
Combined Time Synchronization and Efficient Data Gathering for Wireless Sensor
Networks

Application to Micaz® motes

Jérôme Mathieu
IUT Rodez

University Toulouse 1
Rodez, France

jerome.mathieu@iut-rodez.fr

Vincent Boudet, Jérôme Palaysi
LIRMM

University Montpellier 2
Montpellier, France

vincent.boudet@lirmm.fr
jerome.palaysi@univ-montp2.fr

Sylvain Durand
LIRMM

University Montpellier 3
Montpellier, France

sylvain.durand@lirmm.fr

Abstract—This paper presents an algorithm for wireless sensor
networks, which combines time synchronization and efficient
data gathering. The synchronization part is novel, using
multiple ways between the reference and the node to be
synchronized to. The data gathering part resumes a previous
work. It uses various connected dominating sets for increasing
the lifetime. This algorithm is calibrated to Micaz® motes by
performing some experiments with them. The synchronization
part is then validated on a simple Micaz® network. That shows
that our algorithm can effectively merge time synchronization
and data gathering with no special message and minimal
overhead for synchronization.

Keywords-Synchronization; Efficient data gathering;
Wireless sensor networks; Micaz

I. INTRODUCTION

The main specificity of Wireless Sensor Networks
(WSN) is due to the limited energy and capabilities
(RAM/ROM, processor, etc.) of the motes (nodes). Those
limited capabilities require to adopt simple algorithms,
especially for annex functions like data gathering. The
limited energy requires to search low consumption solutions.
One of the best strategies is to reduce the duration of mote's
awake periods and the number of communications.

Especially in this constrained context, data gathering
needs time synchronization between motes. Otherwise,
whether the gathering fails or energy is unnecessarily lost.

Data gathering needs also to route data to the sink point.
Therefore, all nodes does not have the same role. Some of
them are in the backbone, and then have more jobs to do and
de facto consume more energy. The network dies because
the backbone nodes deplete their energy if nothing is done.

Many works (see the state of the art in Sections II and
III) treat one of the mentioned problems: either efficient
routing or synchronization. But, to our knowledge, none of
them treats both in a single solution. Consequently, in
practice, nodes accumulate communications and jobs to do.

In this article, we propose an algorithm, which combines
an existing efficient data gathering [1] and a novel
synchronization method, which does not increase the mote
awake duration nor the number of messages in comparison to

the data gathering performed alone, while minimizing the
overhead in messages.

In the following section, we remind the gathering part of
the algorithm. In Section III, we explain our novel time
synchronization protocol. Section IV presents the
specificities of the Micaz® sensors used in the experiments.
We present in Section V the algorithm combining gathering
and synchronization and its performances in Section VI. This
article finishes by giving the conclusions and some
perspectives to this work.

II. EFFICIENT DATA GATHERING

One typical way is to use Connected Dominating Sets
(CDS), also called backbones, to route data to the sink. The
nodes belonging to a backbone use more energy to forward
data because they are much more messages to wait and treat:
at least one by child. The goal is then to minimize the
number of nodes in a backbone [2]. Because of robustness,
scalability and mainly efficiency requirements, most
algorithms are operating in a distributed manner with local
election of the nodes belonging to the backbone [3]. But,
after a certain period of time, the network will be
disconnected while the leaf nodes may still have a lot of
energy. An improvement (in order to increase the lifetime) is
to compute several disjoint backbones [4]. One then tries to
use those backbones alternatively. Unfortunately, computing
the maximum number of disjoint CDS (called connected
domatic number) is a hard task. Furthermore, this number
may be very small. For example, Islam et al. [5] show that
for a grid graph where one of the dimensions is greater or
equal to 3, the connected domatic number is 1. Thus in such
a graph, one cannot expect to increase the lifetime of the
network using disjoint CDS.

The disjoint constraint may be relaxed by trying to find a
set of CDS such that the maximum number of CDS a node
belongs to is minimized. Such a distributed algorithm is
proposed in [6]. Nevertheless, this model does not take into
account the real consumption of energy of the nodes, which
depends (among others) on the number of received
messages, i.e., on the degree of the node.

