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Abstract— We present an approach that detects physical events
such as a fire or an explosion using sensor data fusion, where
not all relevant signals describing the event are available due to
non-presence or malfunctioning of some sensors. We employ
abductive probabilistic reasoning to detect the occurrence of
an event amongst several alternative events from imperfect
sensor data. Influenced by Dempster-Shafer’s evidence theory,
we reason on the available evidence produced by the sensor
data, combined with counterevidence, to establish degrees of
confidence to the different hypotheses made about the
occurrence of an event. The paper also describes an
experimental sensor setup for detection of fire and explosion
events, and its effectiveness in terms of false negative and false
positive detection rates.
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1. INTRODUCTION

Sensor data fusion is the method of combining data from
homogeneous or heterogeneous multiple sensors in order to
form a unified picture [1]. Compared to data obtained from
single sensors, multisensor data fusion improves the overall
event detection capabilities, in terms of reduction in the
false positive and false negative detection rates. Data fusion
systems are now widely used in various areas such as sensor
networks, robotics, video and image processing, and
increasingly so, in Internet of Things (IoT) applications such
as smart cities [2].

However, in sensor deployments, some detection
capabilities may not be available because of lack of suitable
sensors or because of the quality (precision, accuracy,
reliability) of the obtained sensor data. Hence, false
positives which means detection of a non-existing event, or
false negatives which means failure to detect an event, may
occur.

Therefore, intelligent processing of sensor data may be
needed to rectify such deficiencies. Inference on the sensor
data entails the ability to (a) detect that an event has
occurred and (b) determine the type of this event amongst a
number of possible event types. Logic based approaches
have been employed for such purposes, however not all
types of logical inferences are possible, due to incomplete
data and/or weak causal relationships between an event and
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its manifestations. Because deductive inferencing of the
event from its manifestations is not always justifiable, forms
of inductive (probabilistic) [3] and abductive reasoning [4]
have been employed. In this paper, we employ a variant of
the later form of reasoning, which calculates evidence about
the occurrence of an event from sensor data obtained from
multiple sensors, and also counter-evidence from lack of
observed data. Each type of sensor data is assigned a
numerical weight to indicate the degree to which presence
of such data supports the evidence about the occurrence of
an event. Evidences and counter-evidences are compared
using likelihood ratio methods, across the range of possible
events, in order to find the event with the highest evidence
ratio. Additionally, confidence in the suggested event
detection is calculated in terms of sensitivity and specificity
of the sensor layout used for event detection.

The structure of the paper is as follows. The next section
presents related work, while the theoretical model for our
sensor event detection method is introduced in Section III.
Section IV discusses an experimental setup and experiment
results for detecting and classifying smoke and explosion
events from sensor data. This section also analyses the
effectiveness of the approach. Section V discusses the
advantages and limitations of the proposed approach to
event detection and classification from sensor data, and
proposes future research.

II. RELATED WORK

The approach described in this paper aims to provide a
reliable way for detecting and classifying physical
phenomena (events) from fused data collected from
potentially unreliable measurements/sensors, to which
different weights are assigned as evidence. By applying
evidence-based theory, we attempt to calculate and compare
the likelihoods of occurrence for the different types of
events. To compensate for measurement/sensor unreliability
we combine the evidence from multiple events, including
the absence of evidence. Other approaches have also utilised
Dempster Schafer theory for sensor data fusion [6]. Also,
some approaches combine the Dempster- Shafer evidence
theory with other machine learning techniques such as
hierarchical neural networks, to improve the accuracy of
classifications [7].



SENSORCOMM 2018 : The Twelfth International Conference on Sensor Technologies and Applications

III. THEORETICAL MODEL

Physical events as opposed for example to events
occurring in the digital domain, are characterised by
physical processes and their quantities (energy, light,
sound). For example, a fire is manifested usually by an
increase in the ambient temperature and the presence of
gasses. However, the manifestations of different instances
of an event may vary. For example, although fires in general
produce smoke, depending on the type of materials
combusted, some fires may produce very little or no smoke.
The intensity of the heat, the volume and composition of
smoke and other physical characteristics are also subject to
many parameters in the environment of the fire. Also,
different types of events may have similar manifestations,
for example both a fire and an explosion may produce
smoke. Finally, there are detection (e.g. accuracy)
limitations imposed by the technology used to manufacture
the sensors, the sensor deployment layout, as well as by
possible sensor malfunctioning. Such limitations can restrict
our ability to use sensor data, by failing to detect an event
(false negative), falsely detect an event that did not occur
(false positive), or by wrongly classifying an event.
Therefore, our model addresses the inherent uncertainty in
event detection from sensor data and employs a probabilistic
approach, influenced from concepts from Dempster-Shafer
evidence theory [4] to reason on the available evidence
produced by the sensors and combine it with
counterevidence to establish degrees of confidence in the
various hypotheses made about the occurrence of events.

