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Abstract— Developments in Virtual Reality (VR) technology 
and its overall market have been occurring since the 1960s when 
Ivan Sutherland created the world’s first tracked head-mounted 
display (HMD) – a goggle type head gear. In society today, 
consumers are expecting a more immersive experience and 
associated tools to bridge the cyber-physical divide. This paper 
presents the development of a next generation smart glove 
microsystem to facilitate Human Computer Interaction through 
the integration of sensors, processors and wireless technology. 
The objective of the glove is to measure the range of hand joint 
movements, in real time and empirically in a quantitative 
manner. This includes accurate measurement of flexion, 
extension, adduction and abduction of the metacarpophalangeal 
(MCP), Proximal interphalangeal (PIP) and Distal 
interphalangeal (DIP) joints of the fingers and thumb in degrees, 
together with thumb-index web space movement. This system 
enables full real-time monitoring of complex hand movements. 
Commercially available gloves are not fitted with sufficient 
sensors for full data capture, and require calibration for each 
glove wearer. Unlike these current state-of-the-art data gloves, 
the UU / Tyndall Inertial Measurement Unit (IMU) glove uses a 
combination of novel stretchable substrate material and 9 degree 
of freedom (DOF) inertial sensors in conjunction with complex 
data analytics to detect joint movement.  Our novel IMU data 
glove requires minimal calibration and is therefore particularly 
suited to the multiple application domains such as Human 
Computer interfacing, Virtual reality, the healthcare 
environment.  

Keywords— Data glove; IMU; Virtual reality, Arthritis, Joint 
Stiffness, Hand Monitoring 

I.  INTRODUCTION 
Data gloves contain strategically placed sensors controlled 

by circuitry that communicates finger joint movement to an 
end device. In recent years data gloves have been evaluated by 
researchers as an effective replacement for the universal 
goniometer (UG) [12]–[17]. Results showed comparable 
repeatability to the UG with the added advantage of 
simultaneous angular measurement and removal of intra-tester 
and inter-tester reliability problems associated with the UG. 
Data gloves however have several drawbacks; they require 
laborious calibration, are difficult to don and doff; and are 
designed to fit specific hand sizes and so require small, 
medium and large gloves to fit all hand variations. The first 
iteration of our system was developed using a state-of-the-art 

5DT Ultra 14 data glove [18]. In this paper, our inertial 
measurement unit (IMU) Smart Glove is evaluated against this 
data glove for accuracy and repeatability and further validated 
using the Vicon motion capture system [19]. 

Virtual reality (VR) systems can be segmented into one of 
three experiences: non-immersive, semi-immersive, and fully 
immersive. Non-immersive systems would be those that can be 
visualized on a desktop computer. Semi-immersive VR 
environments incorporate images projected on the walls (e.g., 
cave automatic virtual environment, better known by the 
acronym CAVE). For a period of time, the user may 
superficially succumb to the perception of “being there”, but 
all the while still be aware of their real world surroundings. 
Finally, there is fully-immersive technology. In these systems, 
real-world visual and auditory cues are completely blocked out 
and the user has a sensory experience of being inside the 
computer-generated world. The experience is made ever more 
real through the use of hand-held and/or wearable devices that 
in some cases deliver haptic feedback which invoke sensations 
of touch. To enable Human computer interaction in this 
immersive fashion, high precision data acquisition systems 
need to be developed which are accurate, require minimal 
calibration and which provide real-time data streams 
wirelessly. The development of such a glove based system 
lends itself to multiple use cases including the Gaming 
environment and hand healthcare (e.g., Rheumatoid Arthritis 
(RA) monitoring). 

This paper is organized as follows. Section II describes two 
data glove use case scenarios. Section III describes the glove 
hardware. Section IV addresses the system implementation. 
Section V goes into the calibration of the glove. Section VI 
describes the graphical user interface (GUI). Sections VII and 
VIII describe the tests and results respectively. Section IX goes 
into the conclusions. The acknowledgment section closes the 
paper.  

