
Improving the FLoRa Simulation Framework for the Performance Evaluation of

IoT Scenarios

Jose-Manuel Martinez-Caro†, Maria-Dolores Cano

Department of Information Technologies and Communication

Universidad Politécnica de Cartagena

Cartagena, Spain

email: {josem.martinezcaro, mdolores.cano}@upct.es

Abstract— In the last years, Low-Power Wide Area Network

(LPWAN) technologies have increased their presence. Their

main characteristic is covering large areas with limited

resources. One of the greatest exponents in LPWAN is the

entire system composed by Long-Range (LoRa) and

(LoRaWAN). LoRa offers an easy deployment, a low-power

consumption, a wide-coverage, and a high performance,

although it also has several constraints such as a low Data-Rate

(DR), a duty-cycle restriction (1%), and a limited application

for real-time services. In this paper, we improve the

Framework for LoRa (FLoRa) network simulation framework

using open-source tools and the programming languages C++

and Python. The incorporated options allow a better

adaptation of the simulation to users’ requirements (topology,

network conditions, or typical LoRa setting parameters, such

as Spreading Factor (SF), Transmission Power (TP), Coding

Rate (CR), Bandwidth (BW), or Carrier Frequency (CF),

among others). As an example, we show the performance of a

simulated air-quality monitoring system deployed using

LoRa/LoRaWAN with a real dataset. System performance is

evaluated in terms of several quality metrics. By using

simulation tools like the one we present in this work, IoT

(Internet of Things) networks and services can be tested and

evaluated in advance, facilitating a better planning of future

real deployments.

Keywords- IoT; LPWAN; LoRa; simulation; OMNeT++;

FLoRa Framework.

I. INTRODUCTION

The Internet of Things (IoT) concept is described as a
dense, large-scale, open and dynamic ecosystem of social-
technical entities and applications [1]. This recent concept
has shaken the network up with new devices and systems,
building a more heterogeneous network, where the
interconnection between devices and systems to transmit and
receive data is simpler [2]. These data will be further
processed to provide information and make decisions.
Moreover, IoT will allow an exponential increase of
connected devices to the network, rising to almost 31
billion by 2020 and more than 75 billion by 2025 [3].. It
will suppose an enormous economic injection to the
technology market [3]. IoT is present in many application
fields, such as Smart-Home, Smart-City, Industry 4.0, Smart-
Grid, etc. [4]. This technology is still in a research and
development phase, in spite of the forthcoming massive
deployment in short-medium term [5].

IoT features perfectly match with Low-Power Wireless-
Area-Network (LPWAN) technologies, which stand out for
their resource efficiency, i.e., low-power transmission [6].
IoT and LPWAN share several features such as low-cost,
low-power, high-performance, wide-coverage, low Data-
Rate (DR), and fast-arrangement, where dense-device
deployments could be done in a determined area connected
to one or multiple gateways. Over rural areas, LPWAN could
achieve communication distances around 30 kilometers
between emitter and receptor [7], which means a great
enhancement compared to Wireless Local Area Network
(WLAN) [8] or Wireless Sensor Networks (WSN) [9]. In
addition, LPWAN technologies consume less energy in
comparison with cellular networks (2G, 3G, 4G). On the
other hand, LPWAN is not suitable for all services and
operations because it only sends light and infrequent frames
given the limited data rate imposed to fulfill the duty cycle
restriction which must not exceed 1% of the time over the
Industrial, Scientific and Medical (IMS) band (EU: 868MHz
and 433MHz; USA: 915MHz and 433MHz).
LoRa/LoRaWAN [10], Weightless [11], NWave [12],
Telensa [13], Random Phase Multiple Acces (RPMA) [14],
Sigfox [15], and Narrow Band-IoT (NB-IoT) [16] are some
of the multiple examples of LPWAN.

One of the LPWAN technologies with a higher
popularity is LoRa/LoRaWAN due to its performance. In
this work, we present the improvements done in a simulation
software to evaluate the performance of LoRa/LoRaWAN
networks and services. The modifications are done using
different libraries and frameworks at low-level. The base of
the simulation tool is the Framework for LoRa (FLoRa) [17]
and OMNeT++ [18]. Specifically, our contributions are:

1. FLoRa implements a simplified version of the
Okumura-Hata model. However, it is not accurate because it
is an approximation based on linear regression whose
outcomes do not match the results obtained in the related
scientific literature. We introduce a more precise
implementation of the Okumura-Hata wireless propagation
model.

