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Abstract—Wireless Inertial Measurement Units (WIMUs) are 
increasingly used to gather data and improve understanding of 
various human performance and complex motion scenarios. 
The Bob-Skeleton Push-Start features a stooped sprint from a 
crouch while pushing a heavy sled. Maximizing velocity during 
this brief period is considered crucial to performance, however 
it is poorly understood. An adjustable sled Push-Start training 
tool was instrumented with custom WIMUs, and a test subject 
performed 36 runs, with 12 combinations of 3 Incline and 4 
Weight settings. A developed algorithm automatically 
identified, extracted, and integrated Pushing-Phase 
Acceleration data to Velocity and Displacement at hundreds of 
samples per second. Drift correction methods improved 
accuracy; while additional checks rejected problematic data-
files. WIMU derived Average Velocities were within -
0.005±0.074 meters per second (0.319±4.214%) of an existing 
Light-Gate system. Such an accurate, automatic, WIMU-based 
system could supplement or replace Light-Gate or other 
performance monitoring methods, while being more portable 
and readily usable by coaches or athletes. This would enable 
consistent, low-cost and high-fidelity, performance monitoring 
from the gym to the ice-track for improved candidate selection, 
comparison and training in Bob-Skeleton and other ice-track 
sled sports. 

Keywords; WIMU, Accelerometer, Bob-Skeleton, Sled, Error 
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I.  INTRODUCTION 
Bob-Skeleton is an ice-track sledding sport – similar to 

Bob-sleigh, Luge and Toboggan – with a single athlete 
riding an open sled in a face-forward, prone manner. Each 
run begins with the Push-Start (PS), which requires the 
athlete to sprint from stationary, in a crouched position, 
accelerating to maximum velocity, over a short distance 
(~30-45m), while pushing a heavy sled (~30-40kg), before 
transitioning to riding the sled through a series of turns for 
the remainder of the up to 1.5km long track. 

The sport is highly competitive, with the top times over 
the roughly 90 second run duration often within a fraction of 
a second of each other. While low PS time is generally 
believed to be the most crucial aspect of final race time [1], 
[2], this motion is poorly understood. A combination of the 
sport’s small size and difficulty in accessing ice-tracks, as 
well as the lack of available data are likely responsible for 
the lack of detailed PS studies. Relevant publications often 
rely on problematic data sources, such as: official timing 

(which ignores the first 15 meters) [1], [3-5]; alternative 
single interval timing (which hampers direct comparison, or 
understanding of subtle changes) [6], [7]; or use complex and 
costly data gathering systems (preventing more widespread 
use) [8-10]. 

As such, we set out to develop an easy-to-use, portable 
system that can provide high-quality sled velocity data. 
Ideally “On-Ice” performance would be investigated, 
however “Dry-Land” methods are more likely to be used for 
selection, comparison and training of Bob-Skeleton athletes 
[11-13] – especially for new athletes or in countries without 
a well-established amateur Bob-Skeleton system or easy 
access to ice-tracks – so initial system development and data 
gathering used such facilities at the University of Bath. 

The “Assassin – Horizontal Power Trainer” is a PS 
training tool. It consists of a sled which runs along a pair of 
parallel straight rails, allowing a 3 meter free travel length 
before impacting attached buffers, with a Light-Gate pair 
covering the majority of this; additional weights and 
adjustable track incline can be used to change pushing 
resistance (See Fig. 1 and 2). 

Wireless Inertial Measurement Units (WIMUs) are small 
electronic devices containing sensing elements, similar to 
those in smart-phones (e.g., Accelerometers, Gyroscopes, 

 
Figure 1.  Labelled Diagram of Assassin. 

 
Figure 2.  Attached WIMU (inset) and Assassin during Pushing-Phase. 
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and Magnetometers), along with supporting components, 
which can act as un-tethered motion sensors. A custom 
WIMU system was built on the Tyndall 25mm Mote Micro-
System platform as part of on-going work on human motion 
capture for health and sports applications [14-19]; laboratory 
calibration was performed during assembly [20]. These were 
attached to the Assassin Sled for PS data gathering. 

An automatic process allowing for performance to be 
accurately quantified using WIMU data recorded from an 
Assassin run was developed. High sampling rates provided 
detailed information on how velocity develops from 
standstill, which could be crucial in determining the subtle 
effect of changes to training, warm-up and pushing technique 
and giving a competitive edge. 