II. MOTION MONITORING GLOVE EXAMPLE USE CASE   
Wearable data acquisition systems which provide real time 
data of high quality are increasingly valuable in a variety of 
application scenarios. These range from virtual reality, gaming 
and Human Computer Interaction (HCI) to Connected Health 
and monitoring of wellness in a clinical context. Two such 
application spaces are outlined in the following subsections.  
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A. Virtual Reality (VR) 
To be compatible with the Virtual Reality use case, it is 

important that any glove system developed for Human 
Computer Interaction adheres to requirements detailed below: 

1. Accuracy & Precision. Accuracy is the degree of 
closeness to a quantity's actual true value. Precision is the 
degree to which repeated measurements give the same 
quantity. Here, we define accuracy and precision to consist of 
position and orientation. Different parts of the hand should 
have priority for accuracy: a) The mapping of the center of the 
virtual hand is the most important for most VR applications, b) 
The finger tips are the next most important for accuracy as the 
joints can be estimated via inverse kinematics and other 
constraints, c) The skeleton/joints of the hand are the next most 
important for accuracy. 

2. Consistent recognition of gestures. Like speech 
recognition, if a gesture recognition system occasionally 
misinterprets signals then a break in presence occurs and users 
can become annoyed. Accidental gestures (known as false 
positives) are also a problem (e.g., accidentally signaling a 
command when unconsciously “talking with the hands”). 

3. Low latency. The faster the response of the system, 
then the more pleasant the user experience and the more easily 
users can enter a state of flow. 

4. Simulation of button presses. Some applications will 
greatly benefit from simulation of button presses that provide a 
sense of self-haptic feedback (e.g., by touching two fingers 
together) and to control the game and system. 

B. Rheumatoid Arthritis assessment 
RA is an auto-immune disease which attacks the synovial 

tissue lubricating skeletal joints and is characterized by pain, 
swelling, stiffness and deformity. This systemic condition 
affects the musculoskeletal system, including bones, joints, 
muscles and tendons that contribute to loss of function and 
Range of Motion (ROM). Early identification of RA is 
important to initiate treatment, reduce disease activity, restrict 
its progression and ultimately lead to its remission. Clinical 
manifestations of RA can be confused with similar unrelated 
musculo-skeletal and muscular disorders. Identifying its tell-
tale symptoms for early diagnosis has been the long-term goal 
of clinicians and researchers. Classifiers such as the Disease 
Activity Score (DAS) and Health Assessment Questionnaire 
(HAQ) provide an outcome measurement that reflects a 
patient’s severity of RA disease activity. Such measurements 
are subjective and can be influenced by other factors such as 
depression or unrelated non-inflammatory conditions. 
Traditional objective measurement of RA using the universal 
goniometer (UG) and visual examination of the hands is labour 
intensive, open to inter rater and intra-rater reliability 
problems. 

The DAS and HAQ [2] [3] are commonly used to measure 
disease onset and to assess disease status during clinical 
assessment [1]. Joint Stiffness is a common condition of RA 
that affects their ability to perform basic activities and daily 
functions [4] [5]. Several objective measurement systems have 
been devised by researchers and assessed in clinical trials for 
effectiveness as a joint stiffness measurement device [6]–[11].  

III. TYNDALL GLOVE HW DESCRIPTION 
The objective of the IMU Smart Glove is to measure the 

range of hand joint movements in a quantitative manner, 
including flexion, extension, adduction and abduction of the 
MCP, PIP and DIP joints of the fingers and thumb in degrees, 
together with thumb-index web space, palmar abduction to 
assist medical clinicians with the accurate measurement of the 
common condition of loss of movement in the human hand in 
patients with arthritis. All the Smart Glove functionality is 
maintained, controlled and analyzed by our in-house developed 
software system. 

The described glove is a second generation iteration of the 
system by the authors as described in previous work [20]. 

 
Figure 1. The IMU Smart Glove rev 2 

A. HW description 
The IMU glove, shown in Figure 1, has been manufactured 

using a mix of stretchable & flexible technology. Stretchable 
areas of the device cross each finger joint so they can conform 
to the human hand. 

