
Electrocardiogram Collection, Pattern Recognition, and Classification Sensor 

System Supporting a Mobile Cardiovascular Disease Detection Aid 

 

 

Patrick R. DaSilva, Paul J. Fortier 
Electrical and Computer Engineering Department 

University of Massachusetts Dartmouth 

North Dartmouth, Massachusetts, USA 

pdasilva@umassd.edu, pfortier@umassd.edu 

Kristen Sethares 

Adult and Child Nursing Department 

University of Massachusetts Dartmouth 

North Dartmouth, Massachusetts, USA 

ksethares@umassd.edu

 

 
Abstract— Current mobile monitoring solutions do not offer 

the ability to recognize cardiac problems without human 

interpretation. A combination of electrocardiogram (ECG) 

detection and classification software running on a mobile 

cardiovascular disease detection sensor is proposed to replace 

the need for human interpretation. The ECG is filtered using 

the Wavelet Transform; the ECG wave points detected using a 

modified version of the Pan Tompkins rule set and the cardiac 

rhythm is classified using an N-ary tree. The wireless mobile 

application is designed on a custom printed circuit board 

(PCB). Testing results show autonomous classifications are 

possible using a three lead ECG system while the patient is at 

rest. The proposed solution serves as a stepping stone towards 

a fully reliable patient disease management teaching tool with 

the potential to serve as an aid to the cardiovascular healthcare 

industry. 

Keywords-embedded ECG sensor; real-time algorithm; ECG 

classification. 

I.  INTRODUCTION 

According to the Centers for Disease Control and 

Prevention (CDC) Division of Vital Statistics, 24.2% of 

total deaths in 2010 were directly related to heart diseases 

[1]. Preliminary 2011 data shows this lethal disease 

continues to be the number one leading cause of death for 

596,339 Americans [2]. 

Studies have shown as heart failure (HF) symptom 

severity increased, patient symptom uncertainty levels 

decreased [3] correlating with previous studies suggesting 

HF patients delay seeking timely treatment for symptoms 

[4]. Dedicated nurse staffed care facilities have helped 

decrease levels of patient symptom uncertainty [5], but a 

real-time mobile monitoring and motivational solution is 

desired [6]. 

Advancements in science and technology have made it 

feasible to continuously shrink signal processing systems 

aiding in the development of wearable biometric monitoring 

equipment and replacing systems that rendered the user with 

limited mobility. Mobile monitoring systems [7]-[11] are 

not new, but systems that monitor and interact with users in 

ways that improve health management are evolving [6][12]. 

The Electrocardiogram (ECG) subsystem is described as 

an important part of the overall cardiac wellness system’s 

ability to aid patients in learning to recognize disease 

specific symptoms and understand the effect on their health 

[12]. The purpose of this paper is to describe the 

development of a mobile cardiovascular disease detection 

sensor that combines wavelet transformation filtering 

processes with a modified version of the Pan Tompkins 

detection rule set and using an N-ary tree for classification 

of ECG arrhythmias. Research using these three methods 

has been performed before [13]-[21], but nothing combining 

all three methods applied to ECG arrhythmia detection and 

classification in support of a mobile cardiovascular disease 

detection aid has been. 

In Section 2, this paper will discuss ECG raw data 

collection, waveform extraction, waveform classification 

and describe the testing process the system underwent. 

Section 3 will discuss the testing results. A conclusion and 

recommendation for future work will be presented in 

Section 4. 

II. MATERIALS AND METHODS 

The ECG subsystem can be broken down into three serial 

processes (see Figure 1); collection, extraction, and 

classification. Each process feeds into the next resulting in a 

heart health classification. Each process is briefly described 

below. 

 

Figure 1. ECG subsystem process representation. 

A. ECG Raw Data Collection 

An ECG is the measured electrical activity representing 

the heart’s conduction system typically recorded on a 1 by 1 

millimetre (mm) gridded paper representing 40 milliseconds 

(ms) by 0.1 millivolts (mV). This paper’s ECG sensor was 

designed using a three lead chest only concept since 

abnormalities of interest are detected using 3 leads. 