2. Automatic assignment of some LoRa parameters for
static LoRa nodes. We propose a new simple algorithm to
automatically set Spreading Factor (SF) and Transmission
Power (TP) for each LoRa node according to the LoRa end-
nodes location in relation to the LoRa gateway (LoRaGW)
position.

3. Introduction of security mechanisms in LoRa. We
include encryption/decryption and digital signature in the

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

communication using Counter Mode (CTR) and the Cipher-
based Authentication Code (CMAC) mechanisms,
respectively. Both methods are based on Advanced
Encryption Standard (AES).

4. Performance evaluation tasks. Using our new
implementation, it is possible to change the simulation
environment and automatically adapt the parameters to this
simulation. After a sample period (Teval), the simulator
computes several quality components from numerous quality
metrics, namely, Quality of Data (QoD), Quality of
Information (QoI), Quality of user Experience (QoE), and
Quality-Cost (QC). As an example, we briefly present the
performance of a simulated air-quality monitoring system
deployed using LoRa/LoRaWAN with a real dataset. An
example will be shown under a rural environment, allowing
an efficient performance evaluation.

The rest of the paper is organized as follows. In Section
2, we briefly describe LoRa/LoRaWAN and report an
overview of the state-of-the-art in computer simulation tools
for LoRa. Section 3 describes the software used as the basis
for this work. Section 4 details the improvements that we
have incorporated and their advantages, with an example of
the performance evaluation outcomes. The paper ends
summarizing the most important results of this work.

II. RELATED WORKS

A. LoRa/LoRaWAN

In a typical LoRa/LoRaWAN deployment (see Figure 1),
there are three main devices: LoRa end-nodes, which acquire
data from sensors at the application layer (from a simulation
perspective) and send these data using LoRa physical layer;
one or more LoRaGW that receive LoRa frames and cast
them to be forwarded through a wired network; and one or
more Network Servers, usually in the cloud, which will
process the received data and are likely in charge of
decision-making.

LoRa physical-layer uses Chirp Spread Spectrum (CSS)
modulation over the Industrial, Scientific and Medical (ISM)
frequency band which varies according to the region. Europe
uses 868MHz whilst USA adopts 915MHz, though 433MHz
is common in both regions. To gain resilience to interference
and noise, LoRa spreads a narrowband signal over a wider
channel bandwidth [4] and the sensibility of the receiver is
19.5 dB below the noise floor. There are multiple parameters
that characterize LoRa communication between LoRa end-
nodes and LoRaGW: Spreading Factor (SF), Transmission
Power (TP), Carrier Frequency (CF), Coding Rate (CR), and
Bandwidth (BW). First, SF varies from 7 to 12 (both
included). SF define the coverage area, where higher SF
values achieve higher ranges but with lower Data-Rate (DR).
Second, TP ranges theoretically from -4dBm to 20dBm. It
sets the intensity that LoRa end-nodes use to transmit LoRa
data frames to the LoRaGW. Observe that the higher SF and
TP, the larger the coverage area. Third, CF is the middle
frequency in steps of 61Hz within the range according to the
region. Fourth, CR provides security against interferences,
where higher values provide higher protection (4/5, 4/6, 4/7
and 4/8) [19]. BW is the frequency width in the transmission

band and the wider BW is, the higher DR, though sensibility
is lower. Lastly, Time on Air (ToA) is the time to transmit a
frame from a LoRa end-node to the LoRaGW and depends
on SF and BW, being opposite to the DR parameter. The
technology has three degrees of diversity (time, frequency,
and SF) [4]. The communication between LoRa end-nodes
and LoRaGW can be unidirectional or bidirectional. Unicast,
multicast, and broadcast are the three types of
communication addressing available in LoRa networks. The
duty-cycle is limited and should be lower than 1% of the
time, having a high repercussion on the maximum transfer-
rate. Depending on the application, this constraint makes this
technology inappropriate for many services that require
constant data transmission. Some authors propose the
implementation of algorithms such as Adaptive Data-Rate
(ADR) [20], Distributed Coordination Functions (DCF)
particularly Carrier Sense Multiple Access (CSMA) [21],
and Channel Activity Detection (CAD) [22][23], with the
aim of managing link parameters and getting adequate
network processes, providing medium access control
mechanisms as CSMA and detecting the LoRa preamble on
the channel with maximum power efficiency, respectively.