WIMU derived results were validated by comparing sled 
Average Velocities to an existing Light-Gate system. An 
initial target of accuracy within 0.1 meters per second was 
set as this was considered the threshold for indicating notable 
differences in performance levels and effectiveness of 
coaching interventions. 

In Section 2, “Data Sources and Method”, the equipment, 
setup, subject and procedure are described. Section 3, 
“Analysis”, contains the acceleration features of a run, 
segmentation and processing of WIMU data, estimating the 
full run duration, rejecting runs and the adaptive integration 
process. Section 4, “Results”, explains and provides, 
individual and combined contour graphs as well as the 
quantification method used to compare and assess the 
accuracy of final integrated WIMU data against the Light-
Gate and a brief estimation of Light-Gate accuracy. Sections 
5 and 6 contain a brief “Discussion” and “Conclusion”. 

II. DATA SOURCES AND METHOD 

A. WIMUs, Location and Orientation  
Several identical WIMUs were configured to provide 

wireless Accelerometer data at the maximum sample rate 
and sensor range, of up to 256 Hertz and ±16g respectively, 
reducing the likelihood of saturation and under-sampling of 
large-magnitude or high-frequency acceleration features. The 
effective sampling rate varied, being dependant on 
unpredictable events such as wireless packet loss. Data was 
streamed via 802.15.4 compatible radio at 2.45GHz to a 
Base-station connected to a notebook computer. APIs and 
scripts – written in Python – enabled WIMU configuration as 
well as sensor data gathering, processing and storage. All 
sensor data were converted to real world units – using 
previously gathered on-board laboratory calibration values – 
and written to file. 

Two WIMUs (Front and Top) were placed into 3D-
printed holders before being secured to the metal spars of the 
moveable sled, with similar orientation, using Velcro-elastic 
straps and tape as shown in Fig. 2. This provided some 
measure of redundancy and allowed for investigation of the 
effect of WIMU placement. 

B. Other Equipment and Data Sources  
A Brower “Timing Centre” Light-Gate system [21] – 

consisting of 2 emitter and receiver beam sets – positioned to 

cover the central 2.5 meter portion of each run (See Fig. 1 
and 2). Light-Gate ground separation and rail heights were 
measured using a surveyor’s tape to the nearest centimeter. 
Nominal inclination angles and free travel length were taken 
from technical drawings of the Assassin. 

C. Subject  
A fit male was used as the test subject, representing a 

potential Bob-skeleton athlete undergoing selection. He was 
familiar-with and trained-in the use-of the Assassin, and was 
part of on-going sports science and performance research 
programs at the University Of Bath and UK Sports which 
these tests were a part of. The purpose, procedures and 
equipment were explained to him and he had opportunity to 
ask questions or suggest changes to the procedure. He was 
also allowed to warm-up, take breaks, perform practice runs 
or stop the testing at his discretion. 

D. Procedure  
36 test runs were planned, with 3 runs at each 

combination of 3 nominal rail angles (0, 4 and 7°), and 4 
weight settings (0, 20, 40 and 60 Kg). This allowed for 
adjustment of the effort required of the test subject. The 
centrally located padded shoulder pushing attachment was 
used and the buffers were positioned for the maximum sled 
free travel length of 3m to provide WIMU datasets with the 
largest number of samples possible. The test procedure was 
as follows: 

1. Sled is at rest at starting point 
2. Change Weight and Inclination Settings if needed 
3. Reset WIMUs and Light-Gates 
4. Test subject proceeds when ready 
5. Stop WIMU recording after the end of the run 

III. ANALYSIS 
Initial manual review of data established appropriate 

processing strategies and identified consistent events or 
features of interest as described below and in Fig. 3. 

A. Overview of an Assassin Run 
 Pre-Push-Off (PPO): Region with sled at rest at the start 

of the track, mostly quiescent with occasional motion 
artifacts due to the athlete addressing the sled. Quiescent 

 
Figure 3.  Labelled Main Features of Assassin Run. 
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sensor level is affected by track inclination. 
 Push-off (PO): The start of Pushing-Phase, located at the 

beginning of a sudden rise in acceleration from PPO 
quiescent levels. 