Abnormalities of interest include normal sinus rhythm, atrial 

arrhythmias (bradycardia, tachycardia, flutter), conduction 

abnormalities (1st degree AV block, 2nd degree AV block, 

3rd degree AV block), and ventricular abnormalities 

(premature complex, tachycardia, fibrillation).   
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The differential voltage between two silver chloride 

(AgCl) electrodes placed on the right and left side of the 

chest is measured with reference to body ground, amplified 

by a gain of 1000, and fed to an analogue to digital 

converter (ADC) on board an Atmel 32-bit UC3 

microcontroller (MCU). The Atmel UC3 MCU uses a 12-bit 

analogue comparator sampling the ECG at 250Hz with a 

reference at 60% of the supply voltage. Sampling at 250 Hz, 

creates 1 sample every 0.004 seconds. Using a 12-bit ADC 

with an analogue circuit gain of 1000 creates 100 ADC units 

for every 1 mm or 0.1 mV of ECG signal strength prior to 

amplification. 

B. ECG Waveform Extraction 

An ECG waveform is described by its principally 

important points (PIPs) (see Figure 2). In basic terms, the 

PIPs are the onset, offset, and peak height of the P wave, T 

wave, U wave and QRS complex. In total there are twelve 

PIPs. From these PIPs an ECG’s P wave, T wave, U wave, 

QRS complex, PR Interval, Atrial Rate, Ventricular Rate, 

and Rhythm can be calculated. With the PIPs known an 

ECG waveform can begin to be classified. 

 

Figure 2. ECG waveform showing principally important point with widths 
calculated in seconds and heights calculated in millimetres. 

To extract the PIPs, the ECG signal is passed through a 

bank of filters equivalent to the Dyadic Quadratic Spline 

Wavelet Transform focusing on the time frequency analysis 

of the signal. Using the dyadic wavelet allows for faster 

computations on an ECG signal to extract characteristic 

points by distinguishing between the sharp variations 

translated into local maxima and minima on different filter 

scales. 

The wavelet transform (WT) equivalent filter described 

by Li [16] was derived using the work of Mallat [22]. Li 

derived the WT as a series of high-pass and low-pass filters, 

used to deduce the equivalent filter as an antisymmetric FIR 

digital filter with generalized linear phase.  

To sync the output of the filters and avoid busy wait 

loops, an individual delay was added to each filter through 

the use of the translation property of the Fourier Transform. 

This caused an overall unified filter bank delay of 62 

milliseconds and produced the signal output shown in 

Figure 3. 

The Wavelet Transform equivalent filter has the ability to 

separate the different characteristic points of an ECG onto 

various scales, allowing use of individual filter outputs to 

find each waveform’s peak, onset and offset.  

The amplitude-frequency response of the WT filters (see 

Figure 4) shows the first five filters in the bank, used to 

cover the frequency spectrum of an ECG signal sampled at 

250 Hz. 

To find the QRS complex, originally all five filters were 

used as discussed by Bahoura [17].  Preliminary testing 

indicated that filters 21 through 23 are the minimum needed. 

A QRS complex peak is found by locating the zero crossing 

of a set of modulus maximum peaks with different polarities 

on the output of the first three filters simultaneously 

[18][19][20]. 

 

 

Figure 3. Equivalent WT filter bank output. ECG signal is top line and 

filter bank out are bottom 5 signals. Dashed line corresponds to QRS 
complex peak. Dash double dot corresponds to P, T, or U wave peak. 

 

Figure 4. WT filter bank amplitude frequency response. 

Once a possible QRS peak is found, all other QRS 

detections are ignored for a period of 200 milliseconds. An 

autonomous thresholding technique [23] is employed to find 

the local minima and maxima peaks on each filter output, 

allowing the detection algorithm to adjust to a patient’s 

ECG signal strength. The idea behind the technique was to 

capture as much of the possible QRS complexes without 
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low noise with the first threshold and then apply a second 

threshold to capture missing lower amplitude QRS 

complexes due to the initialization process. If no QRS 

complex is found within a 4 second interval, the thresholds 

are reset [23]. 

After the QRS peak is found, filter 22 is used to find the 

onset and offset pair using the location of the local minima 

onset and maxima offset respectively. From preliminary 

testing using the MIT-BIH databases [24], it was noticed the 

Q and S waves periodically appear on the filter 22 output, so 

the onset was shifted to the beginning of a second modulus 

peak found immediately before the first with opposite 

polarity and the same with the offset, looking at the end of a 

second modulus peak found immediately after the original 

offset. Once the QRS complex onset, offset, peak and peak 

polarity data points are found (see Figure 5), these PIPs are 

passed to a post-detection scheme to prepare for the 

classification stage. 

