eq. (5). The relative pose *X can then be 
obtained. 

2
(1) 1 (1)

1

1exp ( ) ( )
2

N
T

j i i j i
j

q p Ω q p     (5) 

where ip  and iΩ  are the mean and covariance, respectively, 
of the 3D positions of the static measurements in the i-th 
voxel of the voxel map in 1 . jq  is the 3D position of the j-
th static measurement (j = 1, 2, …N2) obtained by vehicle 2 
in 2  and transformed to 1 . 

C. Success/Failure Decision 
Determination of CSM success or failure is vital (i.e. 

whether the relative pose obtained by CSM is correct or 
not). 

After the NDT scan matching-based fine registration, the 
static measurements are first downsampled with a voxel grid 
filter (cell size of 0.5 m in this paper). The sets of 
downsampled static measurements related to vehicles 1 and 
2 are called static measurement sets 1 and 2, respectively. 
For each measurement in static measurement sets 2, the 
closest measurement is identified from static measurement 
sets 1, and the Euclidean distance between the two 
measurements is calculated. This process is conducted M2 
times, where M2 is the number of measurements in static 
measurement sets 2. The number Mnear of static 
measurements whose Euclidean distance is 0.5 m or less is 
counted.  

The matching rate is defined by Mnear ／ M2. If the 
matching rate is equal to or greater than a threshold (33% in 
this paper), then the CSM is deemed successful, and the 
relative pose obtained by the CSM is utilized in CMOT. 

The computational cost related to the coarse registration 
is high. Therefore, if the CSM is found to succeed in the 
current scan, the coarse registration will not be executed in 
the next scan. The relative pose estimated by the NDT scan 
matching in the current scan is then used as the initial pose 
for the NDT scan matching in the next scan. By contrast, if 
the CSM is found to have failed in the current scan, both the 
coarse and fine registration is utilized to estimate the 
relative pose in the next scan.  

IV.    EXPERIMENTAL RESULTS 
Experiments are conducted in two environments: an 

urban road environment with many buildings (environment 
1; Figure 4 (a)) and a road environment with street trees 
(environment 2; Figure 5 (a)).  In environment 1, vehicle 1 
follows vehicle 2, which moves at about 40 km/h. The 
distance between the two vehicles is shown in Figure 4 (b). 
On the road, there are 20 cars and 5 pedestrians. In 
environment 2, vehicle 1 follows vehicle 2, which moves at 
about 30 km/h, and the distance between the two vehicles is 
shown in Figure 5 (b). On the road, there are 3 cars and 10 
pedestrians.  

Figure 6 shows the mapping results of the LiDAR 
measurements captured by the two vehicles at 40 s in 
environment 1. The mapping performance is compared in the 
following cases. 

Case 1: Mapping using relative pose estimate by CSM 
(proposed method)  

Case 2: Mapping using self-pose by RTK GNSS 
Case 3: Mapping using self-pose by standard GNSS  

The two experimental vehicles are equipped with RTK 
GNSS (Novatel ProPak-V3 on vehicle 1 and Novatel 
PwrPak7-E1 on vehicle 2) to evaluate our studies. In case 2, 
the LiDAR measurements captured by the two vehicles are 
mapped onto the world coordinate frame using the self-poses 
of the vehicles obtained by RTK GNSS. The GNSS in the 
normal mode (standard GNSS) is widely used in real-world 
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applications. However, the positioning accuracy of standard 
GNSS is worse than that of RTK GNSS. Thus, Gaussian 
errors with a mean of zero and standard deviation of 1 m are 
added to the self-pose obtained by RTK GNSS to generate 
the position information of standard GNSS. In case 3, 
LiDAR measurements are mapped onto the world coordinate 
frame using such pseudo-self-poses of the vehicles. 

As shown in Figure 6 (d), in case 3, since the relative 
pose of the two vehicles is inaccurate, the LiDAR 
measurements related to the building walls and vehicles are 
not matched significantly. Then, the two detected vehicles 
will be recognized as four vehicles by our CMOT. In case 2 
(Figure 6 (c)), although RTK GNSS gives an accurate 
relative pose between the two vehicles, the LiDAR 
measurements related to the building walls and vehicles are 
slightly mismatched. As shown in Figure 6 (b), the mapping 
performance of the proposed method (case 1) is better than 
that of the two other cases.  

Figure 7 shows the mapping results of the LiDAR 
measurements captured by vehicles 1 and 2 at 14 s in 
environment 2. It is clear from this figure that the mapping 
performance of the proposed method (case 1) is better than 
that of the two other cases. 