The glove includes 16 9-axes IMU’s (each including 3-axis 
accelerometer, 3-axis gyroscope and 3-axis magnetometer) 
strategically placed to account for the degrees of freedom of 
each finger joint of the hand. IMUs are positioned on the 
stretchable interconnect and are located on the phalange of 
each finger segment to measure their orientation and 
biomechanical parameters. 

Each IMU provides 6-degrees of freedom motion 
information (3 translational + 3 rotational) and 3D orientation 
information. By placing an IMU at both sides of each finger 
joint, (that is one per each finger bone and another one on the 
palm of the hand), the relative orientation of each IMU is 
calculated and used to generate angular and velocity movement 
throughout flexion and extension exercise of each finger joint 
and to calculate splaying of each finger. 

B. Microcontroller 
The processor selected for use in the system is an AVR32 

UC3C 32 Bit Microcontroller. This is a high performance, low 
power 32-bit AVR microcontroller with built in single 
precision floating point unit. It was selected to enable complex 
embedded algorithms focused on motion analysis to be 
developed for real time low power consumption operation. 
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C. Wireless  Communication 
The RS9110-N-11-22 [21] module shown in Figure 2 is a 

IEEE 802.11b/g/n WLAN device that directly provides a 
wireless interface to any equipment with a UART or SPI 
interface for data transfer. It integrates a MAC, baseband 
processor, RF transceiver with power amplifier, a frequency 
reference, and an antenna in hardware. It also provides all 
WLAN protocols and configuration functionality. A 
networking stack in embedded in the firmware to enable a fully 
self-contained 802.11n WLAN solution for a variety of 
applications. 

The module incorporates a highly integrated 2.4 GHz 
transceiver and power amplifier with direct conversion 
architecture, and an integrated frequency reference antenna. 
The RS9110-N-11-22 comes with flexible frameworks to 
enable usage in various application scenarios including high 
throughput and more network features. 

 
Figure 2.  RS9110-N-11-22 System Block Diagram 

The system operates according to a low complexity 
standard 4-wire SPI interface with the capability of operation 
up to a maximum clock speed of 25MHz. The communications 
module conforms to IEEE 802.11b/g/n standards and includes 
hardware accelerated implementation of WEP 64/128-bit and 
AES in infrastructure and ad-hoc modes. The fact that the 
module supports multiple security features such as 
WPA/WPA2-PSK, WEP, TKIP make it compatible with all 
medical ERP systems. 

D. Sensors 
The MPU-9150 [22] is a full three axis inertial 

measurement system incorporating tri-axis angular rate sensor 
(gyroscope) with sensitivity up to 131 LSBs/dps and a full-
scale range of ±250, ±500, ±1000, and ±2000dps, tri-axis 
accelerometer with a programmable full scale range of ±2g, 
±4g, ±8g and ±16g and a tri-axis compass with a full scale 
range of ±1200µT. The module incorporates embedded 
algorithms for run-time bias and compass calibration, so no 
user intervention is required. The MPU-9150 features three 16-
bit analog-to-digital converters (ADCs) for digitizing 
gyroscope outputs, three 16-bit ADCs for digitizing 
accelerometer outputs, and three 13-bit ADCs for digitizing 
magnetometer outputs. For precision tracking of both fast and 
slow motions, the module features a user programmable 
gyroscope full-scale range of ±250, ±500, ±1000, and 
±2000°/sec (dps), a user programmable accelerometer full-
scale range of ±2g, ±4g, ±8g, and ±16g, and a magnetometer 
full-scale range of ±1200µT. 

E. Additional Features 
 To make the system adaptable in operation and compatible 
with a wide range of use cases outside the immediate 
application of RA monitoring, the IMU Smart Glove system 
also incorporates such features as optional storage via a micro 
SD card, battery monitoring and recharge ability, as well as a 
USB bootloader, USB communication interface, and 15 
Analogue inputs for optional resistive sensors (e.g., bend 
sensors or force sensors). The analogue front end is a buffered 
voltage divider to enable additional sensing functionality. 

IV. SYSTEM IMPLMENTATION 
All the system embedded code is implemented using the 

Atmel Studio 6 IDE. Currently the implementation includes 
full application code that continuously reads the sensor outputs 
and wirelessly transmits the data through a TCP socket. 