Current methods to find P, T, and U waves require first 

locating the QRS complex and then traversing the ECG 

signal forwards and backwards in time. The problem with 

this solution is it’s not real-time and does not take into 

consideration arrhythmias that do not always include a QRS 

complex for each P and T wave in the ECG, such as Atrial 

Fibrillation.  

Instead, ‘blips’ which are possible P, T, U waves or just 

noise, are detected and then categorized in the post-

detection scheme. This allows QRS complexes and P, T, U 

waves to be detected in parallel similar to Bahoura [17]. 

Preliminary testing proved 23 through 25 are the only filters 

required to find blip waves. A blip peak is found by locating 

the zero crossing of a set of modulus maximum peaks with 

different polarities on the output of either 23 and 24 or 24 and 

25  filters, but not necessarily all three filters simultaneously.  

Once a possible blip peak is found, the location is saved 

for 100 ms before reporting to ensure the blip wave is valid 

and not a QRS complex or noise. If the blip wave is found 

to be a QRS complex, the information for the wave is 

transferred to the QRS complex detection to be categorized 

as such. Again, a thresholding technique is used to find the 

local minima and maxima peaks on each filter output, 

except lower than the thresholds used by the QRS. The 

thresholds adjust to P/T wave amplitudes based upon a pre-

calculated ratio between P/T waves and QRS complexes and 

are re-adjusted every time a new QRS complex is detected.  

After the blip peak is found, filter 24 is used to find the 

onset and offset simply because a blip wave will always 

show on filter 24. The onset/offset pair is found using the 

location of the local minima onset and maxima offset 

respectively on filter 24 similar to QRS onset/offset 

detection.  

In post-detection, a detected blip is run through a set of 

test and checks to verify its validity based upon the last 

detected blip and QRS complex before it is categorized as a 

P, T, or U wave. 

 

Figure 5. Detected QRS complex (green dots, red stars) and blip waves 

(black dots) on record 100 from MIT-BIH Arrhythmia database. 

This nine point rule set for the test and check is used to 

construct a finite state machine running on the MCU. 

1. Upon start-up, if a blip is detected first, then it is 

immediately categorized as a P wave and saved in the 

‘ekgWaveHistory’ buffer. 

2. Upon start-up, if a QRS complex is detected first, then 

it is immediately saved in the ‘ekgWaveHistory’ buffer. 

3. A detected blip is invalid and discarded if its onset 

and/or offset overlap that of the previously detected blip 

or QRS complex. 

4. A detected valid blip is a T wave if its peak is located 

within 50-75% of the current ventricular heart rate from 

the offset of the last detected QRS complex and if no 

other T wave has been detected as of that moment. 

5. A detected valid blip is a U wave if its peak is located 

within 50-75% of the current ventricular heart rate from 

the offset of the last detected QRS complex, if a T wave 

has already been detected, and no other U wave has 

been detected as of that moment. 

6. A detected valid blip is a P wave if its peak is located 

outside 50-75% of the current ventricular heart rate 

from the offset of the last detected QRS complex or if 

within that time frame, then it will be a P wave if a T 

wave and U wave has already been found. 

7. A detected QRS complex is always considered valid. 

8. A detected QRS complex can invalidate the last 

detected blip if that blip overlaps the QRS complex in 

any way. 

9. A detected QRS complex can re-categorize a detected P, 

T, U wave as a T wave that came after the newly 

detected QRS complex if the last detected blip does not 

overlap the QRS complex AND comes after the newly 

detected QRS complex. 

Upon type validation, each wave is saved in an ECG 

buffer by its type, onset, offset, peak and polarity. When the 

buffer contains one QRS or two P waves, the saved 
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waveform is sent to classification the next time a third valid 

P wave is detected or after a second QRS complex has 

arrived. 

The maximum QRS complex detection delay is 462 ms 

before a QRS complex is detected to when it happened and 

similarly is 362 ms for a P/T wave detection. This 

corresponds to 129 beats per minute (bpm) and 165 bpm for 

a QRS complex detection and P/T wave detection 

respectively before a lag is seen after each wave occurs. 

These delays can be attributed to a standard 62 ms filter 

delay, 200 ms QRS blanking window, 100 ms blip blanking 

window, and a 200 ms future value collection window. 

C. ECG Waveform Classification 

Classification is done similar to how a physician 

classifies an ECG. First the rates are examined, followed by 

the rhythm, intervals and wave morphology. When a new 

waveform is detected it’s appended to the end of a three 

waveform historic buffer, shown in Figure 6. 