On the other hand, LoRaWAN [10] specifies the
architecture, layers, and protocols operating over LoRa.
Mesh or star are the two possible network architectures.
There are three LoRa end-node classes (A, B and C), all
classes observing the duty-cycle. Class A may open a
collecting window to receive acknowledgments or new
messages after a specific time lapse. Class B adds scheduled
received windows to class A and class C keeps the receive
window open at any time. The Network Server deletes
duplicate packets if multiples gateways are deployed and
redirect the packet to the corresponding Network Server. If
the application servers exist, then the Network Server will
send the information to them.

B. Simulation tools for LoRa/LoRaWAN

Computer simulators are complete tools to replicate real
network operation without the need of acquiring hardware,
but programming skills are required to define simulation
conditions with a blow of code. Simulators are also useful to
test large networks with hundreds or thousands of devices on
the network that are too costly in time (by placing and
programing) and expenses [24]. For instance, the study done
in [25] models the LoRa network efficiency and
demonstrates the exponential increase of packet drops with
the raising of devices due to interferences in a small area and
LoRaWAN access methods. Some well-known network
simulators are OMNeT++, NS3 [26], NetSim [27], SimPy
[28], and OPNET [29], among others. Moreover, multiple
frameworks and libraries are available to be imported such as
FLoRa Framework. FLoRa allows recreating a LoRa
network scenario under desirable conditions using the
OMNeT++ simulator and the INET framework. More details
about FLoRa are given in the next section.

Cooja framework is another simulation tool that runs
programs to simulate and evaluate the performance of
different networks, such as WSN or IoT-based projects such

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

Figure 1. LoRa network and backbone network.

as LoRa using Cooja [24]; it is not a specific framework for
LoRa networks though. One of the strengths of Cooja is its
simulations taking into account the devices’ energy
consumption. Cooja is open-source and uses C programming
language. It includes low-power protocols to define the
simulation settings and uses SimPy to carry out the
simulation enabling a graphical interface.

On the other hand, LoRaSim is a discrete event simulator
implemented in a 2D scenario. It also uses SimPy to place
LoRa end-nodes and LoRa sinks. This framework sets the
LoRa parameters described previously and packets payload.
LoRaSim uses Semtech SX1301 as the LoRa reference
module compatible with Semtech SX1272/SX1276 (used in
the FLoRa Framework), which is able to receive 8
concurrent orthogonal signals. Additionally, LoRaSim
includes two evaluation metrics: Data Extraction Rate
(DER), the ratio of received to transmitted messages over a
period of time and Network Energy Consumption (NEC), as
the energy spent by the LoRa end-node to successfully
achieve the LoRa sink. NEC depends mainly on the
transceiver state and time per state, and it should be
minimum to extend as much as possible the batteries life of
the devices. LoRaSim is open-source and requires additional
libraries, e.g., Matplotlib, SimPy, and Numpy, but it has not
a graphical interface. Finally, it includes several examples
and low-power protocols implementations. Table I
summarizes the most important characteristics of the
simulation tools for LoRa environments.

III. BASELINE SOFTWARE

We use open-source tools available online to implement
the simulator. These resources allow the user to develop a
complete LoRa network simulation environment adaptive to
any required scenario, getting an exhaustive performance
evaluation of the designed topology. The baseline tools used
in this work are: OMNeT++, INET Framework, FLoRa
Framework, and Crypto++ [30].

A. OMNeT++

OMNeT++ IDE uses Eclipse [31] as the main developer
platform and enhances it with new functions such as new
editors, views, wizards, and so on. It allows users to create

new and/or re-configure existing models using Network
Description (NED) language, and configuration files (.ini).
Then, the simulator evaluates the performance taking into
account the obtained results. All of this is using C++
programming language, git integration, and other open-
source tools and components. NED files define and edit the
model graphically or by text. Both options are able to create
compound modules, channels, and other component classes,
as well as other object features. On the other hand, the ini file
provides the parameters to adapt and configure models to the
simulation, and as the NED files, is edited graphically or by
text. An ini file recognizes all NED components from the
top-level module to the last inherited module, being possible
to define new parameters different to the default ones in all
existing modules. Moreover, ini files enable users to define
different scenarios according to the set parameters or random
number seed.

More than one process can be run at the same time, so the
building process is faster. While the simulation process runs
in a new window, the user can continue developing the
program due to this parallel operation. Once the simulator
has finished, the results are preserved into a vector (as a
collection of all intermediate results) and scalar files. The
default Integrated Development Environment (IDE) or other
external tools (e.g. Python) are available to the analysis of
the results.