The accuracy of IMU-based real time motion tracking 
algorithms is highly influenced by sensor sampling rate. 
Therefore a fundamental design requirement of the IMU Smart 
Glove was high application throughput to facilitate the 
development of algorithms using suitable PC SW such as 
MATLAB C# and Unity. In addition, it was envisaged that 
once the algorithms would have been fully developed and 
tested, they would be fully implemented on the embedded 
platform. This eliminates the requirement for a high 
throughput device and allows for a low power implementation 
for example using BLE in a third generation of the glove.  

To ensure maximum achievable sampling rates and 
computation time are compatible with the application scenario 
envisaged as specified in conjunction with clinical partners 
regarding signal temporal granularity, it was decided not to 
share the I2C bus between each of the 16 MPU9150’s. Instead, 
dedicated I2C lines are provided to each one of the sensors and 
are driven in parallel. This provides the added advantage of 
ensuring synchronization between all IMU sensors. 

A. Case 1 Raw data transmission. 
The embedded processor enables multiple modes of 

operation depending on the use case and degree of data 
granularity required. Having the wireless system transmitting 
raw data at the highest achievable data rate is desirable for the 
development of the analytics as it is more practical to develop 
them using PC based SW (real time or post processing) and 
then porting them to the embedded system than develop them 
directly within the embedded system. 

B. Case 2: Transmission of Raw data & information 
The wireless system transmits raw data and 

quaternions/rotation matrix (from gyros) at the highest 
achievable data rate. Quaternions then will be subject to 
drift/errors and the analytics to correct for this are 
implemented within the controlling software. At this stage we 
have a clear idea of the maximum processing time that could 
be allocated in the embedding to this task and that is taken into 
consideration when designing these algorithms. 

C. Case 3: Transmission of processed data 
With the wireless system with full analytics embedded, the 

internal sampling rate of the sensors should be kept to a 
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maximum achievable SR, the high wireless data rate might no 
longer be required. 

V. CALIBRATION USING ACCELEROMETRY AND GYROSCOPE 
Data glove accuracy and repeatability is affected by the 

non-linear nature of glove sensor output and any misalignment 
between the wearers hand and data glove sensor positioning. 
Data glove sensor calibration improves sensor accuracy and 
matches the boundaries of each sensor to those of each finger 
joint. A calibration routine requires the glove wearer to 
position groups of finger joints such as MCP’s and PIP’s at 
specific poses. Each pose places a finger joint group and 
relevant data glove sensors at their minimum and maximum 
boundaries. The IMU Smart Glove uses on-board sensors to 
automatically calibrate each glove sensor, regardless of the 
wearer’s joint flexibility. Each glove accelerometer sensor is 
sampled when the hand is in a neutral position to calculate 
finger joint thickness and slope offset, and used during angular 
calculation.  Accelerometers placed on each one of the finger’s 
phalanges provide information with regards to the inclination 
to gravity of the phalanx. The output response of each sensor 
provides information on the orientation of the sensor to gravity 
as shown in Figure 3. The orientation to gravity of each one of 
the sensors placed on adjacent phalanges can be used to 
estimate the flexion of the finger. 

 

Figure 3. Output response vs. Orientation to gravity 

For example, if the measured acceleration for a specific 
finger from the medial phalanx accelerometer is (Xout, Yout, 
Zout)= (-1,0,0)g and from the proximal phalanx accelerometer 
is  (Xout, Yout, Zout)= (0,0,1)g, it indicates a flexion of the 
PIP joint of 90 degrees. The inclination to gravity is 
determined according to the standard formulas (1), (2) and (3):  
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Where: θ is the angle between the horizon and the x-axis of 
the accelerometer, ψ is the angle between the horizon and the 
y-axis of the accelerometer, and φ is the angle between the 
gravity vector and the z-axis. 

VI. GUI/USER INTERFACE 
Data is streamed in real-time according to the use cases 

outlined above and post processed by our controlling software. 
A pivotal role of this software is its ability to encapsulate 
movement associated with finger joints in real time. Figure 4 
shows an example of the user interface. Algorithms segment 
recorded data to extract relevant flexion and extension 
movement information.  