In our case, all data have to be gathered to a fixed sink.
We thus only have to compute a directed in-tree rooted at the

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

sink, and the sink may initiate this computation (the
algorithm is not localized but only distributed). This
specification allows us to need only a small number of
messages to compute a backbone.

III. TIME SYNCHRONIZATION

In a perfect data gathering, all the nodes receive data
from their children simultaneously and send data to their
parent a short time later. After that, nodes can enter in a
sleeping period until the next gathering. Without any time
synchronization, all nodes must wait each other, canceling
the sleeping period. Of course, the greater the sleeping
period duration is, the longer the lifetime of the network is.
Unfortunately, accurate time synchronization protocols [7]
imply exchange of many messages between nodes and a lot
of calculations, which reduce the sleeping period duration.
Furthermore, nodes cannot send messages simultaneously
because of wireless media access control protocols. So, in
our point of view, a good time synchronization protocol does
not need to be very accurate but should not add messages
and should not reduce the sleeping period duration.

Typically, each node must evaluate two parameters [8]:
the offset, i.e., the difference between the reference clock
and the node clock, and the skew due to the drift of a node
clock relative to a perfect clock. Offset is the leading
parameter in the short-term, for example because nodes are
not switched on simultaneously. Skew becomes important in
the long-term, for example when data gatherings are
infrequent.

A. Offset computation process
Offset is calculated [8] whether by a round-trip between

the reference node and an evaluated node, or after the
estimation of the delay D involved in the transport of a
message between these two nodes. The first type of protocols
supposes that D is equal in each way. The accuracy of all
methods depends on the quality measurements of D. In
practice, D varies from one message to the other and is in
part unpredictable. That's why all methods use statistics to
improve the offset estimation. But, except for RBS [9], these
statistics are based on repetitive exchanges of messages
between always the same nodes. The result is assigned to a
specific node. The complexity increases when the evaluated
node is not directly reachable by the time reference node.
Classically [7,9], the synchronization is then achieved in
stages, some nodes being elected as intermediate time
reference.

Our strategy, inspired by RBS, is different from two
points. First, if the network is homogeneous – i.e., all nodes
have the same architecture, execute the same program, etc. -
statistics are calculated spatially instead of temporally.
Second, the evaluated node doesn't need to be directly
reached by the time reference node. Suppose a simple
network as shown in Figure 1. Node 0 sends by broadcast a
message M1 at time Tr, so M1 is received approximately at
the same time by node 1 and by node 2 (The difference in
distance between nodes involves a negligible time
difference). Node 2 sends the message M2 immediately after

receiving M1. Node 1 receives M1 at T[0] and, a few later, M2

at T[1]. Then, from the point of view of node 1, D=T[1]-
T[0]. In order to do so, D must be considered as a constant in
the network.

Figure 1. Synchronization by two ways

If fact, D is the difference of the delay between nodes 0
and 1 passing by node 2 (=2D) and the delay between nodes
0 and 1 (=D). If the time reference node is node 0, the offset
of node 1 is T[1]-T[0]-D. So, the reference time Tr must be
incorporated at least in M1.

Our method requires to calculate a tree, which is
necessary for data gatherings anyway, and each node must
have at least two neighbors. The synchronization can be
done along with the tree calculation. The reference time is
that of the root of the tree, i.e., the sink.

Formally, the evaluated node receives a message from its
parent (which is at a depth d[0] in the tree) at time T[0] and
from other neighbors (depth d[i]) at time T[i]. All d[i] must
be different from d[0]. Then, the delay D from the point of
view of the evaluated node is:

D = mean((T[i]-T[0]) / (d[i]-d[0])) (1)

and its offset can be calculated by:

offset = mean(T[i]-Tr-d[i]*D) (2)

This is done each backbone calculation.

B. Skew computation process
The skew is often supposed to be a constant [7,8,9], at

least over a period of a few minutes. Typically, something
like the offset variations over time are fitted by a line (linear
regression, for example). The skew is the slope of this line.
For that, many offsets are calculated in a relatively short
time. Then, a good skew estimation requires a very high
offset accuracy and especially much more messages
consuming the battery.