Table 1 shows the success rate of CSM and performance 
of CSM success/failure decision by the matching rate. Four 

measures are used to evaluate the performance of CSM 
success/failure decision: accuracy, precision, recall, and F-
measure. The accuracy represents the ratio of the number of 
scans where the success/failure decision by the matching 
rate matches the actual success/failure result of CSM. 
Precision is the ratio of the number of scans where the CSM 
actually succeeds to the number of scans where the CSM is 
considered successful in the success/failure decision. Recall 
is the ratio of the number of scans where the CSM is found 
successful in the success/failure decision to the number of 
scans where the CSM actually succeeds. F-measure is the 
harmonic mean of precision and recall. 

The success rate of CSM in environment 2 is lower than 
that in environment 1. As shown in Figures 4 (b) and 5 (b), 
the distance between the two vehicles in environment 2 is 
longer than that in environment 1. As the distance between 
the two vehicles increases, the overlapping area of the 
LiDARs decreases, and the inaccuracy of feature point 
matching increases. In addition, since the road environment 
with street trees (environment 2) has many similar point 
feature histograms, accurate feature point matching is 
difficult. Consequently, the success rate of CSM in 
environment 2 is lower than that in environment 1. 

 

 
 

                         
(a) Photo of environment                                                                                         (b) Distance between vehicles  

 
Figure 4.  Photo of environment and distance between vehicles (environment 1). The left photo is the bird’s-eye view, and the yellow line in the left photo 
indicates the movement path of the vehicles. 

 

                       
(a) Photo of environment                                                                                            (b) Distance between vehicles  

 
Figure 5.  Photo of environment and distance between vehicles (environment 2). The left photo is the bird’s-eye view, and the yellow line in the left photo 
indicates the movement path of the vehicles. 
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(a) Photo of environment 

 
(b) Case 1 (using CSM) 

  
(c) Case 2 (using RTK GNSS) 

   
(d) Case 3 (using standard GNSS) 

 
Figure 6.  Mapping result in environment 1. The blue and red dots indicate 
the LiDAR measurements related to vehicles 1 and 2, respectively. 

 
(a) Photo of environment 

 

 
(b) Case 1 (using CSM) 

 

 
(c) Case 2 (using RTK GNSS) 

 

 
(d) Case 3 (using standard GNSS) 

 
Figure 7.  Mapping result in environment 2. The blue and red dots indicate 
the LiDAR measurements related to vehicles 1 and 2, respectively. 
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TABLE I.  SUCCESS RATE OF CSM AND PERFORMANCE OF 
SUCCESS/FAILURE DECISION 

  Environment 
 1 

Environment 
 2 

Success rate of CSM [%] 78.9 64.3 

Performance 
 of success/ 

failure 
decision 

Accuracy [%] 95.5 87.4 

Precision [%] 97.8 86.1 

Recall [%] 96.6 99.0 

F-measure [%] 97.2 92.1 

 
Table 1 also indicates that the performance of the CSM 

success/failure decision by the matching rate in environment 
2 is considerably worse than that in environment 1. Since the 
road environment with street trees (environment 2) has many 
similar point feature histograms, incorrect matching 
frequently occurs. In consequence, the performance of the 
CSM success/failure decision is highly degraded in 
environment 2. 

V.    CONCLUSION AND FUTURE WORK 
CMOT requires mapping LiDAR measurements captured 

by nearby vehicles onto a grid map represented on a 
common coordinate frame (e.g., world coordinate frame).  

To accurately map these LiDAR measurements onto a 
grid map in GNSS-denied environments, this paper 
presented a relative pose estimation method that used CSM. 
Here, the relative pose between vehicles was estimated using 
the LiDAR measurements in the overlapping sensing areas 
of the vehicles. The relative pose estimation was performed 
using FPFH and RANSAC-based coarse registration and 
NDT scan matching-based fine registration. Experimental 
results using two LiDAR-equipped vehicles in two road 
environments showed that the proposed CSM has better 
applicability in urban environments with a high number of 
streets. 

Since the spatial resolution of LiDAR is low in the 
vertical direction, the distance between vehicles where CSM 
can be achieved is short. Our current research effort aims to 
improve the CSM algorithm so that the relative pose can be 
estimated accurately even at long inter-vehicle distances. In 
addition, CSM will be implemented to CMOT and 
cooperative positioning.  
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