B. INET Framework

New frameworks can be added to OMNeT++ to provide
new capabilities to the simulator. Particularly, INET includes
agents, protocols, and many other models to create, redefine,
or certify new protocols or scenarios. The supplied models in
INET are for physical, link, network, transport, and
application communication layers for different types of
communication networks such as wired, wireless, ad-hoc, or
WSN. INET bases its operation on message exchanges
between modules.

TABLE I. COMPARISON OF LORA SIMULATION TOOLS

Features
Simulation Tools

FLoRa

Framework

Cooja

Framework
LoRaSim

Base Simulator OMNeT++
Contiki OS
RIOT OS

Python

Programming

Language
C++ C Python

Additional

Frameworks
INET SimPy

Matplotlib

SimPy
Numpy

Graphical

Interface
Yes Yes No

Software
Licence

Open-source Open-source Open-source

Power

Awareness
Yes Yes Yes

Low-Power

protocols
Yes Yes Yes

Examples Yes Yes Yes

Last Version 0.8 3.0 0.2.1

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

C. FLoRa Framework

As INET, FLoRa is a specific framework to test
LoRa/LoRaWAN networks. It enables physical and link
layer evaluation, defining one (or more) gateways in the
network where end-nodes will send data frames to,
supporting bi-directional communication, defining the path
for messages from source to destination (LoRa end-nodes to
Network Server), and estimating the energy consumed by
LoRa end-devices. FLoRa sets the main LoRa/LoRaWAN
parameters, namely, SF, CF, BW, CR, and TP, which
influence the communication coverage and the probability of
data frames collision. As LoRa transmission uses the
wireless interface, a frame is received correctly if the
received power (which depends mainly on SF and TP) is
higher than the sensitivity of the LoRaGW. The framework
also estimates the energy consumption of each LoRa node
according to both the time spent by the LoRa radio module
in a specific state (transmit, receive, sleep, and off) and the
TP value. Semtech SX1272/73 datasheet provides the
consumptions for each state with a supply voltage of 3.3V.

Lastly, a typical deployment is not usually only
composed of LoRa end-nodes and LoRaGW. As an example,
we usually include in our simulations a backbone network
behind the LoRaGW to reach a Network Server (Figure 1).
In our case, once the LoRaGW receives a LoRa frame, it
encapsulates the frame into an EthernetIIFrame and forwards
it to the Network Server using the TCP/IP protocol stack,
particularly, User Datagram Protocol (UDP) messages. This
part is mainly simulated using the INET modules explained
previously. Network Server will discard duplicate packets if
the same packet is received by multiple LoRaGWs.

D. Crypto++

Crypto++ is an open-source library based on C++
programming language that includes algorithms for
ciphering, message authentication codes, hash generators,
public-key cryptosystems, etc. Crypto++ implements
multiples methods and schemes such as Diffie-Hellman,
Advanced Encryption Standard (AES), RSA, Elliptic Curve
Cryptography (ECC), and Digital Signature Algorithm
(DSA), among others [30].

IV. NOVEL INCORPORATED TOOLS

This section describes the improvements and
modifications that we have incorporated into the simulation
software, with the aim of having available an easy to use
performance evaluation tool for IoT services and networks
based on LoRa/LoRaWAN.

A. Wireless Propagation Model

The FLoRa framework includes an Okumura-Hata
implementation. From the FLoRa documentation, it is known
that this implemented wireless propagation model is based
on an approximation, using a linear regression with three
factors, namely, K1, K2, and the distance between a LoRa
end-node and the LoRaGW. The first two factors, K1 and
K2, take the default values of 127.5 and 35.2, respectively.
However, this method is not precise to estimate the Free-
Space Path Loss (FSPL), since it reaches a maximum

distance of around 6 km (as observed in extensive
simulations). It can be verified in the related literature that
this distance is too small for this technology [7][32].
Additionally, with this implementation of the Okumura-Hata
model, it is not possible to choose one of the three available
environments that the original Okumura-Hata provides,
namely, rural, sub-urban or urban.