It must be noted that evidence theory has been utilised
for similar purposes such as diagnostic tasks where
information is also obtained from sensors [5]. However, our
aim is to obtain reliable information by fusing a mixture of
both reliable and unreliable data and also from lack of data
measurements.

Our approach is formally described as follows: Let £ be
the set of all types of phenomena we consider for detection
and classification and M the set of all manifestations of
events in E, detectable by our sensors, with each e in E
characterised by a set of manifestations M, — M . We define
a weighting function w, that for every m in M, assigns a
value in {0,1} to m. The weight produced by function w,(m)
represents the degree to which observation of manifestation
m increases the evidence that phenomenon e is occurring.
We also define weights to measure lack of evidence i.e. the
degree to which non-observation of a manifestation supports
the evidence that the phenomenon has not occurred. Thus, w
assigns a weight in {0,1} for each non-manifestation —m as
a measure of the evidence that the lack of a manifestation
provides to support that the phenomenon has not occurred.

Note that the values for evidence and counterevidence
do not have to be correlated. For example, the sensing of
heat is a strong indicator that a fire has occurred, however
the absence of heat detection is not an equally strong
indicator that a fire has not occurred, as some fires initially
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do not produce measurable heat, or there is a possible
malfunction of the heat sensing sensor.

Finally, we define the total evidence from our
observations O, < M, and also from the lack of them i.e.

0O, = M, - O, about a phenomenon of type e with
manifestations M, as

Ev(e) = 2., cq, W (M) (1)

Ev(—e) = Xy o, W) )

The two formulas for evidence and counterevidence
allow us to reason in a qualitative manner about the
likelihood of a phenomenon as well as to compare the
likelihoods of different phenomena. For example, even if
the counterevidence for a phenomenon is zero, it is not
justifiable to conclude that the phenomenon has occurred, if
the gathered evidence for the phenomenon is also small.
The ratio of evidence to counterevidence is an indicator of
the degree of certainty from the observations. In particular,
if Ev(e) ~ Ev(—e) it indicates uncertainty as to whether the
phenomenon has occurred or not. If the evidence weight
Ev(e) is equal to the theoretical maximum [M,| i.e. O, =M,
then there is perfect evidence, as by necessity Ev(—e) has to
be zero. Correspondingly, total lack of evidence occurs
when Ev(—e)= [M,|.

To further strengthen the confidence in the diagnosis of
events, prior knowledge about the frequency of occurrence
of different events, if available, can be utilised. This can be
expressed as a probability value P(e) with values in {0,1}.
Probabilities are used as prevalence values for calculating
likelihood ratios as explained in the next section.

As different types of events may have similar
manifestations, we are often interested in being able to
determine which is the most likely event has occurred, i.e. to
correctly classify events. We are also interested in not
falsely identifying an event (false positive) and avoid failing
to detect an event (false negative) For this purpose, we
utilise likelihood ratios.

We define likelihood ratio (LR) as the ratio of the
probability that the event has been correctly identified, to
the probability that the event has been incorrectly identified.
We use sensitivity and specificity of the measurements as
the numbers used to generate a LR. Sensitivity is the
proportion of truly occurred events that are identified as
such by the system (i.e. their total evidence scores are the
highest amongst all candidate events). Specificity is the
proportion of non-events that have been correctly
identified and indicate the probability that the test will
correctly identify a non-event.

We calculate LR for both positive and negative event
identifications, expressed as ‘LR+’ and ‘LR-*, respectively.
The calculations are based on the following formulas:

LR+ = sensitivity / 1- specificity (3)

LR- = 1- sensitivity / specificity (4)
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IV. EXPERIMENTATIONS

A. Experimental apparatus

We have empirically validated our approach in a sensor
setup to detect and classify fire and explosion events. Fig. 1
shows the experimental device setup. On the left of the
picture there is a Raspberry Pi Model B single board
computer, with a GrovePi sensor HAT (‘hardware at top’)
board, to which GrovePI sensors for atmospheric pressure,
air quality, light intensity, sound and temperature are
attached (some of the sensors are visible at the left of the
picture). Small scale fires and explosions were produced
under controlled conditions, in order to obtain the
experimental data. Data were collected from the sensors
periodically and stored by the Raspberry Pi where they are
analysed for event detection. An event is detected, if the rate
of increase in the values read by the sensor exceed a
threshold, the rate of change is calculated using the five
point formula r, =(vi, — 8V + 8V - Vin)/12, where v, are
data measurements at different timepoints. Fig. 2 shows
examples of time series of collected sensor data that shows
the manifestations of the different events (air pressure,
temperature and light intensity), through the increase in
rates in the recorded sensor values. The two events share
some manifestations, for example heat, but no change to the
air pressure. Additionally, the weights assigned to each
manifestation differ per event. We assume that weights are
assigned to manifestations by experts and that the specifics
of the environment where the sensors are deployed are taken
into account, to calibrate the values of the weights.

Figure 1. Apparatus used for experiments.