We propose to evaluate the skew using data gatherings
messages only. In each data gathering, a node sends its data
to its parent node in the tree. To ensure the sending, the
parent node returns an acknowledgment to its child node.
This <ACK> message contains the time of the parent node.
Then, the child node can follow over time its clock drift
regarding its parent node without any additional message.
Moreover, the skew value is not important in itself. The main

Node
0

Node
1

Node
2

M1

M1

M2

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

objective of a node is to keep synchronized to its parent over
time. For that, if ΔT[i] is the difference between a child's
time and its parent time observed at the ith gathering, then
ΔT[i+1]-ΔT[i] is more important (equal to the skew times the
time interval between two gatherings). For the first
gatherings, our algorithm provides sufficient margin of
errors from experimental results.

IV. THE MICAZ® MOTES

The objective is to implement our algorithm in the
Micaz®'s platform. Some steps of it are adjustable,
depending on the platform.

A. Energy consumption
The transceiver (radio model TI CC2420) is the

component that has the highest energy consumption of all
relevant components of the Micaz® [10]. In particular, the
receive mode consumes 19.7 mA while the processor needs
“only” 8 mA in its active mode. When the transceiver is in
the transmit mode, the current consumption varies from 8.5
to 17.4 mA depending on the chosen transmit power. Then,
the total consumption is always about 28 mA. So, for energy
saving, the transceiver must be off as often as possible. That
means reducing the number of messages and the time it may
be used.

The reference objective of this study is one gathering
every minute and a lifetime of one year (a directive of a
partner). A node in the economical state consumes
approximately 20µA (CC2420 power down mode) + 15µA
(CPU save mode). The consumption of other components is
neglected here. In one year, an idly node consumes 35µA
times 8760h (1 year), that is about 307 mAh. A Micaz®
embeds two AA batteries. If their capacity is 2200 mAh
each, the lifetime in active mode is about (4400-307)/28 =
146 h. If this lifetime is splitted, each data gathering (with or
without backbone calculation) must take at most 1 s.

Note that the CC2420 crystal oscillator start-up time is 1
ms, the condition to switch from the power down mode to
the idle mode from which the communications can restart.
But the idle mode consumes too much (about 0.43 mA). It is
an another proof that energy saving is not completely
compatible with high accuracy synchronization protocols.

To validate these calculations, one could use an accurate
tool of energy consumption prediction [11]. But, to be really
useful here, the tool should also integrate a model of battery.
For example, Alkaline batteries, such they use, have a cut-off
voltage smaller than the minimum voltage supply for
Micaz® and their capacity decreases if the load increases
[12]. All of that make the battery lifetime prediction
hazardous. So, the mote lifetime is evaluated by some
experiments. A Micaz® is programmed to send a message
every minute and to wait the rest of the time. The transceiver
is switched off a percentage of the duty cycle, after the
sending. A LED is blinking 5% of the duty cycle, only for
control. It represents an additional amount of consumed
energy of about 0.5%.

The lifetime of the mote is reported in Table I. We can
see that the lifetime of the mote fully active is not a constant

because the behavior of the alkaline batteries. But, its
tendency suggests that 146 h is probably easily reachable
especially when the active time of the transceiver will be less
than 1 %.

TABLE I. EVOLUTION OF THE MOTE LIFETIME VS THE PERCENTAGE OF THE
ACTIVE TIME OF THE TRANSCEIVER

Active time of the
transceiver (%) 100 75

Mote lifetime (h) 113.80±0.66 178.09±1.52
Mote fully active

lifetime (h) 113.8 133.6

B. Communication delays
Firstly, our algorithm has a flaw: when a node has only

one neighbor (its parent), the delay D can't be calculated as
shown above. It must be given as a platform constant for the
offset calculation process. But the skew correction process
finely corrects the local clock, if necessary, at the first data
gathering.

Secondly, in the data gathering phases, backbone's nodes
have to wait all their child nodes before sending its data to its
parent node. A timer (timeout) is necessary otherwise a
deadlock situation may occur if one child node fails. The
timer setting is difficult both to ensure the time needed to
gather data and to save energy.