 Pushing-Phase (PP): Region lasting roughly 2 seconds, 
with large, cyclical, acceleration features likely due to 
individual steps. 

 Impact Point (IP): A sudden large acceleration feature 
when the sled contacts the buffers, sensor saturation is 
common. 

 Post Impact (PIP): The remaining data, often beginning 
with saturated severe oscillations which damp down as 
the sled comes to a stop, possibly followed by quiescent 
data and motion artifacts. 

B. Real-World Data Processing Considerations 
Using the equations of motion, it should be possible to 

integrate all the recorded Accelerometer samples over time 
to yield sled Velocity and Displacement. However, the 
recorded WIMU data is not perfect, due to limited sampling 
rates and sensor range, with additional errors due to sensor 
noise and quantization further contributing to this. When 
such data is integrated it tends to drift further from the actual 
values as these errors compound, increasing greatly over 
time. These issues are often encountered with WIMU sensors 
and mitigation strategies have been developed to 
compensate. A new methodology applicable in Bob-Skeleton 
and in the more general case is proposed here involving 
application specific adjustments and integration limits during 
processing which leads to significantly improved results. 

By performing integration only within regions of interest 
where sensor data is not saturated – in this case the PP 
between PO and IP – the potential for drift caused by 
orientation changes, motion artifacts and saturation is 
reduced. Knowledge of the track inclination angle or the 
average value of quiescent sections of the Pre-Push-Off 
region can be used as a Sensor Offset to improve results.  

Using known physical limits as integration constraints 
can further increase the accuracy of the results. In the case of 
the system described: Initial Velocity and Displacement 
values are 0, negative Velocity or Displacement values are 
not possible and Displacement at impact should equal the 
sled’s free travel length (3 meters). 

Re-estimation of the integration period to account for 
data loss etc. causing differences between requested and 
effective sampling rates can also be used – essentially acting 
as Time Warping – although this requires an estimate of the 
duration over which a known number of samples were 
recorded. 

While segmentation and identification of the previously 
described run features and adjustments to improve the 
accuracy of results could be performed “by-eye” or 
manually, an automated method is desirable to reduce 
subjective human variability and enable development of a 
self-contained high-accuracy performance monitoring 
system suitable for use by athletes and trainers.  

C. Automated Data AnalysisMethodology 
An automated analysis system was implemented in the 

Python programming language. It consists of several stages: 
Pre-Processing; Impact Detection; Run Segmentation; Start 
Detection; Integration and an additional stage of Evaluation 
versus the Light-Gate, as described below and illustrated in 
the flowchart in Fig. 4. 

 
Figure 4.  Simplified Flowchart of Assassin Data Analysis Algorithm. 

1) Pre-Processing 
Data are prepared for subsequent analysis. WIMU sensor 

data are converted to more convenient units, filtered to 
remove outliers and smoothed to reduce noise, simplifying 
subsequent integration, segmentation, and feature detection 
stages. Data from other sources such as Light-Gate timing, 
Assassin settings and physical measurements; are used to 
estimate useful values.  

2) Impact Detection 
The largest magnitude Acceleration features are 

identified as Impact Candidates. A threshold is used to check 
if these are suitably large. 

3) Segmentation 
Contiguous Active and Passive regions of sensor data are 

identified using detection thresholds estimated from the most 
quiescent region of the filtered sensor data. From these, the 
Active region that contains sufficient data between its start 
and an Impact Candidate is identified as the PP. If 
segmentation is unsuccessful, an iterative process attempts to 
determine a new threshold. 

4) Push-Off Detection 
The region around the PPO-PP transition is searched for 

a characteristic peak in the smoothed Acceleration data, the 
beginning of this feature being the Push-Off. 

5) Integration 
Initial conditions are set, the offset is applied and 

integration is performed using the previously decided 
integration period and standard equations of motion to yield 
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Sled Velocity and Displacement at each PP Accelerometer 
sample. Comparing the estimated and known Displacement 
at IP allows iterative refinement of the Sensor Offset to yield 
improved integration results. 

6) Evaluation 
The integrated data corresponding to the region between 

the Light-Gates can be extracted from the WIMU Sled 
Displacement data and the known Light-Gate positions. The 
WIMU derived Sled Average Velocity values within this 
region can then be calculated and compared to Light-Gate 
derived values. 