 
Figure 4. Angular output from the data glove is displayed in 3D 

A. Data analytics and Post processing 
Each angular calculation is low-pass filtered to remove 

sensor noise. A complementary filter with error control is 
implemented to combine accelerometer output with gyroscope 
rotation angle. Gyroscope rotational angle is initially accurate 
and drifts over time. Accelerometer angle cannot distinguish 
between lateral acceleration and rotation. The complementary 
filter acts as a high-pass and low-pass filter on both signals. It 
combines estimated gyroscope rotation and accelerometer 
angle to create an angular output. 

VII. TESTING STRATEGIES 
Our new data glove was assessed for accuracy and 

repeatability and was compared with the 5DT state-of-the-art 
data glove. The Vicon MX motion capture system was used 
during accuracy testing to independently measure angular 
values generated at each finger joint. Movement was recorded 
by Vicon and simultaneously by our in-house developed 
controlling software whilst each glove was placed on blocks of 
wood cut to specific angles. Angular readings were assessed 
using Root Mean Square Error (RMS) to provide an indicator 
of the variance between each estimated angular repetition 
value and the expected true value influenced by the angle on 
each block of wood. RMS error is influenced by both positive 
and negative errors which are either above or below the 
expected true value. Therefore RMS output is a measure of the 
angular error. Repeatability testing examined the ability of 
each data glove to consistently replicate angular readings when 
the subjects hand was held in a repeatable position. Testing 
strategies were originally developed to assess data glove 
suitability as a replacement for the UG. Although no formal set 
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of repeatability testing strategies exist, the strategies used by 
[12] have been adopted by subsequent research groups [13] 
[16] [23]–[26] and are used in this study to allow comparison 
between study results. 

VIII. RESULTS AND DISCUSSION 
The ‘flat hand’ test examines each data glove’s ability to 

maintain a minimum repeatable value after full stretch of each 
data glove sensor.  The plaster mould test examines the ability 
of each data glove to reproduce angular readings when 
positioned in a repeatable position. In all tests, our data glove 
was not calibrated for the subject. The 5DT data glove was 
calibrated. 

A. ‘Flat hand’ Results 
The ‘flat hand’ test results demonstrated in Table I show 

that the IMU data glove outperformed the 5DT data glove. 
Mean MCP readings for the IMU glove were near-perfect -
0.38°, with PIP readings of -2.53°. The 5DT produced readings 
of 4.17° for MCP and 2.27° for PIP. This is particularly 
impressive since the IMU glove was not calibrated before use. 

TABLE I.  COMPARISON OF MEAN ANGULAR READINGS RECORDED 
DURING ‘FLAT HAND’ TESTING 

 5DT (Angle / SD) IMU (Angle / SD) 

Index MCP 2.34 (1.59) -0.59 (1.87) 
Index PIP 2.04 (1.05) -2.74 (0.90) 

Middle MCP 5.9 (0.55) 1.32 (2.26) 
Middle PIP 3.27 (1.13) -2.94 (1.25) 
Ring MCP 5.14 (0.59) -2.33 (1.21) 
Ring PIP 1.02 (0.52) -2.7 (1.11) 

Little MCP 3.32 (0.88) 0.07 (2.56) 
Little PIP 2.76 (1.32) -1.75 (1.31) 

Mean MCP 4.17 (0.90) -0.38 (1.98) 
Mean PIP 2.27 (1.0) -2.53 (1.14) 

Overall mean 3.22 (0.95) -1.46 (1.56) 

B. Plaster mould test results 
Table II shows comparison results for plaster mould testing 

for the 5DT and our IMU data glove. Readings showed the 
IMU Smart Glove produced better repeatability for MCP and 
PIP joints and better overall repeatability as indicated by the 
lower mean range angular reading.  