The following experiments are used to evaluate the real
delays D depending on the number of neighbors. A Micaz®
node, randomly chosen, called the evaluated node eN, is
programmed to send a broadcast message that contains its
system time Ss. Neighbor(s) send(s) back this message
without any modification (echo) to eN as soon as possible.
The nominative sendings allow not saturating unnecessarily
the neighbors. At the reception of the echo by the neighbor
Vi (one per neighbor), eN gets as soon as possible its
associated system time Se[Vi] and sends it back to Vi in a
<ACK> message. Neighbors have a timer associated with
the sending of the echo. If the timer fires without receiving
this <ACK>, they send echo again. Each neighbor receiving
this <ACK> message stops until the next test. This ensures
that eN has processed all neighbors. It is necessary because
neither CSMA/CA nor the beacon mode are incorporated by
default in Micaz®. We only have the clear channel
assessment. At the end of a trial, eN sends Ss and all Se[Vi] to
a wireless network “sniffer”. This “sniffer” captures all
exchanges too. Se[Vi]-Ss is the eN's delay D plus the Vi's one.

This procedure is repeated 30 times, every 5s, for
statistical analysis. The repetition rate is chosen to minimize
the influence of the clock drift while leaving time for nodes
to prepare for the next round.

The system time accuracy is estimated at 0,25 ms.
Table II shows that the nodes, even placed in the same

situation, do not necessarily behave in the same way (see 1
neighbor column). When the number of neighbors increases,
the mean delay, the standard deviation and the max value
increase but not evenly for all nodes. Nodes little bit more
reactive maintain relatively low values, but others not. With
3 or 4 neighbors, it is better to forecast 100 ms to gather data.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

Otherwise, one of the nodes does not have the time to send
data to its parent. This table gives also an idea of the needed
synchronization accuracy. It seems that accuracy around 5
ms is enough.

We must specify that all these results depend on the
chosen timer. Indeed, it is one of our future works to refine
the timer formulation.

TABLE II. EVOLUTION OF DELAYS VS THE NUMBER OF NEIGHBORS

Number of
neighbors

Evaluated node's delay + neighbor's delay

Neighbor Mean (ms)
Standard
deviation

(ms)

Max value
(ms)

1
“1” 3.1 2.1 7.3

or “2” 5.0 3.2 13.0

2
“1” 6.6 9.3 39.1

“2” 5.4 8.2 41.6

3

“1” 11.5 20.2 104.9

“2” 8.0 9.0 30.3

“3” 11.3 17.7 89.2

4

“1” 6.3 7.2 30.1

“2” 9.4 9.6 38.7

“3” 7.6 7.6 29.6

“4” 12.0 20.6 97.8

Table III shows the most important consequence when
the number of neighbors increases. Many messages are lost
by eN because it is busy by treating other message just
received.

TABLE III. EVOLUTION OF PERCENTAGE OF LOST MESSAGES AND
RETRANSMISSIONS VS THE NUMBER OF NEIGHBORS

Number of
neighbors

Percentage of lost
messages

Percentage of
retransmissions

1 0 0

2 10 16 to 20

3 20 26 to 38

4 32 40 to 70

C. Clock skew
Two motes are programmed to send a message every

minute to the “sniffer”. Then, the mote's clock can be
compared to the computer's clock, which is supposed to be
accurate on the experiment's duration (about 80 h). The first
mote skews of +6.6 s (about +2.0 s per day or +23 ppm),
while the second one skews of +4.6 s (about +1.4 s per day
or +16 ppm). These results corroborate some previous works
[13].

V. THE PROPOSED ALGORITHM

Our algorithm includes two phases:
 a backbone calculation + synchronization phase,

 a data gathering + skew correction phase.
The first phase is repeated using several conditions. The

basic condition is the number of gatherings: each X
gatherings, a new backbone calculation is initiated by the
sink node. Other conditions to initiate a new backbone
calculation are relative to data loss (just one data or beyond a
percentage threshold). The choice of these conditions
depends on the application. The choice of X (not necessary a
constant) depends on the percentage of energy consumed
during a gathering phase.