D. Estimation of Full Run Duration 
Ideally, the integration period would be the inverse of 

requested sample rate. However, variable on-device 
sampling rate and wireless data loss can make this a poor 
estimate of the system’s effective sample period. Improved 
estimates can be made using per-sample times, or known 
sample counts and durations; however the system used 
lacked accurate time-stamping, preventing such direct 
estimations of effective integration period. 

Light-Gate durations and preliminary WIMU integration 
data were instead used. From the 52 valid WIMU data-files, 
the average sample count in the Light-Gate region was 
estimated at approximately 67.7% (standard deviation of 
1.9%) of the full run sample count (Table 1). An initial 
estimate of the expected Full Run Duration for each Assassin 
setting could then be provided by dividing the Light-Gate 
timing value by 0.677, dividing PP sample count by this 
gave an estimate of the Integration Period. Using the final 
integrated data, the validity of the timed region fractional 
duration estimate was checked (See Fig. 5), with a best-fit 
line showing similar results to the initial estimate as can be 
seen in Table 1. An improved WIMU system with improved 
time-stamping would allow direct determination of sample 
period, removing the current implementation’s reliance on 
the Light-Gates for estimating these. 

TABLE I.  TIMING REGION DURATION ESTIMATES 

Run Dur. [%] Pre-LG 1 Post-LG 2 Un-Timed Timed 

Initial Est. 27.3 5.1 32.3 67.7 

Std. Dev. 2.24 0.50 1.90 1.90 

Final Check 25.72 5.32 31.05 68.95 
a. Estimates of Region Average Durations as Percentage of Pushing-Phase Duration 

 
Figure 5.  Timed Region Duration Estimates Based on WIMU Results. 

E. Identification of Valid Data 
Not all recorded data-sets were of sufficient quality to 

yield reliable integration results. A fully automated system 
should be able to distinguish good and bad data to ensure 
valid results are generated. Several poor data rejection 
conditions were identified, with suitable tests performed 
during analysis and warnings provided as follows: 

1) Missing Events in WIMU Data 
Recording started too late or finished too early, cutting 

off PO or IP, causing failure during event detection stages. 
2) Missing Data from Other Sources 

Other essential data was un-available (i.e. Light-Gate). 
3) Excess Data Loss 

PP had less than 50% of the data samples expected. 

F. Integration Process 
An initial estimate of sensor offset is made based on the 

average value of passive sensor samples in the PPO region 
(1). The initial offset is applied to each PP sensor sample but 
will be iteratively refined later.  
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An integration period that accounts for wireless data loss, 
removal of bad sensor samples or WIMU internal issues that 
change the effective sample rate is needed. From the PP 
sample count and full run duration we can estimate an 
effective sample rate for each data-file and hence integration 
period (2). However, without accurate sensor data time-
stamping we must use Light-Gate timing data estimations of 
the full run duration. 
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Then integration of PP WIMU data can begin, converting 
offset adjusted Acceleration a, to Velocity v (3) and 
Displacement s (4) for the nth sensor sample since PO.  
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Known and WIMU estimated Displacement at Impact are 
compared to each other and used to refine the Offset value in 
an iterative binary search manner. This process is explained 
in the C-style pseudo-code in Fig. 6. 

WHILE( !complete && i<max_iteration ){ 
 IF( ABS(displ_error) >= target_accuracy ){ 
  IF(displ_error > 0){ 
   test_offset = offset – offset_step;} 
  }ELSE{ // displ_error < 0 
   test_offset = offset + offset_step;} 
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  z_vel = itegrate(z_acc, test_offset, period); 
  z_displ=itegrate(z_vel, test_offset, period); 
  impact_displ = z_displ[-1]; 
  new_error = impact_displ – target_displ; 
  IF( ABS(new_error) < ABS(displ_error) ){ 
   offset = test_offset;     // update offset 
   displ_error = new_error;} // update error 
  offset_step /= 2; 
  i++; 
 }ELSE{ // ABS(displ_error) < target_accuracy 
  complete=True ;} } 

IV. RESULTS 
Of the 70 data-files processed, 52 were determined to 

contain valid PP data, all of which were segmented 
successfully on the first attempt, with 12.17 (Standard 
Deviation 0.98) sensor offset refinement iterations required. 
Samples of output shows the WIMU and Light-Gate derived 
average velocity over the timed region (indicated by height 
of cyan shaded region and horizontal cyan dashed line 
respectively) are very similar, having a difference of 
0.06m/s2 (see Fig. 7). 