TABLE II.  COMPARISON OF MEAN RANGE AND SD READINGS FROM 
PLASTER MOULD TESTING FOR EACH DATA GLOVE 

Glove 
MCP PIP Mean 

Range SD Range SD Range SD 
5DT 8.85 2.13 6.23 2.09 7.54 2.11 
IMU 5.99 1.89 5.10 1.58 5.55 1.74 

C. Accuracy results 
Table III shows comparison of results for the 5DT and our 

IMU Smart Glove compared with the Vicon motion capture 
system and the UG. Results showed the goniometer had 
greatest overall accuracy of 93.23% with overall RMS of 
2.76°. This is in agreement with typical findings on 
goniometric accuracy with 95% of intratester reliability within 
5° of measurement and intertester reliability in the range of 7° 
to 9° [27]–[29]. The Vicon system provided mean accuracy of 
89.33% with RMS of 5.19°. 

TABLE III.  MEAN ACCURACY PERCENTAGE FOR EACH SENSOR 
INCLUDING MEAN ERROR AND OVERALL ACCURACY PERCENTAGE 

Sensor Vicon 5DT Goniometer IMU 
Index MCP 93.31 94.20 97.95 89.57 
Index PIP 91.23 92.01 90.75 91.47 

Middle MCP 91.46 79.66 95.83 82.40 
Middle PIP 84.08 74.97 88.96 77.29 
Ring MCP 87.20 70.46 97.37 82.02 
Ring PIP 86.99 91.99 90.70 89.51 

Little MCP 86.14 85.83 91.28 83.38 
Little PIP 94.23 74.56 93.03 86.27 

Overall accuracy 
% 

89.33 82.96 93.23 85.24 

RMS 5.19 7.15 2.76 5.95 
 

This inaccuracy was most likely caused by noise, marker 
occlusion, and distance of reflective markers from cameras. 
The IMU data glove provided the best accuracy measurement 
of all data gloves and demonstrated similar accuracy to the 
Vicon measurement system. The RMS results obtained show 
that readings obtained from sensors contained approximately 
5.95° of error. Results shown in Table III indicate that all 
sensors demonstrated accuracy between 82% to 91% except 
for the Middle PIP sensor that had accuracy of 77.29%.  

D. Comparison with previous trials 
The results shown in Table IV compare ‘flat hand’ and 

plaster mould tests for the 5DT and our IMU data glove with 
previous research studies involving data gloves. The 5DT data 
glove demonstrated range readings that out-performed data 
glove findings by [12] [13] and were similar to [26]. The data 
glove examined by [15] provided better results than all studies 
including the 5DT and our IMU glove. However this glove 
contained only 5 sensors that recorded movement of the MCP 
joints. The IMU glove performed better than all other data 
glove studies. Readings recorded by earlier studies are 
averaged for several subjects. This can hide higher inaccurate 
results for some subjects. For example, [12] recorded range 
readings from 5 subjects that varied between 2.5° to 6.7°. 
Results were averaged to 4.4°. Similarly, results from ‘flat 
hand’ testing from the study by [13] were summarised from a 
group of 6 male and female participants. Mean male range 
results went from 2.37° to 5.49° and mean female from 3.90° 
to 4.75°. 

TABLE IV.  COMPARISON OF ‘FLAT HAND’ AND PLASTER MOULD TESTS 
WITH PREVIOUS DATA GLOVE STUDIES 

Study Flat hand test  
(Range / SD) 

Plaster mould test 
(Range / SD) 

Wise et al. [12] 4.4 (2.2) 6.5 (2.6) 
Dipietro et al. [13] 3.84 (1.23) 7.47 (2.44) 
Simone et al. [15] 1.49 (0.5) 5.22 (1.61) 

Gentner and Classen [26] 2.61 (0.86) 6.09 (1.94) 
5DT (this study) 2.27 (0.995) 7.54 (2.11) 
IMU (this study) 4.86 (1.56) 5.55 (1.74) 

IX. CONCLUSIONS 
Data gloves have been proven to be a viable replacement 

for the UG and can offer unbiased finger joint ROM 
measurement. However their dependence on calibration 
reduces their usefulness in the many application spaces. The 
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novel IMU based wireless Smart Glove detailed in this paper 
removes the requirement for sensor calibration using 
accelerometers and gyroscopes teamed with intelligent 
software techniques. Test results showed our IMU data glove 
had comparable repeatability to the UG with the added 
advantage of simultaneous angular measurement and removal 
of intra-tester and inter-tester reliability. Accuracy testing 
results showed the IMU data glove provided better accuracy 
and less overall error than the 5DT data glove with which it 
was compared. Of Note the IMU glove required no calibration 
before use whilst maintaining results which demonstrated it 
had similar accuracy to the Vicon system.  

