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Abstract—As the global population is aging, healthcare systems
in developed countries are facing many new challenges, such as
insufficient human resources for quality patient monitoring
and elderly care. One of the major health threats to elderly
patients is falling, which could cause severe injuries and the
associated complications can lead to mortality. To reduce the
potential damage caused by falling, there are many wearable-
based monitoring systems commercially available, but they
often suffer from high false alarm rates and high costs. Most of
the available solutions are based on embedded Inertial
Measurement Units (IMUs), which can easily detect a sudden
slip fall or a sudden trip fall from standing, but often fail to
detect short falls, such as falling from a bed or a chair when an
elderly is trying to get up. In this paper, a wearable fall
detection system using barometric pressure sensors is
proposed. The system is capable of detecting falls from high
and low positions with high accuracy, and it was tested using a
dataset collected from 10 healthy subjects and validated using
a 5-fold inter-subject cross-validation.

Keywords-Fall detection; Body Sensor Network; Healthcare;
Barometric pressure sensor.

I. INTRODUCTION

Due to declining fertility rates and rising life expectancy
in many countries, the world elderly population is expected
to continue to increase rapidly. According to the World
Health Organization (WHO), the proportion of the world
population who is over 60 years old will rise from 12% in
2015 to 22% by the end of 2050 [1]. Elderly population is
often at risks of falling, which is one of the most
consequential events leading to severe injuries. According to
the Centers for Disease Control and Prevention (CDC), one
in every four elderly people living in the United States report
one or several falls each year [2]. When elderly people fall
down, they are often immobilized due to joint dislocations,
bone fractures or head trauma. Therefore, fall detection
systems are of vital importance for elderly people who live
alone, as a study of 125 elderly people who fell shows that
half of the elderly fallers who remain laying on the ground
for more than an hour after falls died within 6 months after
the incidents [3]. If the injuries caused by falls are not fatal,
it still leads to a significant burden to the public healthcare
service, as elderly fallers require longer time to heal, and

they often have a higher chance of falling again. In 2012,
30.3 billion dollars were spent in medical treatments related
to non-fatal falls in the U.S. [4].

Figure 1. (a) Sensor positions and (b) System architecture

Although it is difficult to prevent elderly people from
falling, fall detection systems can significantly reduce the
time between falls and medical treatments by informing
emergency services automatically and promptly after the
incidents [5]. Extensive research has been proposed for fall
detection, which can be categorized into two basic types of
systems: vision-based and wearable sensor-based. Vision-
based systems, such as [6], are less intrusive and can detect
multiple fall events simultaneously [7]. However, such
systems have very limited range of usage, as fall events will
not be detected outside the sight of cameras or are occluded
by other people or objects. On the other hand, wearable fall
detection systems are effective almost anywhere, and less
expensive than vision-based systems. With recent
advancement in sensing technologies, many wearable
sensors have been developed for fall detection, such as those
based on Inertial Measurement Units (IMUs). IMUs often
consist of accelerometers, gyroscopes, and magnetometers,
and they can measure the acceleration, angular velocity,
direction, and tilt of a device in three dimensions [8].

The research on IMU-based fall detection systems is
mature, and the majority of such systems are based on the
algorithms that can detect sudden sharp changes in the
magnitude of acceleration signals, such as [9][10]. To avoid
false alarms on other activities, such as squat and sit on a
chair, the threshold value for detecting falls of these
algorithms must be set very accurately for different
individuals, as they might have different muscle reflection
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and strength, causing difference in acceleration signals [11].
Another disadvantage of using IMUs for fall detection is that
the IMUs must have very high sampling rates to detect
sudden changes in magnitude. As fall detection devices are
ought to be worn by elderly people 24/7, the battery of the
devices will drain very quickly. In addition, if the fall
detection is not processed on node, the data collected by
IMUs needs to be transmitted over wireless channels
constantly, which can cause congestions of the wireless
network. Instead of measuring the sudden changes in
magnitude of acceleration signals, barometric pressure
sensors can measure actual drop in altitude of the body mass
of the elderly people. It has three advantages over IMUs,
first, pressure sensors can operate at much lower sampling
rates than IMUs; second, elderly people's initial falling
positions, such as standing and sitting, can be determined by
air pressure signals, which is useful for assessing the severity
of the falls; third, the orientation of devices will not affect
the fall detection algorithms using air pressure signals.