Consequently, we introduce a new Okumura-Hata model
implementation in FLoRa to accurately estimate the FSPL in
the simulator, taking into account those three possible
environments (rural, sub-urban, and urban). FSPL is lower in
rural scenarios and higher in urban environments, because in
the former there might not be buildings that interfere with the
electromagnetic wave propagation, contrary to the urban
environment. The main objective of using this type of
propagation models is to represent properly the effect of the
physical layer in the simulations, providing an environment
as real as possible and discarding the use of less accurate
regression methods. This new model implementation is
defined by (1) [33] and uses more rigorous factors such as
frequency (f), the distance between a LoRa end-node and the
LoRaGW (d), LoRa end-node height (hm), and LoRaGW
height (hb) [33].

a(hm) = 3.2(log10(11.75·hm)2 - 4.97

Lurban = 69.55 +26.16log10(f) – 13.82log10(hb) – a(hm)
+ (44.9 -6.55log10(hb))·log10(dm)

Lsub-urban = Lurban – 2(log10(f/28))2 -5.4

Lrural = Lurban -4.78(log10(f))2 + 18.33log10(f) – 40.94

(1)

B. Initial settings parameters in LoRa

Additionally, we use Python: a general-purpose
programming language to generate automatically an ini file
that sets the configuration parameters according to the
desired conditions, for instance: the environment (rural,
suburban, urban), number of LoRa end-nodes, or
performance evaluation period (Teval), among others. Every
Teval, the simulation tool will show the calculated
performance quality metrics.

In the same script, we define the automatic selection of
SF and TP values for each LoRa end-node. These values will
depend on two factors: the distance between the LoRa end-
node and the LoRaGW and the distance between the farthest
LoRa end-node and the LoRaGW. Note that we are working
with fixed LoRa nodes and future improvements will be
added for mobile nodes. Given that to set SF we have 6
possible options [SF7, SF12], we assume that there are 6
possible distance intervals from 0 until the maximum
(farthest) distance, i.e., the LoRa end node that is farther
from the LoRaGW. Depending on what interval fits the
distance from LoRa end-node i to the LoRaGW, the
algorithm assigns the corresponding SF, knowing that lower
SF values are used for LoRa end-nodes closer to the
LoRaGW, and vice versa. Likewise, we follow the same
method to select the appropriate value for the TP, but using

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

12 possible intervals for 12 possible values [2dB,14dB],
assigning lower values to LoRa end-nodes nearer to the
LoRaGW.

According to the European case, SF and BW
combination results in 7 different DR [DR0, DR6], each one
with a specified Maximum Payload Size (M). With all these
parameters it is possible to compute the maximum Time-on-
Air (ToA) for each DR class impacting in the effective
throughput due to data-cycle (1%). We calculate the ToA
and the minimum time between packets using a payload of
12 bytes and a duty-cycle of 1% (see Table II).

After the simulation, the Python script processes the
results and represents them graphically for a better user
comprehension and to facilitate the computation with other
environments.

C. Security

We have modified the simulation tool so that transmitters
and receivers use the AES Counter Mode (CTR) method to
encrypt and decrypt messages. CTR is a symmetric
encryption method, so it employs a shared private key to
encrypt/decrypt messages, whose content will be hidden
while flowing through the network. That is, the encrypted
message is sent through the wireless channel and it can be
only decrypted by those recipients sharing the same private
key.

Taking the same shared key (or a different one but also
shared), the message is signed using the AES Cipher-based
Message Authentication Code (CMAC) method. This digital
signature guarantees authentication (the origin of the
message is verified) and integrity (the data has not been
modified or altered along the communication path). These
processes (cipher/decipher and sign) are implemented with
Crypto++ libraries imported into OMNeT++. In both
algorithms, the key length is 128 bits.

D. LoRa network

By default, SimpleLoRaApp is the application module in
a LoRa end-node in FLoRa (see Figure 2). This module
generates a random number to schedule the messages
transmission (e.g., following an exponential distribution) and
sends the message to the LoRa physical layer, which is
responsible for transmitting the message in plain text. Then,
the LoRa end-node sends a RadioFrame to LoRaGW that
contains a LoRaAppMessage encapsulated in it.

To compute the number of lost packets and measure the
Packet Delivery Rate (PDR) in the LoRa/LoRaWAN, we
modify the radio interface of LoRaGW as follows. When
LoRaGW receives a new packet, it checks two values: its
sequence number and its source ID (LoRa end-node ID). If
for a source ID i the received and expected sequence number
match, the number of lost packets is 0. In contrast, if for a
source ID i the sequence number received is higher than
expected, the difference should be the number of lost
packets. Since we compute new intermediate metrics in
different modules and OMNeT operations is based on
message exchange, LoRaAppMessage and LoRaMacFrame
modify their payload to carry out the information to the
Network Server.