ACKNOWLEDMENT 
The support of Science Foundation Ireland (SFI) as well as 

the National Access Program (NAP) support provided by the 
Tyndall National Institute is gratefully acknowledged. This 
work was also supported by Department of Education and 
Learning (DEL). 

REFERENCES 
[1] D. M. van der Heijde, van ’t H. M, P. L. van Riel, and L. B. van 

de Putte, “Development of a disease activity score based on 
judgment in clinical practice by rheumatologists,” J. Rheumatol., 
vol. 20, no. 3, pp. 579–81, 1993. 

[2] J. F. Fries, P. Spitz, R. G. Kraines, and H. R. Holman, 
“Measurement of patient outcome in arthritis,” Arthritis Rheum., 
vol. 23, no. 2, pp. 137–145, 1980. 

[3] J. F. Fries, P. W. Spitz, and D. Y. Young, “The dimensions of 
health outcomes: the health assessment questionnaire, disability 
and pain scales,” J. Rheumatol., vol. 9, no. 5, p. 789—793, 1982. 

[4] P. Emery, F. C. Breedveld, M. Dougados, J. R. Kalden, M. H. 
Schiff, and J. S. Smolen, “Early referral recommendation for 
newly diagnosed rheumatoid arthritis: evidence based 
development of a clinical guide.,” Ann. Rheum. Dis., vol. 61, no. 
4, pp. 290–7, Apr. 2002. 

[5] F. C. Arnett, S. M. Edworthy, D. A. Bloch, D. J. McShane, J. F. 
Fries, et al., “The American Rheumatism Association 1987 
revised criteria for the classification of rheumatoid arthritis.,” 
Arthritis and rheumatism, vol. 31, no. 3. pp. 315–24, Mar-1988. 

[6] J. T. Scott, “Morning stiffness in rheumatoid arthritis.,” Ann. 
Rheum. Dis., vol. 19, pp. 361–8, Dec. 1960. 

[7] V. Wright and R. J. Johns, “Quantitative and qualitative analysis 
of joint stiffness in normal subjects and in patients with 
connective tissue diseases.,” Ann. Rheum. Dis., vol. 20, pp. 36–
46, Mar. 1961. 

[8] M. L. Ingpen and P. H. Kendall, “A simple apparatus for 
assessment of stiffness,” Ann. Phys. Med., vol. 9, no. 5, pp. 203–
5, Feb. 1968. 

[9] a Unsworth, P. Yung, and I. Haslock, “Measurement of stiffness 
in the metacarpophalangeal joint: the arthrograph.,” Clin. Phys. 
Physiol. Meas., vol. 3, no. 4, pp. 273–81, Nov. 1982. 

[10] A. Howe, D. Thompson, and V. Wright, “Reference values for 
metacarpophalangeal joint stiffness in normals.,” Ann. Rheum. 
Dis., vol. 44, no. 7, pp. 469–76, Jul. 1985. 

[11] E. Dionysian, J. M. Kabo, F. J. Dorey, and R. a Meals, “Proximal 
interphalangeal joint stiffness: measurement and analysis.,” J. 
Hand Surg. Am., vol. 30, no. 3, pp. 573–9, May 2005. 

[12] S. Wise, W. Gardner, E. Sabelman, E. Valainis, Y. Wong, et al., 
“Evaluation of a fiber optic glove for semi-automated 
goniometric measurements,” J. Rehabil. Res. Dev., vol. 27, no. 4, 
p. 411, 1990. 

[13] L. Dipietro, A. M. Sabatini, and P. Dario, “Evaluation of an 
instrumented glove for hand-movement acquisition.,” J. Rehabil. 
Res. Dev., vol. 40, no. 2, pp. 179–89, 2003. 