In this paper, we propose a wearable fall detection
system using only barometric pressure sensors and machine
learning algorithms, to detect the actual drop in altitude of
the body using air pressure signals. The proposed wearable
fall detection system has low power consumption, and it can
be worn in any orientation in the waist or just be attached to
the top of the trousers. The rest of the paper is organized as
follows. Detailed experimental setup, feature extraction, and
fall detection algorithms are presented in Section II. The
experimental results on the performance of the proposed
system are shown in Section III, and the conclusion is
presented in the final section.

TABLE I. FALL DETECTION PROTOCOL

II. METHDOLOGY

Figure 1 shows the system architecture of our proposed
solution. The pressure signal captured by the sensors is
transmitted to the gateway, where the fall detection
algorithms are executed. If a fall occurs, the gateway will
inform caregivers and relatives.

A. Experimental Setup

The barometric pressure sensors used in the study were
Infineon DPS310 Pressure Shield2Go [12], which has a
relative accuracy of ±0.06Pa, a sampling rate of 128Hz, and
a precision of ±0.005hPa (or ±5cm in altitude). The pressure
sensors were used with an Infineon XMC2go development
board during data collection, then integrated with a Body

Sensor Network (BSN) wireless sensor node [13], as shown
in Figure 2. 10 healthy subjects (8 males and 2 females) were
recruited in the experiments, and the participants were asked
to perform the incidents as listed in Table I for 3 times per
incident in one session. The participants simulated falls from
standing, sitting, and lying positions onto a mattress, and also
performed non-fall incidents, such as walking and standing.
There were two pressure sensors used in the experiments, the
first sensor was attached to participants' trousers at waist
positions or on the belts, and the second sensor was attached
to the shoes of the participants. The second pressure sensor is
used as a reference, and it can also be fixed on a wall or
placed on the floor in a room. The proposed system can
potentially work without a reference sensor, but the accuracy
will drop and could lead to higher false alarm rates.

Figure 2. The proposed fall detection sensor node, which consists of a a
BSN node, a battery, and a casing of the sensor (with a quarter US dollar

coin on the side)

Figure 3. Raw and smoothed air pressure sensor signals

B. Feature Extraction

The feature extraction process can be done either on the
sensor node or on the network gateway. Before feature
extraction, the barometric pressure signals with high
frequency noises are smoothed, as shown in Figure 3, using a
moving average algorithm, which can be generalized as.

��� =
�

�� + �
� ��

���

�����

where xi is the moving averaged signal at time instant i,
which is also at the center of moving window with a window
size of 2K+1. Then, the entire sample S, which contains only
one repetition of an incident, is normalized by subtracting its
mean, which ensures the overall signal energy of the sample
is zero for different incidents. Then, the sample is partitioned
equally into M parts and feature extraction is conducted for
each part individually. This is to extract features for different
stages of incidents. For example, if M is set to 3, the sample
will roughly be divided into 3 parts: pre-incident, incident,
and post-incident. For each part of the sample, 6 features are

(1)
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extracted for each sensor. Therefore, if M is set to 3 and 2
sensors are used, there will be 36 features per sample.
Assuming there are N data points in the mth part of the
sample S, the first feature is the standard deviation, which
can be expressed as

�� = �
∑ (��� − �̅�)��
���

� − 1

where xmn is the mnth moving averaged signal point �̅�, and
�̅� is the mean of the mth part of the sample. Then, the
minimum and maximum of the mth part of the sample are
extracted using min(xmn) and max(xmn) where mn = m1, m2,
…, mN. The root mean square deviation rm is also calculated
using

�� = �
1

�
(����

�

�

���
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and Shannon entropy Em is calculated as

�� = −����
� ���(���
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�

���
These features are selected as they can present the status

of the pressure signals. Finally, all the features Rm extracted
for different parts of the sample are concatenated together to
form a final feature maps for the sample, which can be
expressed as

ℝ = [��,��, … ,��]

Figure 4. Pseudo code for the fall detection algorithm

C. Experiments

To evaluate the performance of the proposed fall
detection system, a series of experiments were conducted to
classify fall and non-fall incidents under various conditions.
The performance evaluation followed pseudo codes
presented in Figure 4, where a k-fold inter-subject cross
validation is presented to demonstrate the robustness and
effectiveness of the proposed fall detection system. The cross

validation function requires 5 inputs: the dataset which
contains barometric pressure readings from participants
while emulating different incidents, the labels of these
incidents, which are in numeral orders listed in Table I, M,
which is set from 2 to 5, K, which represents the number of
partitions for cross validation and is set to 5, and learner,
which is the type of classifier used for the machine learning
process. There are 4 types of classifiers used in the
experiments: Decision Tree, k-Nearest Neighbor (kNN),
linear Support Vector Machine (SVM), and medium
Gaussian SVM.