Considering the simplicity of the LoRa end-node
application in FLoRa, we redefine it with three submodules
with specific functionalities, namely, Read, CipherData, and
SimpleLoRaApp, as depicted in Figure 2. The Read module
allows each LoRa end-node to read from its own dataset
(e.g., from a real one as it will be shown later). Once LoRa
end-node acquires the data, it sends a ReadDataPacket
message to the CipherData module. This module receives
read data and initializes the symmetric encryption process,
sending the data to the next module (SimpleLoRaApp)
encrypted and signed as explained before. The last module is
SimpleLoRaApp, which passes the message to the LoRa
physical layer and sends it via the wireless channel. It is
important to note that before the physical layer receives the
frame, we have also added two throughput meters. The goal
is to know the generated and received traffic by each LoRa
end-node (bits/s and packets/s).

E. Backbone Network

When the LoRaGW receives a new message, it
encapsulates the new message into a EthernetIIFrame and
forwards it to the Network Server using UDP. This transport
protocol implements message delivery through the network
with a simple connectionless communication model, without
confirmation or flow control. In its original form, the
Network Server is defined as StandardHost and when
messages arrive to the application module (called
udpApp[0]) its only purpose is to count the number of
received messages, discarding the message content. The
Network Server does not check if the message is duplicated
or not, which is insufficient for our needs (Figure 2).

Therefore, we have modified the Network Server
splitting it into three independent modules, namely,
CommunicationParameters, Decrypt, and Processing. First,
CommunicationParameters computes metrics to quantify
quality components at different abstraction levels.

TABLE II. LORA PARAMETERS ACCORDING TO SF Y BW

DR SF
BW

(kHz)

M

(bits)

Throughput

(bps)

ToA

(ms)

Min time between

Packets (s)

0 12 125 59 250 51 148.3

1 11 125 59 440 51 82.3

2 10 125 59 980 51 41.2

3 9 125 123 1760 115 20.6

4 8 125 250 3125 242 11.3

5 7 125 250 5470 242 6.2

6 7 250 250 11000 242 3.1

Figure 2. LoRa and backbone network protocol stack in our improved

simulation tool.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

Particularly, we measure metrics such as precision, accuracy,
timeliness, delay, jitter, throughput, PDR, energy
consumption, etc., from which we derive QoD, QoI, QoE,
and QC. Using these for quality components, the
performance of a service based on IoT and LoRa/LoRaWAN
can be easily evaluated [34]. The received message and these
metrics are sent to the Decrypt module that obtains the plain
text from the ciphered text using the shared key and also
checks the message signature. In case of a wrong signature,
the message is discarded. The last module is Processing,
which carries out two functions. First, storing the metrics for
each received packet in a Teval and second, when timer (Teval)
is over, the simulator processes the metrics and computes the
quality components using the received metrics during that
period.

F. Use case example

Our example is based on a real air-quality monitoring
system, whose dataset measurements will be used in the
simulations. The dataset [35] is part of a group of air-quality
stations that take multiple measures (Humidity, Temperature,
Pressure, CO, NO, etc.), located in a Spanish region. The
dataset is preprocessed, splitting it into different files, one
per LoRa end-node.

The simulated scenario is composed 53 LoRa end nodes,
one LoRaGW, and one Network Server. The location of
LoRa end-nodes is set according to the chosen environment
(having a higher area of rural environment) and the
LoRaGW is located in the center of all LoRa end-nodes.
From all the obtained metrics, quality components are
derived and normalized for a better comparison (Figure 3),
so that the closer to 1 the better the performance. The method
to obtain QoD, QoI, QoE, and QC is described in [34][36]
and it is out of the scope of this paper.

Figure 3. Performance of the LoRa-based air-quality monitoring system

in terms of several quality components.

V. CONCLUSIONS

The influence that IoT-based services may have on social
and industrial scenarios requires validating the proposed
schemes before a real deployment is done. We presented in
this paper a LoRa network simulator environment to study
the performance of new applications and services under
specific conditions, using as a baseline different libraries and
frameworks available. Particularly, we used FLoRa and
OMNeT, and introduced new features and several
modifications. Among others, a new Okumura-Hata model
has been implemented improving the accuracy of the
simulation tool, and new modules to read, cipher, and send
data from the emitter to the receiver have been incorporated.
As a future work, we plan to introduce new methods to
improve performance evaluation and monitoring based on
advanced quality metrics.

ACKNOWLEDGMENT

This work was supported by the AEI/FEDER-UE project
grant TEC2016-76465.C2-1-R (AIM).

REFERENCES

[1] G. Fortino, C. Savaglio, and M. Zhou, “Toward opportunistic

services for the industrial Internet of Things,” IEEE Int. Conf.

Autom. Sci. Eng., vol. 2017-Augus, pp. 825–830, 2018,

doi:10.1109/COASE.2017.8256205, ISBN: 9781509067800,

ISSN:21618089.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M.