[14] L. K. Simone and D. G. Kamper, “Design considerations for a 
wearable monitor to measure finger posture.,” J. Neuroeng. 
Rehabil., vol. 2, no. 1, p. 5, Mar. 2005. 

[15] L. K. Simone, N. Sundarrajan, X. Luo, Y. Jia, and D. G. Kamper, 
“A low cost instrumented glove for extended monitoring and 
functional hand assessment.,” J. Neurosci. Methods, vol. 160, no. 
2, pp. 335–48, Mar. 2007. 

[16] G. Saggio, S. Bocchetti, C. A. Pinto, G. Orengo, and F. Giannini, 
“A novel application method for wearable bend sensors,” in 2009 
2nd International Symposium on Applied Sciences in 
Biomedical and Communication Technologies, Bratislava, 
Slovakia, Nov-2009, pp. 1–3. 

[17] K. Li, I.-M. Chen, S. H. Yeo, and C. K. Lim, “Development of 
finger-motion capturing device based on optical linear encoder,” 
J. Rehabil. Res. Dev., vol. 48, no. 1, p. 69, 2011. 

[18] 5DT, “5DT Data Glove 14 Ultra,” 2011. [Online]. Available: 
http://www.5dt.com/products/pdataglove14.html. [retrieved: 01-
2012]. 

[19] Vicon Motion Systems, “Vicon,” 2013. [Online]. Available: 
http://www.vicon.com/.[retrieved: 01-2012]. 

[20] B. O’Flynn, J. Sanchez, P. Angrove, J. Connolly, J. Condell, and 
K. Curran, “Novel smart sensor glove for arthritis rehabiliation” 
2013 IEEE International Conference on Body Sensor Networks, 
(BSN 2013), May-2013, pp. 1–6. 

[21] Redpine Signals, “RS9110-N-11-22: 802.11BGN wireless device 
server,” RS9110-N-11-22 Product brief, 2008. [Online]. 
Available: http://www.redpinesignals.com/pdfs/RS9110-N-11-22 
Wlan Module.pdf. [retrieved: 01-2012]. 

[22] InvenSense, “MPU-9150 Product Specification Revision 4.0,” 
vol. 1, no. 408. InvenSense, California, pp. 1–52, 2012. 

[23] G. Kessler, N. Walker, and L. Hodges, “Evaluation of the 
CyberGlove (TM) as a whole hand input device,” GVU 
Technical Report; GIT-GVU-95-05, Georgia Institute of 
Technology 1995. 

[24] M. Mentzel, F. Hofmann, T. Ebinger, B. Jatzold, L. Kinzl, and 
N. J. Wachter, “Reproducibility of measuring the finger joint 
angle with a sensory glove,” Handchir Mikrochir Plast Chir, vol. 
33, no. 1, pp. 9–64, 2001. 

[25] N. W. Williams, J. M. T. Penrose, C. M. Caddy, E. Barnes, D. R. 
Hose, and P. Harley, “A goniometric glove for clinical hand 
assessment,” vol. 25, no. 2, pp. 200–207, 2000. 

[26] R. Gentner and J. Classen, “Development and evaluation of a 
low-cost sensor glove for assessment of human finger 
movements in neurophysiological settings.,” J. Neurosci. 
Methods, vol. 178, no. 1, pp. 138–47, Mar. 2009. 

[27] A. Hellebrandt, E. Duvall, and M. Moore, “The measurement of 
joint motion. Part III : Reliability of goniometry,” Phys Ther 
Rev, vol. 29, no. 6, pp. 302–307, 1949. 

[28] E. Lewis, L. Fors, and W. J. Tharion, “Interrater and intrarater 
reliability of finger goniometrie measurements,” Am. J. Occup. 
Ther., vol. 64, pp. 555–561, 2010. 

[29] N. B. Reese and W. D. Bandy, “Measurement of Range of 
motion and muscle length: background, history and basic 
principles". Joint Range of Motion and Muscle Length testing," 
2nd ed. St. Louis, MO: Saunders/Elsevier; 2010. pp. 3–29  

 

50Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-425-1

SENSORCOMM 2015 : The Ninth International Conference on Sensor Technologies and Applications