Contour graphs of mean Light-Gate and WIMU derived 
Sled Average Velocity for each Weight and Inclination 
setting (See Fig. 8 and 9) show similar magnitudes and a 
trend for reduced velocity with increasing resistance (i.e. 
additional Weight and steeper Inclination) with average 
difference of -0.005±0.074 meters per second. The Root 
Mean Squared Error (RMSE) between the two (See Fig. 10) 
better illustrates this high similarity, with a maximum error 
of 0.105 m/s, most results are well within the target accuracy 
level of 0.1 m/s across a wide range of speeds and equipment 
settings used. 

A. Light-Gate Un-Certainty 
The Light-Gate derived Sled Average Velocity is not 

exact, as both the timing and distance measurements required 
have an associated uncertainty. The time is given in seconds 
to two places of decimals so estimated un-certainty is 0.01 
seconds. The un-certainty in the distance travelled by the 
sled, due to errors in positioning the Light-Gates on 1m tall 
tripods, was estimated at 0.02 meters. Additionally, 
inclination affecting the rail length between the Light-Gates 
was trigonometrically estimated as approximately 0.02 
meters (2.5 meters at 0° versus 2.519 meters at 7°). Adding 
these gives an overall maximum distance error estimate of 
0.04 meters. By combining the lower time with upper 
distance estimates and vice-versa, the un-certainty in Light-
Gate Derived Sled Average Velocity was estimated as 
ranging from 0.066 to 0.115 meters per second (±2.3% on 
average) (See Table II). 

 
 

Figure 6.  Iterative Sensor Offset Refinement 

 
Figure 7.  Processed Run showing Good Average Velocity Agreement. 

 
Figure 8.  Timed region Light-Gate derived Average Sled Velocity. 

 
Figure 9.  Timed region WIMU derived Average Sled Velocity 

 

Figure 10.  RMSE of Sled Average Velocity for the 2 Methods. White 
regions indicates no data available, gray numbers denote number of 

samples used to produce value. 
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TABLE II.  LIGHT-GATE UNCERTAINTY ESTIMATES 

For 2.5±0.04 m Duration [sec] Velocity [m/s] Un-Certainty 

Slowest 1.67±0.01 1.497±0.066 ±2.199% 

Fastest 1.09±0.01 2.294±0.115 ±2.518% 

Average 1.43±0.01 1.748±0.080 ±2.300% 

V. DISCUSSION 
WIMU and Light-Gate differences are low, generally 

within the target and often within the Light-Gate uncertainty 
levels. Additionally WIMU data provides a more complete 
picture of the Pushing-Phase, yielding velocity and 
displacement at each sensor sample. This enables the 
creation of arbitrary virtual timing intervals; analysis of the 
development of velocity; the detection of individual step 
features, etc. Future WIMU based systems could be even 
more low-cost, small and self-contained than that developed 
here; allowing use across gym, test-track and on-ice sleds, 
without requiring trained users, extensive sled modifications 
or costly installation of trackside equipment. Such a system 
holds great potential for: improving the understanding of the 
Push-Start; identifying good athletes and determining the 
effectiveness of coaching and training interventions. 

VI. CONCLUSION 
Although the Bob-Skeleton Push-Start is considered 

crucial to performance, it is poorly understood due to a lack 
of detailed data or accessible methods for gathering such 
data. Using WIMUs to instrument Assassin a method for 
automatic segmentation, drift correction and integration of 
Accelerometer data to Velocity and Displacement was 
developed. Sled Average Velocity results were similar to 
Light-Gate with Root Mean Squared Error within or similar 
to the target accuracy and un-certainty levels. The system’s 
accuracy, low-cost, ease-of-use and portability, could 
provide greater access to such quantitative performance 
data, with its highly detailed data enabling improved 
understanding of the Push-Start. These could lead to 
improved methods for Selection, comparison and training, 
potentially providing a valuable competitive edge. 
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