The second phase must incorporate a signaling procedure
if a condition on data loss is used. Indeed, leaf nodes in
particular do not know if a gathering is complete or not, and
consequently if a new backbone calculation will be initiated
or not. Between 2 first phases, gatherings (second phases)
are repeated with a rhythm depending on the application.

A. The backbone calculation + synchronization phase
This phase also incorporates the neighbor discovery. This

is done by observing the ID of each received message.
There are 3 kinds of messages:
 <INV>: the “invitation” message, broadcasted. It

contains the backbone ID B, the sender ID, the sink
time Ts, the total waiting in the path W, the sender
level in the tree L, etc.

 <F>: the “parent” message, sent repeatedly to the
parent node until <ACK> is received, contains B, the
sender ID, etc.

 <ACK>: the acknowledge message, not mentioned
in Figure 2.

The principle of the backbone calculation is that each
node will choose as a parent in the backbone the first node
from which it received an “invitation” message. Since all the
nodes but the sink send their invitation after receiving one,
this ensures that we built a directed in-tree rooted at the sink.
Fine-tuning of the algorithm is done by the computation of
the delay w each sensor has to wait before sending an
invitation. The main idea is that less remaining energy the
node has, longer the delay is. Of course, if the delay
increases, the probability for a node that its <INV> will be
the first received by its neighbors decreases. Thereby, the
probability that the node belongs to the backbone decreases
too. This tends to calculate different backbones and equalize
the energy consumption of nodes. The main consequence is
an increasing of the network lifetime. More details can be
found in [1].

Note that if the delay is constant for all nodes, then this
phase is formally identical to a Breadth First Search (BFS)
with incorporated synchronization.

Finally, it is noteworthy that no additional message is
required to ensure the synchronization. The three ones are
necessary for the backbone calculation. And the additional
computations are very light.

B. The gathering + skew correction phase
The backbone nodes wake up at the same time as its

child nodes because they must be ready to receive <DATA>.
This time is depending on the level in the backbone,

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

For the sink node (also the reference time node) S,
send <INV> ; B++

For all other nodes N do:
 Receive the first <INV>:

(parent ID = sender's ID) and (N's L = L+1)
Note Ts, L[0]=L, T[0]=T-W, where T is the local
system time

Send <F>
Chose a delay w; W = W + w; wait w
Send <INV>

 Receive other <INV>:
If (L ≠ L[0]), L[i]=L, T[i]=T-W, nb_inv++, i++

 Receive a <F>:
N backbone∈

 Just before go sleeping:
If (N is a parent of none node) then N ∉ backbone
If (nb_inv > 0) apply Equation (1) else D = 5 ms
Apply Equation (2) (with Tr = Ts)

For the leaf nodes do:
Send <DATA> to its parent repeatedly until

<ACK> is received
T = Tf
If (ALERT=Yes) for the first time, return to the
backbone calculation + synchronization phase in
C gatherings

else go sleeping until the next gathering

For the backbone's nodes do:
Receive <DATA> from a child N
Send <ACK> with its local system time Tf and
ALERT (ALERT=No by default) to N

Wait for the end of the gathering period (timer)
Behave as a leaf node

following the staggered sleep scheduling scheme like in D-
MAC [14] but at the application level. Working at the
application level instead of the MAC level allows to reduce
the transmission slot duration as soon as possible.

Figure 2. The backbone calculation + synchronization phase

Figure 3. The gathering + skew correction phase

The simplest and energy saving manner for signaling a
new backbone calculation is to use an ALERT flag (see
Figure 2). ALERT is incorporated in <ACK> messages,
associated to the maximum depth in the tree (DT) and the
sender's time, i.e., the parent's time Tf.

It allows to change the node phase together with other
nodes through the counter C=DT-L. Note that DT gatherings

are necessary before effectively initializing a new backbone
calculation. It is the main inconvenient of this method.
Another solution, when data are vital, is to keep all nodes
pending the decision of the sink. That means that all nodes
wait the end of the gathering for the ALERT signal,
consuming uselessly their energy.