 

 

Figure 6. Historic ECG buffer. 

The ECG rates are calculated by measuring the lapsed 

time between each QRS (ventricular) or P (atrial) wave in 

milliseconds and then dividing that number into sixty 

thousand milliseconds or equivalently 1 minute to obtain a 

value in beats per minute (bpm). 

The waveform buffer passes through each branch of an 

N-ary tree (see Figure 7), first eliminating all rhythms that 

do not correlate. The tree uses cardiac rhythms and 

classifications along with normal ECG characteristics from 

best evidence practice literature to determine a waveform’s 

classification. 

If there is at least one P wave in the buffer and all 

available P waves are upright (see Figure 7, branch 00000), 

then the waveform falls into a Normal Sinus Rhythm (NSR), 

Atrial Arrhythmia, Conduction Abnormality, Premature 

Ventricular Contraction (PVC), or Asystole. In this group 

for a waveform to be considered NSR it must have is a 1:1 P 

wave QRS complex ratio with normal morphology, PR 

interval, and ventricular rate. 

If there is at least one P wave in the buffer, all available P 

waves have a negative polarity, are followed by a normal 

QRS complex with a short PR interval, and all available T 

waves have normal morphology (see Figure 7, branch 

00001), then the waveform could either be Supraventricular 

Tachycardia (SVT) or a Junctional Rhythm. In this case, the 

ventricular rate would be used to differentiate between the 

two. 

If there are no P waves available in the buffer (see Figure 

7, branch 00010), then the waveform could be classified as a 

Ventricular Arrhythmia, Atrial Fibrillation, or SVT. In this 

group, the morphology of the QRS complex and ventricular 

rate are used to determine which arrhythmia is present. 

By default, if the waveform is unclassifiable, then it is 

most likely abnormal or if an underlying sinus rhythm is 

present, but the waveform cannot be classified in the given 

tree, it is classified as an Abnormal Sinus Rhythm. 

 

 

Figure 7. Classification N-ary tree. 

The delay between when the heart beats and when that 

beat waveform is classified by the ECG subsystem is 

equivalent to one heartbeat. The way the N-ary tree is built 

takes into account the length of the history buffer in which 

the algorithm analyses an entire ECG waveform three beats 

in length at a time. Therefore an NSR classification will 

only occur when there are three normal heart beats in a row. 

D. ECG Sensor System Testing 

Testing took place in two stages, the first known canned 

events followed by live system testing. For the known 

canned events, ECG signals from the MIT-BIH Arrhythmia 

and Normal Sinus Rhythm databases [24] were resampled at 

a frequency of 250 hertz and fed through the algorithm. The 

results were recorded, reconstructed and analysed using 

MATLAB. 

Only ten minutes of each ECG was used starting at 20 

seconds into the signal with results categorized into five 

areas, positive abnormal classification (PC), positive 

unknown classification (PU), positive normal classification 

(PN), negative or missed abnormal classifications (NC), and 

negative or missed normal classifications (NU). The 

classifications were cross checked with the annotations 

included with each signal. If the abnormal annotation 

matched the abnormal classification, then the result was 

categorized as a positive abnormal classification. If they 
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didn’t match, but the abnormality was not looked for and the 

classification wasn’t normal, then the result was a positive 

unknown classification. If neither case, then the result was a 

negative abnormal classification. In the normal case if the 

annotation and classification agreed on normal, then the 

result was a positive normal classification. If the annotation 

said normal and the classification said anything other than 

normal, then the result was a negative normal classification. 

The ECG records picked from the MIT-BIH Arrhythmia 

database reflected the classifications the software was 

attempting to identify. With the exception of records 100, 

101, and 222, each record contained PVCs mixed in with 

various other arrhythmias and normal sinus rhythms. 

Arrhythmias included Atrial Premature beats, Bundle 

Branch Blocks, Junctional Premature Beats, Ventricular 

Tachycardia, Ventricular Flutter, Atrial Fibrillation, Atrial 

Flutter, and Second Degree Blocks. How well the 

algorithms could classify normal sinus rhythms mixed with 

abnormalities and Paced Beats was of interest. 

 

Figure 8. Known canned event testing results. Records 1xx and 2xx are 
from the MIT-BIH Arrhythmia database. Records 16xxx are from the MIT-

BIH Normal Sinus Rhythm database. 