B.  Assigning weights to phenomena

Table I demonstrates the above approach in the modelling of
two physical events, a fire and an explosion. The two events
share some manifestations such as heat but not others, for
example, air pressure. Additionally, the weights assigned to
each manifestation differ per event. We assume that weights
are assigned to manifestations by experts and that the
specifics of the environment where the sensors are deployed
are taken into account.
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C. Calculating Evidences

Table II shows the aggregated evidences for the two
types of events, as well as for their negations (non-events).
Additionally, the second column of Table II shows the
manifestations detected by the sensors, and the third column
of Table II shows the mechanisms used to generate fire and
explosion manifestations.

The experiment results were used to evaluate the
detection and classification capabilities of our system. In
experiment #2, although the evidence of fire is
overwhelming compared to counterevidence, the system
cannot clearly make the case for or against an explosion
with weights of 1.4 and 1.3, respectively. In experiment #3,
the system narrowly suggests the hypothesis of fire over
non-fire, while clearly rejects the hypothesis of an
explosion. Evidence for and against fire are however
(correctly) insufficiently high for the fire hypothesis to be
strongly suggested.

D. Likelihood ratios, sensitivity and specificity
calculations

The purpose of the experiments was to estimate the
detection accuracy of our approach. Detection accuracy is
the percentage of correct event detections when taking into
account the total percentage of false positives and false
negatives. A detection accuracy of 100% would imply a 0%
false positives and false negatives rate, but may not
necessarily imply zero classification errors, as explained
below.

Classification errors refer to the number of misdiagnoses
made during the experiment. To calculate the relevant
likelihood ratios, prevalence of the explosion and fire events
were set to 0.01 and 0.05 respectively, meaning that in
general, 1% of detected events are true explosions and true
fires respectively, also suggesting that fires are five times
more common than explosions. From the data of Table II,
specificities and sensitivities for fire and explosion were
calculated, and then Formulas (3) and (4) were applied to
calculate positive and negative likelihoods (LR+, LR-). The
results are summarised in Table III.

increasing
light

intensity

values

increasing
air quality
values

increasing
temperature
values

Figure 2. Time series of sensor data showing manifestation of
phenomena. Highlighted areas from left to right show how values for:
air quality (smoke), temperature and light intensity are increasing due
to the event occurrence.
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TABLE 1. SENSITIVITIES, SPECIFICITIES AND LIKELIHOOD
RATIOS (+/-) FOR FIRE AND EXPLOSION EVENTS
Event
Type Sensitivity | Specificity LR+ LR-
Fire 1/4 0 1/4 n/a
Explosion | 3/4 12 3/8 1/8

TABLE II. SENSITIVITIES, SPECIFICITIES AND LIKELIHOOD RATIOS (+/-)

FOR FIRE AND EXPLOSION EVENTS

Event

Type Sensitivity | Specificity LR+ LR-
Fire 1/4 0 1/4 n/a
Explosion 3/4 1/2 3/8 1/8

TABLE III. EVIDENCE AND COUNTEREVIDENCE FOR DIFFERENT
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V. DISCUSSION AND CONCLUSIONS

Our approach implicitly considers sensor reliability in
assigning evidence weights to sensor data. An explicit
modelling of sensor unreliability would allow additional
scenario to be produced. Also, we use crisp thresholds for
the detection of manifestations, i.e. a manifestation has
either been detected or not. In actuality, the boundaries
between a manifestation and a non-manifestation may be
fuzzy rather than crisp. For example, the distinction between
a bright light and a flash of light may be better defined in
terms of membership to a fuzzy set of values. Since LR+
shows how much more likely it is for a truly occurred event
to score higher than a non-event, Table III suggests that the
above sensor setup is more suitable for detecting explosions
rather than fires, while minimising false positive rate. This
is both due to the relative assignment of weights to different
phenomena and to the types of sensors used for detection.
This could indicate that more fire specific detection sensors
would need to be deployed to improve sensitivity and
specificity.

Another limitation of our approach relates to the need to
assign evidence weights to each manifestation per
corresponding event.  Such weights can be obtained
empirically by historical data recorded over long periods
(where for example multiple explosion and fire events
occurred with their manifestations statistically analysed).
Where such data are not available and/or the particular
context characteristics must also be accommodated (e.g. the
topology/layout of the area where the explosion or fire
occurs), expert opinion is necessary,

Amongst the advantages of the proposed approach, we
include the clarity of the model and the simplicity of the
calculations it employs. This unlike for example, approaches
based on neural networks, makes the model easily open to
inspections and necessary calibrations. Additionally, since
the calculations involved are rather rudimentary, devices of
limited computational power and storage can be employed,
such as gateways and other ‘edge’ devices that are
physically deployed closer to the sensors.

For further research, our approach could include more
sophisticated pattern matching techniques for detecting
event manifestations, combination with other machine
learning techniques such as neural networks, and integration
with intelligent processing and decision support systems
used for example, in risk management.
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