The affectation T=Tf may seem a bad formula to correct
the skew. Normally, the delay D must be taken into account.
But D may overestimate the real transmission time because
the context is usually more favorable. Then, at the next
gathering, the child may wake up before its parent, failing
the firsts sendings of data. It is thus preferable that leaf nodes
wake up after their parent.

Once again, no additional message and few additional
computations are necessary for the synchronization. The
main part of the work is needed to ensure the dependability,
the reliability of the data gathering.

The gathering period should last the time required for all
children to send their data, that is for example about 100 ms
for a network with 4 neighbors per node (see table II). Then,
a node in the backbone awakes about 115 ms (mean time)
while a leaf node awakes only about 15 ms (mean time) (see
table II). That is the reason for changing regularly the
backbone.

A time of 115 ms fulfills the recommendations made in
Section IV-A. If more than one gathering per minute is
expected, the gathering period should be decreased, i.e., the
medium access control should be improved (see Section IV-
B).

VI. VALIDATION OF THE SYNCHRONIZATION PROTOCOL ON
MICAZ®

The backbone calculation + synchronization (BCS) phase
(Figure 2) is programmed on 5 motes. Another node is
programmed as a sink node. The nodes are switched on
randomly. The BCS phase starts automatically about 30 s
later the sink node has been switched on. For the
experiments purposes, each node has an additional
functionality: responding to a probe node. When the BCS
phase is ended, the probe node sends (broadcast) a special
message to all nodes including the sink node. Immediately,
nodes have to record their local time. Then, they have to
send it to the “sniffer”. Clocks, corrected by the calculated
offset, are compared to the sink's one, which is the time
reference.

The experimental network is presented Figure 4. It is
constructed such that several situations are treated:

 A node has only one neighbor (node 5), so nb_inv =
0 and D is fixed to 5 ms for this node (see Figure 2).

 Some nodes have 2 neighbors, at its same level or a
smaller level (nodes 2 and 4).

 Some nodes have many - 3 or 4 - neighbors (nodes 1
and 3).

 The backbone has several levels (3), which is the
maximum achievable with this experiment and only
2 “sniffers”.

 The backbone is always the same to make statistics
without influence of the resulting backbone.

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

Figure 4. Experimental network

The results are presented in Table IV. They are good,
even if they are probably worse than those that have been
obtained with other synchronization protocols. They are of
the same order of the measured delay shown in Table II, and
this is what we hoped, even if the system time accuracy is
worse (slower clock rate).

TABLE IV. CLOCK DIFFERENCES BETWEEN THE SINK NODE AND THE OTHER
NODES

Node Mean of clock
differences (ms) Standard deviation (ms)

1 6.6 5.27

2 1.0 8.19

3 3.2 7.33

4 2.4 11.76

5 7.6 3.58

Some remarks should be noted.
First, as expected, and unlike other protocols, the mean

of the clock differences does not significantly increase with
the depth of the node in the tree. However, our results are
almost always positive implying that the delay is probably
systematically underestimated. This is probably due to
computation time that is not properly taken into account. An
optimization of the program should solve the problem.

Second, the number of neighbors influences differently
the mean and the standard deviation. When a node has many
neighbors, the mean tends to increase and the standard
deviation tends to decrease. This shows that our method
tends to converge, even if it is towards a value slightly
underestimated (cf. the first remark, with cumulative effects).

Third, node 5 is a special case. Its particularly low
standard deviation shows that the real delay is fairly stable
from one experiment to another. For cons, its mean shows
that the default value given to D is also slightly
underestimated.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we presented a new protocol that realizes
both gathering and a new synchronization method in a
wireless sensor network. The load for the gathering is

distributed over all the nodes and there is no special message
needed for the synchronization.

The perspectives of this work are to refine the timer's
formulations and mainly the sleep scheduling for a more
deterministic one. Thereafter, the protocol will be tested with
a more complex experimental network.

REFERENCES

[1] V. Boudet, S. Durand, L. Gönczy, J. Mathieu, and J. Palaysi,
“Efficient gatherings in wireless sensor networks using
distributed computation of connected dominating sets”,
Sensors & Transducers Journal, vol. 14-2, 2012, pp. 297-307.