The algorithm will iterate K times and will return a
metric called results, which contains matrices, such as True
Positive (TP) rates and True Negative (TN) rates. In each
iteration, first of all, feature maps ℝ are extracted from the
dataset using the equations presented in feature extraction
subsection, which are then partitioned into training and

testing sets with a ratio of (1 −
�

�
)

�

�
� . The training set is then

fed to the model training function with one of the 4
classifiers to produce the trained model, which is then tested
using the testing set and compared with testing labels to
produce classification metrics, which are stored in results
and returned when all K iterations are completed.

Figure 5. Confusion matrices of the proposed system (M=4) when using
linear SVM (a), medium Gaussian SVM (b), decision tree (c), and kNN (d)

of 300 samples

III. EXPERIMENTAL RESULTS

The first experiment is fall detection, which contains only
two classes: fall and non-fall. Figure 5 shows the confusion
matrices of the proposed system using 4 different machine

(2)

(3)

(4)

(5)
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learning classifiers, and Table II presents the performance of
the proposed fall detection system using different machine
learning classifiers. There are totally 300 samples and all of
them were tested using 5-fold inter-subject cross validations
with M set to 4. Among these classifiers, linear SVM has the
best accuracy of 94.3% and medium Gaussian SVM
performs the worst in terms of overall accuracy. However,
medium Gaussian SVM has an accuracy of 97.3% when
detecting falls, but also has the worst false alarm rate at
18.7%. Decision tree and kNN have similar performance on
detecting falls, but both have slightly worse false alarm rates
than linear SVM. Similarly, linear SVM has the best fall
detection performance in terms of accuracy, specificity, and
F1 score at 94.3%, 98.7% and 93.5% respectively, whereas
medium Gaussian SVM has the best sensitivity of 97.3% for
detecting falls. In addition, Figure 6 shows Receiver
Operating Characteristic (ROC) curves of the proposed fall
detection systems when M was set to 3 and 4, respectively.

TABLE II. PERFORMANCE OF THE PROPOSED SYSTEM ON CLASSIFYING

FALL AND NON-FALL INCIDENTS

Figure 6. ROC curves of the proposed system using different machine
learning classifiers when (a) M = 3 and (b) M = 4

In the second experiment, initial falling positions were
also taken into consideration. As indicated in the confusion
matrix in Figure 7, there are 6 classes instead of only fall and
non-fall. Experiment participants are falling from standing
(Fstand), which includes action 1, 2, and 3 in the fall detection
protocol in Table I, falling from sitting (Fsitting), falling from
lying (Flying), walking (Walk), staying still (Still), which
correspond to actions 7, 8, and 9 in Table, and pick up items
on the floor (Pickup). The proposed system has an averaged
accuracy of 81.7% for all classes. The system distinguishes
falling from standing at sensitivity of 93.3%, but can only
distinguish falling from sitting and lying at 63.3% and 66.7%
respectively. This is because, as presented in Figure 7, many
falling from sitting and lying samples were detected as
falling from standing by the proposed system.

IV. CONCLUSIONS

In this paper, a novel wearable fall detection system
using only barometric pressure sensors and machine learning
algorithms is proposed. This paper demonstrates the

feasibility and accuracy of using only barometric pressure for
fall detection, especially for slow fall situations. In addition,
this study shows that the barometer can complement IMU
sensors in a wearable fall detector to provide better accuracy
in detecting different types of falls and optimize the energy
consumption. Future work can include more types of
incidents of falling, analyze the power consumption and the
processing time of the system, conduct an in-depth
comparative study with IMU-based fall detection systems,
recruit more subjects for the experiments, and test the system
in more practical and natural settings, such as in nursing
home and hospitals.

Figure 7. Confusion matrix for classifying initial falling positions and non-
fall events M = 4), F=Fall
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