Ayyash, “Internet of Things: A Survey on Enabling

Technologies, Protocols, and Applications,” IEEE Commun.

Surv. Tutorials, vol. 17, no. 4, pp. 2347–2376, 2015,

doi:10.1109/COMST.2015.2444095, ISSN:1553877X.

[3] “Internet of Things (IoT), Connected Devices Installed Base

Worldwide From 2015 To 2025,” 2015. [Online]. Available:

https://www.statista.com/statistics/471264/iot-number-of-

connected-devices-worldwide/. [Accessed: 22-Oct-2019].

[4] U. Raza, P. Kulkarni, and M. Sooriyabandara, “Low Power Wide

Area Networks: An Overview,” IEEE Commun. Surv. Tutorials,

vol. 19, no. 2, pp. 855–873, 2017,

doi:10.1109/COMST.2017.2652320, ISSN:1553877X.

[5] R. Casadei, G. Fortino, D. Pianini, W. Russo, C. Savaglio, and

M. Viroli, “Modelling and simulation of Opportunistic IoT

Services with Aggregate Computing,” Futur. Gener. Comput.

Syst., vol. 91, pp. 252–262, Feb. 2019,

doi:10.1016/j.future.2018.09.005, ISSN:0167739X.

[6] R. Sanchez-Iborra and M. D. M.-D. Cano, “State of the art in LP-

WAN solutions for industrial IoT services,” Sensors

(Switzerland), vol. 16, no. 5, 2016, doi:10.3390/s16050708,

ISBN: 978-3-03842-370-6, ISSN:14248220.

[7] J. Petäjäjärvi, K. Mikhaylov, A. Roivainen, T. Hänninen, and M.

Pettissalo, “On the coverage of LPWANs: Range evaluation and

channel attenuation model for LoRa technology,” 2015 14th Int.

Conf. ITS Telecommun. ITST 2015, pp. 55–59, 2016,

doi:10.1109/ITST.2015.7377400, ISBN: 9781467393829.

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

[8] S. Chieochan, E. Hossain, and J. Diamond, “Channel assignment

schemes for infrastructure-based 802.11 WLANs: A survey,”

IEEE Commun. Surv. Tutorials, vol. 12, no. 1, pp. 124–136,

2010, doi:10.1109/SURV.2010.020110.00047, ISSN:1553877X.

[9] L. M. Borges, F. J. Velez, and A. S. Lebres, “Survey on the

characterization and classification of wireless sensor network

applications,” IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp.

1860–1890, 2014, doi:10.1109/COMST.2014.2320073,

ISSN:1553877X.

[10] LoRa Alliance, “LoRaWAN - What is it?. A technical overview

of LoRa and LoRaWAN,” no. November, pp. 1–20, 2015.

[11] “Weightless.,” 2019. [Online]. Available:

http://www.weightless.org/.

[12] “NWAVE Technology.,” 2019. [Online]. Available:

https://www.nwave.io/.

[13] “Telensa.,” 2019. [Online]. Available:

https://www.telensa.com/technology.

[14] Ingenu, “RPMA Technology,” 2019. [Online]. Available:

https://www.ingenu.com/technology/rpma/.

[15] “Sigfox.,” 2019. [Online]. Available: https://www.sigfox.com/en.

[Accessed: 09-Sep-2019].

[16] Qualcomm Incorporated, “RP-151621- Narrowband IOT,” 2015.

[17] “FLoRa Framework,” 2019. [Online]. Available:

https://flora.aalto.fi/. [Accessed: 05-Feb-2019].

[18] “OMNeT++ Simulator.” [Online]. Available:

https://omnetpp.org/. [Accessed: 05-Feb-2019].

[19] M. Bor and U. Roedig, “LoRa transmission parameter selection,”

Proc. - 2017 13th Int. Conf. Distrib. Comput. Sens. Syst. DCOSS

2017, vol. 2018-Janua, pp. 27–34, 2018,

doi:10.1109/DCOSS.2017.10, ISBN: 9781538639917,

ISSN:2325-2944.

[20] M. Slabicki, G. Premsankar, and M. Di Francesco, “Adaptive

configuration of lora networks for dense IoT deployments,”

IEEE/IFIP Netw. Oper. Manag. Symp. Cogn. Manag. a Cyber

World, NOMS 2018, pp. 1–9, 2018,

doi:10.1109/NOMS.2018.8406255, ISBN: 9781538634165.