[2] S. Guha and S. Khuller, “Approximation algorithms for
connected dominating sets”, Algorithmica, vol. 20, April
1998, pp. 374-387.

[3] C. Adjih, P. Jacquet, and L. Viennot, “Computing connected
dominated sets with multipoint relays”, Adhoc & Sensor
Wireless Networks, vol. 1, no. 1, 2004, pp. 27-39.

[4] T. Moscibroda and R. Wattenhofer, “Maximizing the lifetime
of dominating sets”, Proceedings of the 19th IEEE
International Parallel and Distributed Processing Symposium
(IPDPS'05) - 5th IEEE International Workshop on Algorithms
for Wireless, Mobile, Ad Hoc and Sensor Networks (WMAN
2005), Denver, USA, vol. 13, April 2005, p. 242b. doi:
10.1109/IPDPS.2005.276.

[5] K. Islam, S. G. Akl, and H. Meijer, “A constant factor
localized algorithm for computing connected dominating sets
in wireless sensor networks”, Proceedings of the International
Conference on Parallel and Distributed Systems
(ICPADS'08), Melboune, Australia, 2008, pp. 559-566.

[6] K. Islam, S. G. Akl, and H. Meijer, “Distributed generation of
a family of connected dominating sets in wireless sensor
networks”, in Distributed Computing in Sensor Systems, vol.
5516, B. Krishnamachari, S. Suri, W. Heinzelman, and U.
Mitra, Ed., Springer Berlin / Heidelberg, 2009, pp. 343-355.

[7] S. el Khediri, N. Nasri, M. Samet, A. Wei, and A. Kachouri,
“Analysis study of time synchronization protocols in wireless
sensor networks”, Int. J. of Distributed & Parallel Systems,
vol. 3, no. 3, May 2012, pp. 155-165.

[8] F. Sivrikaya and B. Yener, “Time synchronization in sensor
networks: a survey”, IEEE Network, vol. 18, issue 4, July
2004, pp. 45-50.

[9] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts”, Proceedings of
the 5th symposium on Operating systems design and
implementation (OSDI'02), Boston, USA, December 2002,
pp. 147-163.

[10] http://www.memsic.com/userfiles/files/Datasheets/WSN/mica
z_datasheet-t.pdf

[11] O. Landsiedel, K. Wehrle, and S. Götz, “Accurate prediction
of power consumption in sensor networks”, Proceedings of
the 2nd IEEE Workshop on Embedded Networked Sensors
(EmNetSII), Sydney, Australia, 2005, pp. 37-44.

[12] http://en.wikipedia.org/wiki/Alkaline_battery
[13] M.B. Uddin and C. Castelluccia, “Toward clock skew based

wireless sensor node services”, Proceedings of the 5th
Wireless Internet Conference (WICON) - International
Workshop on Ubiquitous Body Sensor Networks (UBSN
2010), Singapore, March 2010, pp. 1-9.

[14] G. Lu, B. Krishnamachari, and C. Raghavendra, “An adaptive
energy-efficient and low-latency MAC for data-gathering in
sensor networks”, Proceedings of the 18th IEEE International
Parallel and Distributed Processing Symposium (IPDPS'04) -
4th IEEE International Workshop on Algorithms for Wireless,
Mobile, Ad Hoc and Sensor Networks (WMAN), Santa Fe,
USA, April 2004. doi: 10.1109/IPDPS.2004.1303264.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-296-7

SENSORCOMM 2013 : The Seventh International Conference on Sensor Technologies and Applications

	I. Introduction
	II. Efficient Data Gathering
	III. Time Synchronization
	A. Offset computation process
	B. Skew computation process

	IV. The Micaz® motes
	A. Energy consumption
	B. Communication delays
	C. Clock skew

	V. The Proposed Algorithm
	A. The backbone calculation + synchronization phase
	B. The gathering + skew correction phase

	VI. Validation of the Synchronization Protocol on Micaz®
	VII. Conclusion and Future Works