In general, the algorithm was able to distinguish between 

a normal ECG and an arrhythmia (see Figure 8). An analysis 

of the results showed not one arrhythmia classified as 

normal, though some were classified as unknown abnormal. 

Normal classification results shows room for improvement. 

Majority if not all of the reasons why a given normal 

rhythm was not classified as such are due to invalid P and T 

wave detections and increased heart rate from movement.  

The results from known canned events testing were 

collected and analysed and are depicted in Figure 8. To 

verify the accuracy of the normal sinus rhythm, records 

from the MIT-BIH Normal Sinus Rhythm database were 

also run (see Figure 8). Each of those signals mixed with 

additional noise originating from movement such as running 

or jogging. 

For live system testing and implementation, the ECG 

algorithms were compiled using the Atmel Studio IDE and 

uploaded to a custom designed printed circuit board (see 

Figure 9), running an Atmel 32-bit UC3 microcontroller. 

 

Figure 9. ECG subsystem printed circuit board. 

The crucial point of live testing was to ensure the ECG 

signal collected by the algorithm was the same signal 

measured and not skewed by the algorithm run time. Using 

a 2 channel oscilloscope, measurements were initiated 

during system initialization, when a classification is not 

found or found using a 16MHz clock source for the MCU. 

The relative accuracy of the classification process was also 

studied using a healthy normal ECG by illuminating a series 

of LEDs corresponding to various classifications. 

III. TESTING RESULTS AND DISCUSSION  

In some instances, a normal ECG was classified as PVC 

or could not be identified. This was mainly due to high 

frequency noise such as in records 108 and 222 or falsely 

identified and/or unidentified P waves due to wave 

morphology and P wave proximity to QRS complexes such 

as in record 222. In other instances a normal ECG would be 

classified as an Abnormal Sinus Rhythm or Sinus 

Tachycardia. An Abnormal Sinus Rhythm came about 

because wave morphology did not fit textbook normal such 

as in records 100, 101, 103, 106, 223, 16265, 16272, and 

16773. Altering the default normal setting in the algorithm 

would fit this very well. Sinus Tachycardia came about 

because of an altered heart rate with normal morphology. In 

a doctor’s office, if the patient was running, this would be 

considered normal, which was the case with records 16265 

and 16773. 

PVCs in records 106 and 109 were classified as 

Unknown Arrhythmias because of incorrect QRS polarity 

detections. In the case of records 109 and 219, PVCs were 

classified as Unknown Arrhythmias because P waves and 

underlying sinus rhythm was not detected, both required for 

a PVC classification. In record 124, the QRS complexes 

were too wide for this algorithm to be able to detect them 

and classify the waveform as PVC, but instead classified it 

as an Unknown Arrhythmia. 

The fibrillatory waves’ amplitude was too low to detect 

an atrial rate in records 219 and 222 in order to classify 

them as Atrial Fibrillation. In record 222, the P waves were 
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back to back causing incorrect polarity detections to classify 

the record as Atrial Flutter. 

While testing a live healthy and normal ECG signal, the 

classification was normal for the majority of the test while 

the user was at rest. The algorithm proved to be resilient to 

small amounts of movement and noise, but failed as 

expected when the user began to jog calling for a need to 

supress invalid classifications with the addition of an 

accelerometer and front end smoothing filter. 

IV. CONCLUSION AND FUTURE WORK 

Overall a new method of autonomously measuring, 

detecting, and classifying ECG arrhythmias for use in a 

mobile cardiovascular disease detection sensor system was 

introduced through combining the Wavelet Transform 

filtering method with a modified Pan Tompkins detection 

method and classifying with an N-ary Tree. The main 

algorithm modifications needed to continue this work would 

be in the P and T wave detection method and adding an 

algorithm training method to learn a user’s normal sinus 

rhythm wave morphology. 

The training system would include the same detection 

scheme used throughout the system, but instead of 

classifying detected sequences, would examine the 

frequency of the morphology of each P wave, PR interval 

and QRS complex to determine a proper normal setting 

within the classification system. Training would be done in 

the presence of a professional to ensure that a normal ECG 

is actually occurring rather than an abnormal ECG. 

The ECG subsystem would also benefit from a user 

movement indicator to inform the algorithm that the user is 

engaged in activity that raises the ventricular heart rate. This 

battles false classifications of Sinus Tachycardia during a 

Normal Sinus Rhythm. Movement artifact removal would 

also be taken care of outside the subsystem by the main 

monitoring system using motion sensors for scaling. 
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