[21] J. R. B. Junior, J. Lau, L. De Oliveira Rech, A. S. Morales, and

R. Moraes, “Experimental Evaluation of the Coexistence of IEEE

802.11 EDCA and DCF Mechanisms,” Proc. - IEEE Symp.

Comput. Commun., vol. 2018-June, pp. 847–852, 2018,

doi:10.1109/ISCC.2018.8538640, ISBN: 9781538669501,

ISSN:15301346.

[22] C. Pham, “Investigating and experimenting CSMA channel

access mechanisms for LoRa IoT networks,” in IEEE Wireless

Communications and Networking Conference, WCNC, 2018, vol.

2018-April, pp. 1–6, doi:10.1109/WCNC.2018.8376997,

ISBN:9781538617342, ISSN: 15253511.

[23] P. Yuan, X. Wen, H. Lu, and Q. Pan, “Dynamic Backoff Based

Access Mechanism for LoRaWAN Class A,” in IEEE

International Conference on Energy Internet Dynamic, 2018, pp.

219–223, doi:10.1109/ICEI.2018.00047, ISBN:9781538641316,

ISSN: 15502368.

[24] Y. Song, O. Zendra, and O. Zendra, “Using Cooja for WSN

Simulations : Some New Uses and Limits To cite this version :

Using Cooja for WSN Simulations : Some New Uses and

Limits,” pp. 319–324, 2016, ISBN: 9780994988607.

[25] O. Georgiou and U. Raza, “Low Power Wide Area Network

Analysis: Can LoRa Scale?,” IEEE Wirel. Commun. Lett., vol. 6,

no. 2, pp. 162–165, 2017, doi:10.1109/LWC.2016.2647247,

ISSN:21622345.

[26] “Discrete Event Network Simulator - NS3.” [Online]. Available:

https://www.nsnam.org/. [Accessed: 08-May-2019].

[27] “NetSim - Network Simulator & Emulator.” [Online].

Available: https://www.tetcos.com/download.html. [Accessed:

08-May-2019].

[28] “SimPy 3.0.11.” [Online]. Available:

https://simpy.readthedocs.io/en/latest/. [Accessed: 08-May-

2019].

[29] “Opnet.com.” [Online]. Available: http://www.opnet.com/.

[Accessed: 08-May-2019].

[30] “Crypto++ Library 8.0.” [Online]. Available:

https://www.cryptopp.com/. [Accessed: 05-Feb-2019].

[31] “Eclipse.” [Online]. Available: https://www.eclipse.org/.

[Accessed: 08-May-2019].

[32] R. Sanchez-Iborra, J. Sanchez-Gomez, J. Ballesta-Viñas, M. D.

Cano, and A. F. Skarmeta, “Performance evaluation of lora

considering scenario conditions,” Sensors (Switzerland), vol. 18,

no. 3, 2018, doi:10.3390/s18030772, ISSN:14248220.

[33] J. D. Parsons, The Mobile Radio Propagation Channel. 1992,

doi:10.1111/1365-2435.13050ISBN:047198857X.

[34] J.-M. Martinez-Caro and M.-D. Cano, “A holistic approach to

evaluate the performance of applications and services in the

Internet of Things,” Submitt. to Int. J. Commun. Syst., no. Special

issue on: Emerging ICT Applications and Service-Big Data, IoT,

and Cloud Computing, 2019.

[35] “Euskadi air quality (2018),” 2018. [Online]. Available:

http://opendata.euskadi.eus/catalogo/-/calidad-aire-en-euskadi-

2018/. [Accessed: 09-Sep-2019].

[36] Q. Wu et al., “Cognitive internet of things: A new paradigm

beyond connection,” IEEE Internet Things J., vol. 1, no. 2, pp.

129–143, 2014, doi:10.1109/JIOT.2014.2311513, ISBN: 2327-

4662 VO - 1, ISSN:23274662.

33Copyright (c) IARIA, 2019. ISBN: 978-1-61208-744-3

SENSORCOMM 2019 : The Thirteenth International Conference on Sensor Technologies and Applications

	I. Introduction
	II. Related Works
	A. LoRa/LoRaWAN
	B. Simulation tools for LoRa/LoRaWAN

	III. Baseline Software
	A. OMNeT++
	B. INET Framework
	C. FLoRa Framework
	D. Crypto++

	IV. Novel Incorporated Tools
	A. Wireless Propagation Model
	B. Initial settings parameters in LoRa
	C. Security
	D. LoRa network
	E. Backbone Network
	F. Use case example

	V. Conclusions
	Acknowledgment
	References

